Through a unique blend of practicality and rigour, the Saunders author team provide business and management students with the knowledge, understanding and skills necessary to complete a successful research project.

The fourth edition of *Research Methods for Business Students* is a market-leading text which brings the theory, philosophy and techniques of research to life and enables students to understand the practical relevance of the research methods. A highly accessible style, logical structure, numerous examples and useful checklists provide step-by-step guidance through the entire research process.

Use this book to:
- Understand both the practical application and underlying philosophy of research methods in business.
- Learn from worked examples and case studies based on real student research, illustrating clearly what to do and what not to do in your project.
- Gain rapid understanding and confidence in using the tools and techniques for analysis to undertake successful research.

Log on to www.pearsoned.co.uk/saunders to:
- Get ahead with tutorials on software packages such as SPSS and NVivo.
- Make the most of the Internet as an efficient and effective research tool by using the Smarter Online Searching Guide.
- Test your understanding with the multiple choice questions for each chapter.
Research Methods for Business Students

Visit the Research Methods for Business Students, Fourth Edition Companion Website at www.pearsoned.co.uk/saunders to find valuable student learning material including:

- Multiple choice questions to test your learning.
- Tutorials on Excel, NVivo and SPSS.
- Updated research datasets to practice with.
- Updated additional case studies with accompanying questions.
- Smarter Online Searching Guide – how to make the most of the Internet in your research.
We work with leading authors to develop the strongest educational materials in business strategy, bringing cutting-edge thinking and best learning practice to a global market.

Under a range of well-known imprints, including Financial Times Prentice Hall, we craft high quality print and electronic publications which help readers to understand and apply their content, whether studying or at work.

To find out more about the complete range of our publishing please visit us on the World Wide Web at: www.pearsoned.co.uk
Contents

How to use this book xiii
Guided tour xvii
Preface xx
Contributors xxii
Publisher’s acknowledgements xxiv

1 The nature of business and management research and structure of this book
Mark Saunders, Philip Lewis and Adrian Thornhill

Learning outcomes 2
1.1 Introduction 2
1.2 The nature of research 4
1.3 The nature of business and management research 5
1.4 The research process 8
1.5 The purpose and structure of this book 9
1.6 Summary 13
Self-check questions 14
Review and discussion questions 14
References 14
Further reading 15
Self-check answers 15

2 Formulating and clarifying the research topic
Mark Saunders, Philip Lewis and Adrian Thornhill

Learning outcomes 18
2.1 Introduction 18
2.2 Attributes of a good research topic 19
2.3 Generating and refining research ideas 21
2.4 Turning research ideas into research projects 30
2.5 Writing your research proposal 38
2.6 Summary 46
Self-check questions 46
Review and discussion questions 47
Progressing your research project: From research ideas to a research proposal 47
References 48
Further reading 49
Case 2: Catherine Chang and women in management
Mark Saunders, Philip Lewis and Adrian Thornhill

Self-check answers 51
3 Critically reviewing the literature 54
Mark Saunders, Philip Lewis, Adrian Thornhill, Martin Jenkins and Darren Bolton

Learning outcomes 54
3.1 Introduction 54
3.2 The critical review 57
3.3 Literature sources available 64
3.4 Planning your literature search strategy 70
3.5 Conducting your literature search 74
3.6 Obtaining and evaluating the literature 86
3.7 Recording the literature 88
3.8 Summary 91
Self-check questions 92
Review and discussion questions 93
Progressing your research project: Critically reviewing the literature 93
References 94
Further reading 95
Case 3: National cultures and management styles 96
Mike Savvas
Self-check answers 97

4 Understanding research philosophies and approaches 100
Mark Saunders, Philip Lewis and Adrian Thornhill

Learning outcomes 100
4.1 Introduction 100
4.2 Understanding your research philosophy 101
4.3 Research approaches 117
4.4 Summary 121
Self-check questions 122
Review and discussion questions 122
Progressing your research project: Diagnosing your research philosophy 123
References 124
Further reading 125
Case 4: Marketing music products alongside emerging digital music channels 126
Rick Colbourne
Self-check answers 127

5 Formulating the research design 130
Mark Saunders, Philip Lewis and Adrian Thornhill

Learning outcomes 130
5.1 Introduction 130
5.2 The purpose of your research 132
5.3 The need for a clear research strategy 135
5.4 Multiple methods choices – combining quantitative and qualitative techniques and procedures 145
5.5 Time horizons 148
CONTENTS

8 Using secondary data 246
Mark Saunders, Philip Lewis, Adrian Thornhill, Martin Jenkins and Darren Bolton
Learning outcomes 246
8.1 Introduction 246
8.2 Types of secondary data and uses in research 248
8.3 Locating secondary data 253
8.4 Advantages and disadvantages of secondary data 257
8.5 Evaluating secondary data sources 263
8.6 Summary 272
Self-check questions 273
Review and discussion questions 273
Progressing your research project: Assessing the suitability of secondary data for your research 274
References 274
Further reading 276
Case 8: Small firms internationalisation 277
Sharon Loane
Self-check answers 279

9 Collecting primary data through observation 282
Mark Saunders, Philip Lewis and Adrian Thornhill
Learning outcomes 282
9.1 Introduction 282
9.2 Participant observation: an introduction 283
9.3 Participant observation: researcher roles 286
9.4 Participant observation: data collection and analysis 289
9.5 Structured observation: an introduction 293
9.6 Structured observation: data collection and analysis 297
9.7 Summary 302
Self-check questions 302
Review and discussion questions 303
Progressing your research project: Deciding on the appropriateness of observation 303
References 304
Further reading 304
Case 9: Exploring service quality in bank customers' face-to-face experiences 306
Cathy Leng
Self-check answers 308

10 Collecting primary data using semi-structured, in-depth and group interviews 310
Mark Saunders, Philip Lewis and Adrian Thornhill
Learning outcomes 310
10.1 Introduction 310
10.2 Types of interview and their link to the purposes of research and research strategy 311
13 Analysing qualitative data

Mark Saunders, Philip Lewis and Adrian Thornhill

Learning outcomes 470
13.1 Introduction 470
13.2 Differences between qualitative and quantitative data 472
13.3 Preparing your data for analysis 474
13.4 An overview of qualitative analysis 478
13.5 Approaches to qualitative analysis 487
13.6 Deductively-based analytical procedures 489
13.7 Inductively-based analytical procedures 492
13.8 Quantifying your qualitative data 505
13.9 Using CAQDAS for qualitative analysis 505
13.10 Summary 508
Self-check questions 508
Review and discussion questions 508
Progressing your research project: Analysing your data qualitatively 509
References 510
Further reading 511

Case 13: Internet abuse in universities

Teresa Waring

Self-check answers 515

14 Writing and presenting your project report

Mark Saunders, Philip Lewis and Adrian Thornhill

Learning outcomes 518
14.1 Introduction 518
14.2 Getting started with writing 520
14.3 Structuring your project report 523
14.4 Organising the project report’s content 533
14.5 Developing an appropriate writing style 536
14.6 Meeting the assessment criteria 540
14.7 Oral presentation of the report 542
14.8 Summary 546
Self-check questions 546
Review and discussion questions 547
Progressing your research project: Writing your project report 547
References 548
Further reading 548

Case 14: Akasma’s draft disappointment

Mark Saunders, Philip Lewis and Adrian Thornhill

Self-check answers 551
Supporting resources

Visit www.pearsoned.co.uk/saunders to find valuable online resources:

Companion Website for students
- Multiple choice questions to test your learning.
- Tutorials on Excel, NVivo and SPSS.
- Updated research datasets to practice with.
- Updated additional case studies with accompanying questions.
- Smarter Online Searching Guide – how to make the most of the Internet in your research.

For instructors
- Complete, downloadable Instructor’s Manual.
- PowerPoint slides that can be downloaded and used for presentations.

Also – the regularly maintained Companion Website provides the following features:
- Search tool to help locate specific items of content.
- E-mail results and profile tools to send results of quizzes to instructors.
- Online help and support to assist with website usage and troubleshooting.

For more information please contact your local Pearson Education sales representative or visit www.pearsoned.co.uk/saunders

OneKey: All you and your students need to succeed

OneKey is an exclusive new resource for instructors and students, giving you access to the best online teaching and learning tools 24 hours a day, 7 days a week.

OneKey means all your resources are in one place for maximum convenience, simplicity and success.

A OneKey product is available for Research Methods for Business Students, Fourth Edition for use with CourseCompass. In addition to the Companion Website material it contains:
- Research Navigator access to help with your research;
- Interactive Study Guide;
- Further assignments and weblinks to aid understanding.

For more information about the OneKey product please contact your local Pearson Education sales representative or visit www.pearsoned.co.uk/onekey
This book is written with a progressive logic, which means that terms and concepts are defined when they are first introduced. One implication of this is that it is sensible for you to start at the beginning and to work your way through the text, various boxes, self-check questions, review and discussion questions, case studies and case study questions. You can do this in a variety of ways depending on your reasons for using this book. However, this approach may not necessarily be suitable for your purposes, and you may wish to read the chapters in a different order or just dip into particular sections of the book. If this is true for you then you will probably need to use the glossary to check that you understand some of the terms and concepts used in the chapters you read. Suggestions for three of the more common ways in which you might wish to use this book are given below.

As part of a research methods course or for self-study for your research project

If you are using this book as part of a research methods course the order in which you read the chapters is likely to be prescribed by your tutors and dependent upon their perceptions of your needs. Conversely, if you are pursuing a course of self-study for your research project or dissertation the order in which you read the chapters is your own choice. However, whichever of these you are, we would argue that the order in which you read the chapters is dependent upon your recent academic experience.

For many students, such as those taking an undergraduate degree in business or management, the research methods course and associated project or dissertation comes in either the second or the final year of study. In such situations it is probable that you will follow the chapter order quite closely (see Figure P.1). Groups of chapters within which we believe you can switch the order without affecting the logic of the flow too much are shown on the same level in this diagram and are:

- those chapters associated with data collection (Chapters 8, 9, 10 and 11);
- those associated with data analysis (Chapters 12 and 13).

In addition, you might wish to read the sections in Chapter 14 on writing prior to starting to draft your critical review of the literature (Chapter 3).

Alternatively, you may be returning to academic study after a gap of some years, to take a full-time or part-time course such as a Master of Business Administration, a Master of Arts or a Master of Science with a Business and Management focus. Many students in such situations need to refresh their study skills early in their programme, particularly those associated with critical reading of academic literature and academic writing. If you feel the need to do this, you may wish to start with those chapters that support you in developing and refining these skills (Chapters 3 and 14), followed by Chapter 8, which introduces you to the range of secondary data sources available that might be of use for...
other assignments (Figure P.2). Once again, groups of chapters within which we believe you can switch the order without affecting the logic of the flow too much are shown on the same level in the diagram and are:

- those chapters associated with primary data collection (Chapters 9, 10 and 11);
- those associated with data analysis (Chapters 12 and 13).

In addition, we would recommend you re-read Chapter 14 prior to starting to write your project report or dissertation.

Whichever order you choose to read the chapters in, we would recommend that you attempt all the self-check questions, review and discussion questions and those questions associated with the case studies. Your answers to the self-check questions can be self-assessed using the answers at the end of each chapter. However, we hope that you will actually have a go at each question prior to reading the answer! If you need further information on an idea or a technique then first look at the references in the further reading section.
At the end of Chapters 2–14 the section headed ‘Progressing your research project’ lists a number of tasks. Such tasks might involve you in just planning a research project or, alternatively, designing and administering a questionnaire of your own. When completed, these tasks will provide a useful aide-mémoire for assessed work and can be used as the basis for the first draft of your project report.

As a guide through the research process

If you are intending to use this book to guide you through the research process for a research project you are undertaking, such as your dissertation, we recommend that you read the entire book quickly before starting your research. In that way you will have a good overview of the entire process, including the range of techniques available, and will be better able to plan your work.
HOW TO USE THIS BOOK

After you have read the book once, we suggest that you work your way through the book again following the chapter order. This time you should attempt the self-check questions, review and discussion questions and those questions associated with each case study to ensure that you have understood the material contained in each chapter prior to applying it to your own research project. Your responses to self-check questions can be assessed using the answers at the end of each chapter.

If you are still unsure as to whether particular techniques, procedures or ideas are relevant then pay special attention to the ‘worked example’, ‘focus on management research’ and ‘research in the news’ boxes. ‘Worked example’ boxes are based on actual students’ experiences and illustrate how an issue has been addressed or a technique or procedure used in a student’s research project. ‘Focus on management research’ boxes discuss recent research articles in established refereed academic journals, allowing you to see how research is undertaken successfully. These articles are easily accessible via online databases. ‘Research in the news’ boxes provide topical news articles of how particular research techniques, procedures and ideas are used in the business world. You can also look in the ‘further reading’ for other examples of research where these have been used. If you need further information on an idea, technique or procedure then, again, start with the references in the further reading section.

Material in some of the chapters is likely to prove less relevant to some research topics than others. However, you should beware of choosing techniques because you are happy with them, if they are inappropriate. Completion of the tasks in the section headed ‘Progressing your research project’ at the end of Chapters 2–13 will enable you to generate all the material that you will need to include in your project report. This will also help you to focus on the techniques and ideas that are most appropriate to your research. When you have also completed these tasks for Chapter 14 you will have written your project report.

As a reference source

It may be that you wish to use this book now or subsequently as a reference source. If this is the case, an extensive index will point you to the appropriate page or pages. Often you will find a ‘checklist’ box within these pages. ‘Checklist’ boxes are designed to provide you with further guidance on the particular topic. You will also find the contents pages and the glossary useful reference sources, the latter defining over 400 research terms. In addition, we have tried to help you to use the book in this way by including cross-references between sections in chapters as appropriate. Do follow these up as necessary. If you need further information on an idea or a technique then begin by consulting the references in the further reading section. Wherever possible we have tried to reference books that are in print and readily available in university libraries.
5 Formulating the research design

LEARNING OUTCOMES
By the end of this chapter you should be able to:

➔ understand the importance of having thought carefully about your research
➔ identify the main research strategies and explain why these should not be thought of as mutually exclusive
➔ understand the difference between qualitative and quantitative data collection
➔ understand the importance of your research design in determining the research methods
➔ consider the implications of adopting different time horizons for your research design
➔ consider the concept of validity and reliability and identify the main threats to validity and reliability
➔ identify, in some of the main ethical issues implied by the choice of research

5.1 Introduction

In Chapter 4 we introduced the research as a part of dissecting the recent works, being clear about all of the limitations of qualitative and quantitative data. In this chapter we focus on the value of research design in revealing the underpinning assumptions of the research, and unmasking the complexities that can lie hidden within. The research design is therefore the plan or strategy of how the research is to be carried out. It identifies the data collection method(s) to be used, and the associated methods of analysis. It is the general plan of how you will go about answering your research questions. Decisions about tactics will involve your being clear about your research philosophy, and your ideas as to the best possible design guided by these constraints

Chapter openers provide a clear and concise introduction to the topics to be covered, together with a list of Learning Outcomes that you should have achieved by the end of the chapter.

Practical illustrations bring to life some of the issues and challenges you will encounter during your course and beyond. These include short Worked Examples and longer Cases.
Explore recent articles and up-to-date issues in research practice through the Focus on Management Research and Research in the News features.

Save time and improve your research results by using the Tutorials on Excel, NVivo and SPSS, and the Smarter Online Searching Guide. Both of these valuable resources are accessible at www.pearsoned.co.uk/saunders.
BOX 2.2

We believe you should use both rational and creative techniques, choosing those that you think the order in which you use them are entirely up to you. However, like Raimond (1993), many researchers advocate using both systematic and unstructured techniques that can be used to find and select a topic that you would like to research. They can be used to give a research idea we believe you will still find it useful to read the next subsection, which deals with generating research ideas. Many of the techniques which can be used for this research topic can be thought of as those that are predominantly rational thinking and those that involve more creative thinking.

Attributes of a good research topic

- Does the research topic match your career goals?
- Is the research topic achievable within the financial resources that are likely to be available?
- Is the topic something with which you are really fascinated?
- Do you have, or can you develop within the project time frame, the necessary research skills to undertake the topic?
- Does the research topic involve the necessary data to complete the research successfully?

PROGRESSING YOUR RESEARCH PROJECT

Diagnosing your research philosophy

When you embark on a piece of research, there are a number of ways to do this. First, you can use the available literature to evaluate your work and to clarify your own thoughts. Second, you can use a checklist, or self-assessment questionnaire, to evaluate your work and clarify your own thoughts. Third, you can use a checklist, or self-assessment questionnaire, to evaluate your work and clarify your own thoughts.

CHECKLIST

1. Does the research topic help you to achieve your career goals?
2. Is the research topic achievable within the financial resources that are likely to be available?
3. Do you have, or can you develop within the project time frame, the necessary research skills to undertake the topic?
4. Does the research topic involve the necessary data to complete the research successfully?

Questions

1. To what extent do your own values influence your research? Why?
2. What do you consider to be the nature of reality? Why?
3. How might knowledge of this impact upon your own research?
4. Are the findings for this research topic likely to be symmetrical: that is, of similar value whatever the outcome?
5. Are there any ethical issues you need to address in this research?
6. Is the topic something with which you are really fascinated?
7. Are the findings for this research topic likely to be symmetrical: that is, of similar value whatever the outcome?
8. Are there any ethical issues you need to address in this research?
9. Are the findings for this research topic likely to be symmetrical: that is, of similar value whatever the outcome?
10. Are there any ethical issues you need to address in this research?

Answers

1. Yes, to what extent do your own values influence your research? Why? (Table 2.1).
2. No, are the findings for this research topic likely to be symmetrical: that is, of similar value whatever the outcome?
3. Yes, are there any ethical issues you need to address in this research?
4. Yes, are the findings for this research topic likely to be symmetrical: that is, of similar value whatever the outcome?
5. No, are there any ethical issues you need to address in this research?
6. Yes, are the findings for this research topic likely to be symmetrical: that is, of similar value whatever the outcome?
7. Yes, are there any ethical issues you need to address in this research?
8. No, are the findings for this research topic likely to be symmetrical: that is, of similar value whatever the outcome?
9. No, are there any ethical issues you need to address in this research?
10. Yes, are the findings for this research topic likely to be symmetrical: that is, of similar value whatever the outcome?

Summary

You will be given lots of opportunities to review your progress! Every chapter includes handy Checklists, tips on Progressing Your Research Project, as well as Self-Check Questions (at the end of the chapter). There are additional interactive Multiple Choice Questions on the Companion Website.
In writing the fourth edition of Research Methods for Business Students we have responded to the many comments we have received regarding previous editions. In particular this has led us to research and write two new chapters: ‘Understanding research philosophies and approaches’ (Chapter 4) and ‘Formulating the research design’ (Chapter 5), and to substantially update Chapter 13 ‘Analysing qualitative data’. In addition, we have taken into account the increasing importance of the Internet as a means of accessing academic literature and research data sets. This, combined with the reality of relatively inexpensive and easily accessible computer processing power for almost all students, has had significant implications for business and management students’ research. As in previous editions, we have taken a predominantly non-software-specific approach in our writing. By doing this, we have been able to focus on the general principles needed to utilise a range of analysis software and the Internet effectively for research. However, recognising that many students have access to sophisticated data analysis software and may need help in developing these skills, we have provided access to ‘teach yourself’ guides to SPSS, Excel, NVivo and Internet searching via the book’s website (www.pearsoned.co.uk/saunders). Where appropriate these guides are provided with data sets. Inevitably, changes in the information available via the Internet have necessitated substantial updating for Chapter 3, ‘Critically reviewing the literature’, and Chapter 8, ‘Using secondary data’. We have also taken the opportunity to revise the tables of Internet addresses fully. In addition, we have taken the opportunity to further develop our discussions regarding issues associated with the use of email, Internet chat rooms and Internet and intranet-mediated questionnaires.

In the preparation of the fourth edition we were fortunate to receive considerable feedback from colleagues in both UK and overseas universities. We are extremely grateful to all the reviewers who gave their time and shared their ideas. Particular responses to this feedback not outlined elsewhere have been the inclusion of sections on transcribing audio-recorded interviews, discourse analysis, and personal safety when undertaking research.

Inevitably the body of knowledge of research methods has developed since 2002, and we have revised the chapters accordingly. Our experiences of teaching and supervising students and working through the methods in classes have suggested alternative approaches and the need to provide additional material. Consequently we have taken the opportunity to update and refine existing worked examples and develop new ones where appropriate. New case studies at the end of each chapter have been developed with colleagues, providing up-to-date scenarios through which to illustrate issues associated with undertaking research. However, the basic structure remains much the same as the previous three editions.

Other minor changes and updating have been made throughout. Needless to say, any errors of omission and commission are our responsibility.

As with previous editions, much of our updating has been guided by comments from students and colleagues, to whom we are most grateful. We should like to thank students
at Oxford Brookes University, the University of Gloucestershire and on the research methods’ summer schools for their comments on all of the chapters. Colleagues in both our own and other universities have continued to provide helpful comments and advice. We are particularly grateful to Krista Lee Bondy (Nottingham University), Frances Brassington (Oxford Brookes University), Richard Charlesworth (London Metropolitan University), Lisa Cowey (Oxford Brookes University), Tom Forbes (University of Stirling), Tony Gibbs (Oxford Brookes University), Anne Munro (Napier University), Christopher Napier (University of Southampton), Tracey Panther (Oxford Brookes University), Rose Quan (Northumbria University), Judith Thomas (Oxford Brookes University), Eike Wagner (Oxford Brookes University) and Robert Wapshott (Bradford University). Colleagues and friends again deserve thanks for their assistance in providing examples of research across the spectrum of business and management, in writing case studies and in reviewing parts of this book, in particular Darren Bolton (University of Gloucestershire), David Bryde (Liverpool John Moores University), Catherine Cassell (University of Manchester), Rick Colbourne (Universities of Cambridge and Westminster), Christopher Cowton (Huddersfield University), Martin Jenkins (University of Gloucestershire), Cathy Leng (Bath Spa University), Sharon Loane (University of Ulster), Joanne Meehan (Liverpool John Moores University), Angela Roper (University of Surrey), Michael Savvas (University of Gloucestershire), Aleksandar Šević (University of Newcastle, Australia), Željko Šević (University of Greenwich), Teresa Smallbone (Oxford Brookes University), Catherine Wang (Brunel University) and Teresa Waring (University of Sunderland). The contributions of Lynette Bailey to Chapter 3 and of Andrew Guppy to Chapter 12 in earlier editions of this book are gratefully acknowledged.

We would also like to thank all of the staff at Pearson Education (both past and present) who supported us through the process of writing the fourth edition. Our thanks go in particular to Amanda McPartlin, our commissioning editor, for her excellent support and enthusiasm throughout the process and to Stuart Hay for coordinating the market research and for his innovative ideas. We would also like to express our thanks to Sarah Wild as desk editor and Annette Abel as copy editor as well as Janey Webb.

Once again our thanks are due to Jane, Jenny, Jan, Jemma, Ben, Andrew and Katie, who still allow us the time to absent ourselves to think and write.

MNKS
PL
AT
May 2006
Contributors

Mark N.K. Saunders BA, MSc, PGCE, PhD, MCIPD, is Professor of Business Research Methods and Head of Research at Oxford Brookes University Business School. He is also a visiting professor at Newcastle Business School, University of Northumbria. Prior to this he was Head of the Human Resource Management Research Centre at Gloucestershire Business School. He currently teaches research methods to masters and doctoral students as well as supervising masters dissertations and research degrees. Mark has published a number of articles on research methods, service quality, and trust and organisational justice perspectives on the management of change. He is co-author with Phil and Adrian of *Employee Relations: Understanding the Employment Relationship* and with Adrian, Phil and Mike Millmore of *Managing Change: A Human Resource Strategy Approach*, both published by Financial Times Prentice Hall, and has also co-authored a book on business statistics. He has undertaken consultancy in public, private and not-for-profit sectors, prior to which he had a variety of research jobs in local government.

Philip Lewis BA, PhD, MSc, MCIPD, PGDipM, Cert Ed, is a Principal Lecturer in Human Resource Management (HRM) at Gloucestershire Business School, University of Gloucestershire. He teaches HRM and research methods to postgraduate, undergraduate and professional students, and is involved in research degree supervision. Phil’s research interests are reward management and performance management, on which he has published several articles. He is co-author with Mark and Adrian of *Employee Relations: Understanding the Employment Relationship* and with Adrian, Mark and Mike Millmore of *Managing Change: A Human Resource Strategy Approach*, both published by Financial Times Prentice Hall. He has undertaken consultancy in both public and private sectors. Prior to his career in higher education Phil was a training advisor with the Distributive Industry Training Board.

Adrian Thornhill BA, PhD, PGCE, FCIPD, is Head of the Department of Human Resource Management at Gloucestershire Business School, University of Gloucestershire. He teaches HRM and research methods to postgraduate, undergraduate and professional students, and is involved in research degree supervision. Adrian has published a number of articles principally associated with employee and justice perspectives related to managing change and the management of organisational downsizing and redundancy. He is co-author with Phil and Mark of *Employee Relations: Understanding the Employment Relationship* and with Mark, Phil and Mike Millmore of *Managing Change: A Human Resource Strategy Approach*, both published by Financial Times Prentice Hall, and has also co-authored a book on downsizing and redundancy. He has undertaken consultancy in both public and private sectors.

Darren Bolton is Senior Information Advisor for Computing and Electronic Resources at the University of Gloucestershire.

Dr David Bryde is a Reader in Project Management and Head of Research and Doctoral Studies in the Faculty of Business and Law at Liverpool John Moores University.
Professor Catherine Cassell is Professor of Occupational Psychology in the People, Management and Organizations Division at Manchester Business School, University of Manchester.

Rick Colbourne is a final year Doctoral student at the Judge Business School, University of Cambridge, and a Senior Lecturer in Leadership and Organisational Management, Innovation and Technology Management and Research Methods at the University of Westminster.

Professor Christopher Cowton is Professor of Accounting at Huddersfield University Business School and Editor of Business Ethics: A European Review.

Martin Jenkins is Academic Manager of the Centre for Active Learning at the University of Gloucestershire with a special interest in information literacy.

Cathy Leng is a Senior Lecturer in Business and Management in the School of Social Sciences at Bath Spa University.

Dr Sharon Loane is a Lecturer in Business Economics at the School of International Business, University of Ulster, Magee Campus.

Joanne Meehan is a Senior Lecturer in Supply Chain Management in the Faculty of Business and Law at Liverpool John Moores University.

Dr Angela Roper is Savoy Educational Trust Senior Lecturer in Hospitality Management in the School of Management at the University of Surrey.

Dr Michael Savvas is a Senior Lecturer in Human Resource Management at Gloucestershire Business School, University of Gloucestershire.

Dr Aleksandar Šević is a Lecturer in Finance at Newcastle Graduate School of Business, University of Newcastle, in Newcastle, Australia.

Professor Željko Šević is Professor of Accounting, Finance and Public Policy and Director of Research, Outreach and European Affairs at the University of Greenwich Business School.

Teresa Smallbone is a Senior Lecturer in Marketing at Oxford Brookes University Business School and Chair of the University’s Research Ethics Committee.

Dr Catherine L. Wang is a Lecturer in Business and Management at Brunel University, Brunel Business School.

Dr Teresa Waring is Associate Dean, Business and Management at the University of Sunderland Business School.
Reviewers

We would like to express thanks to the reviewers who have been involved in the development of this book. We are grateful for their insight and helpful recommendations.

Veronica Liljander (Swedish School of Economics, Finland)
Jill Pearson (Limerick University, Eire)
Pete Thomas (Central Lancashire University, UK)
Val Caven (Nottingham Trent University, UK)
Gabriele Vosseberg (Hull University, UK)
Helen Batley (Westminster University, UK)
David Smith (Nottingham Trent, UK)
Lynne Baxter (Heriot-Watt University, UK)
Dr Tan Juat Hong (University Tenaga Nasional, Malaysia)
Susan Kirk (Nottingham Trent, UK)
Tomas Blomquist (Umeå School of Business, Sweden)
Richard Hull (Newcastle University, UK)
John Lamb (Aberdeen University, UK)
Geoff Nichols (Sheffield University, UK)
Boris Blumberg (Maastricht University, Netherlands)
Charlene Lew (Damelin International College, South Africa)
Joan van Aken (Eindhoven University of Technology, Netherlands)
Martin Wetzels (Eindhoven University of Technology, Netherlands)
 Jon Hindmarsh (Kings College London, UK)
Stephen Perkins (London Metropolitan University, UK)
Jane Farmer (Aberdeen University, UK)
Chris Hammond (Hull University, UK)

We are grateful to the following for permission to reproduce copyright material:

Illustrations

Figure 1.2: Copyright © 2006 Mark Saunders, Philip Lewis and Adrian Thornhill; Figure 3.1: Copyright © 2003 Mark Saunders, Philip Lewis, Adrian Thornhill and Martin Jenkins; Box 3.11 screenshot from the EBSCO Information services website, www.ebsco.com. Reproduced with permission; Figure 3.3: Copyright © 2003 Mark Saunders, Philip Lewis, Adrian Thornhill and Martin Jenkins; Chapter 3, unnumbered screenshots in Box 3.14: Google, Inc., reproduced with permission; Figure 4.1: Copyright © 2006 Mark Saunders, Philip Lewis and Adrian Thornhill; Figure 4.2: Burrell and Morgan (1985) Sociological Paradigms and Organisational Analysis. Reproduced with permission of the Ashgate Publishing Company; Box 8.9 screenshot from the Eurostat website, http://epp.eurostat.ccc.eu.int. Copyright © European Communities. Reproduced with

Tables

Photos

Text

ACKNOWLEDGEMENTS

We are also grateful to the Financial Times Limited for permission to reprint the following material:

In some instances we have been unable to trace the owners of copyright material and we would appreciate any information that would enable us to do so.
The nature of business and management research and structure of this book

LEARNING OUTCOMES

By the end of this chapter you should:

➔ be able to outline the purpose and distinct focus of management research;
➔ be able to place your research project on a basic–applied research continuum according to its purpose and context;
➔ understand the stages you will need to complete (and revisit) as part of your research process;
➔ have an overview of this book’s purpose, structure and features;
➔ be aware of some of the ways you can use this book.

1.1 Introduction

This book is designed to help you to undertake your research project, whether you are an undergraduate or postgraduate student of business and management or a manager. It provides a clear guide on how to undertake research as well as highlighting the realities of undertaking research, including the more common pitfalls. The book is written as an introductory text to provide you with a guide to the research process and with the necessary knowledge and skills to undertake a piece of research from thinking of a research topic to writing your project report. As such, you will find it useful as a manual or handbook on how to tackle your research project.

After reading the book you will have been introduced to and explored a range of approaches, strategies and methods with which you could tackle your research project. Of equal importance, you will know that there is no one best way for undertaking all research. Rather you will be aware of the choices you will have to make and how these choices will impact upon what you can find out. This means you will be able to make an informed choice about the approaches, strategies and methods that are most suitable to your own research project and be able to justify this choice. In reading the book you will have been introduced to the more frequently used techniques and procedures for collecting and analysing different types of data, have had a chance to practise them, and be
able to make a reasoned choice regarding which to use. When selecting and using these techniques you will be aware of the contribution that the appropriate use of information technology can make to your research.

However, before you continue, a word of caution. In your study, you will inevitably read a wide range of books and articles. In many of these the terms ‘research method’ and ‘research methodology’ will be used interchangeably, perhaps just using methodology as a more verbose way of saying method. In this book we have been more precise in our use of these terms. Throughout the book we use the term **methods** to refer to techniques and procedures used to obtain and analyse data. This therefore includes questionnaires, observation and interviews as well as both quantitative (statistical) and qualitative (non-statistical) analysis techniques and, as you have probably gathered from the title, is the main focus of this book. In contrast, the term **methodology** refers to the theory of how research should be undertaken. We believe that it is important that you have some

INTRODUCTION

The Post-it® note is one of the best known and most widely used office products in the world. Yet, despite the discovery of the repositionable adhesive that made the Post-it® note possible in 1968, it was not until 1980 that the product was introduced to the market (3M, 2006). In the 1960s 3M research scientist, Spence Silver, was looking for ways to improve the adhesive used in tapes. However, he discovered something quite different from what he was looking for, an adhesive that did not stick strongly when coated onto the back of tapes! What was unclear was how it might be used. Over the next five years he demonstrated and talked about his new adhesive to people working within the company.

Most people working for 3M know the story of what happened next and how the Post-it® note concept came about. A new product development researcher working for 3M, Art Fry, was frustrated how the scraps of paper he used as bookmarks kept falling out of his church choir hymn book. He realised that Silver’s adhesive would mean his bookmarks would not fall out. Soon afterwards the Post-it® note concept was developed and market research undertaken. This was extremely difficult as the product was revolutionary and was, in effect, designed to replace pieces of torn scrap paper! However, despite some initial scepticism within the company, Post-it® notes were launched in 1980. One year after their launch, they were named 3M’s outstanding new product.

Whilst your research project will be within the discipline business and management rather than natural science (such as developing a new adhesive), our introductory example still offers a number of insights into the nature of research and in particular the business and management research you will be undertaking. In particular, it highlights that when undertaking research we should be open to finding the unexpected and how sometimes the applicability of our research findings may not be immediately obvious. It also emphasises the importance of discussing your ideas with other people.
understanding of this so that you can make an informed choice about your research. For this reason, we also discuss a range of philosophical assumptions upon which research can be based and the implications of these for the method or methods adopted.

1.2 The nature of research

When listening to the radio, watching the television or reading a daily newspaper it is difficult to avoid the term ‘research’. The results of ‘research’ are all around us. A debate about the findings of a recent poll of people’s opinions inevitably includes a discussion of ‘research’, normally referring to the way in which the data were collected. Politicians often justify their policy decisions on the basis of ‘research’. Newspapers report the findings of market research companies’ surveys (Box 1.1). Documentary programmes tell us about ‘research findings’, and advertisers may highlight the ‘results of research’ to encourage you to buy a particular product or brand. However, we believe that what these examples really emphasise is the wide range of meanings given to the term ‘research’ in everyday speech.

BOX 1.1 RESEARCH IN THE NEWS

Students ‘upset’ by interview treatment

More than 65 per cent of university students applying for their first job were ‘upset by the way they were treated by potential employers and shocked at their poor graduate recruitment practices’, according to a study published today.

The findings have emerged as students are concerned there will be insufficient highly paid jobs to satisfy the aspirations of a growing graduate population.

The survey of more than 1,000 students, commissioned by GTI, the specialist graduates careers publisher, found that most students were unwilling to look beyond large employers. Only 9 per cent of students were prepared to work for a smaller company, even though “job opportunities and career prospects could potentially be greater”, it said.

A separate study published last month by High Fliers Research, an independent market research company, reported only 36 per cent of university students expected to find a degree-level job when they graduated this summer, compared with 49 per cent in 1998.

GTI said 44 per cent of students complained that employers had either not bothered to reply to their applications or took weeks, or even months, to respond. Almost a third “were unimpressed by the impersonal way they were communicated with, often with generic e-mail”.

“Most worryingly a small number of students claimed they had even been victims of blatant race or sex discrimination. Some had to endure interviews where they felt intimidated or largely ignored”, it said.

Some 32 per cent of graduates had applied to more than 10 companies.

Chris Phillips, GTI publishing director, said the way companies treated students risked damaging their reputation. Some 71 per cent of students had gone on to tell others about their bad experiences. Another 60 per cent said they had been put off dealing with that employer in the future.

Walliman (2001) argues that many of these everyday uses of the term ‘research’ are not research in the true meaning of the word. As part of this, he highlights ways in which the term is used wrongly:

- just collecting facts or information with no clear purpose;
reassembling and reordering facts or information without interpretation;

as a term to get your product or idea noticed and respected.

The first of these highlights the fact that, although research often involves the collection of information, it is more than just reading a few books or articles, talking to a few people or asking people questions. While collecting data may be part of the research process, if it is not undertaken in a systematic way, on its own and in particular with a clear purpose, it will not be seen as research. The second of these is commonplace in many reports. Data are collected, perhaps from a variety of different sources, and then assembled in a single document with the sources of these data listed. However, there is no interpretation of the data collected. Again, while the assembly of data from a variety of sources may be part of the process of research, without interpretation it is not research. Finally, the term ‘research’ can be used to get an idea or product noticed by people and to suggest that people should have confidence in it. In such instances, when you ask for details of the research process, these are either unclear or not forthcoming.

Based upon this brief discussion we can already see that research has a number of characteristics:

- Data are collected systematically.
- Data are interpreted systematically.
- There is a clear purpose: to find things out.

We can therefore define research as something that people undertake in order to find out things in a systematic way, thereby increasing their knowledge. Two phrases are important in this definition: ‘systematic research’ and ‘to find out things’. ‘Systematic’ suggests that research is based on logical relationships and not just beliefs (Ghauri and Grønhaug, 2005). As part of this, your research will involve an explanation of the methods used to collect the data, will argue why the results obtained are meaningful, and will explain any limitations that are associated with them. ‘To find out things’ suggests there are a multiplicity of possible purposes for your research. These may include describing, explaining, understanding, criticising and analysing (Ghauri and Grønhaug, 2005). However, it also suggests that you have a clear purpose or set of ‘things’ that you want to find out, such as the answer to a question or number of questions.

1.3 The nature of business and management research

Using our earlier definition of research it would seem sensible to define business and management research as undertaking systematic research to find out things about business and management.

Easterby-Smith et al. (2002) argue that three things combine to make business and management a distinctive focus for research:

- the way in which managers (and researchers) draw on knowledge developed by other disciplines;
- the fact that managers tend to be powerful and busy people. Therefore, they are unlikely to allow research access unless they can see personal or commercial advantages;
- the requirement for the research to have some practical consequence. This means it either needs to contain the potential for taking some form of action or needs to take account of the practical consequences of the findings.

5
Ongoing debate within the British Academy of Management has explored the status of management research. One feature, which has gained considerable support, is the transdisciplinary nature of such research. While this has similarities to Easterby-Smith et al.’s (2002) point regarding the use of knowledge from other disciplines, it also emphasises that the research ‘cannot be reduced to any sum of parts framed in terms of contributions to associated disciplines’ (Tranfield and Starkey, 1998:352). In other words, using knowledge from a range of disciplines enables management research to gain new insights that cannot be obtained through all of these disciplines separately. Another feature of management research highlighted in the debate is a belief that it should be able to develop ideas and to relate them to practice. In particular, that research should complete a virtuous circle of theory and practice (Tranfield and Starkey, 1998) through which research on managerial practice informs practically derived theory. This in turn becomes a blueprint for managerial practice, thereby increasing the stock of relevant and practical management knowledge. Thus business and management research needs to engage with both the world of theory and the world of practice. Consequently, the problems addressed should grow out of interaction between these two worlds rather than either on their own.

In recent years debate about the nature of management research has focused on how it can meet the double hurdle of being both theoretically and methodologically rigorous, while at the same time embracing the world of practice and being of practical relevance (Hodgkinson et al., 2001, Box 1.2). Much of this debate has centred around Gibbons et al.’s (1994) work on the production of knowledge, and in particular the concepts of Mode 1 and Mode 2 knowledge creation. Mode 1 knowledge creation emphasises research in which the questions are set and solved by academic interests, emphasising a fundamental rather than applied nature, where there is little if any focus on utilisation of the research by practitioners. In contrast, Mode 2 emphasises a context for research governed by the world of practice, highlighting the importance of collaboration both with and between practitioners (Starkey and Madan, 2001) and the need for the production of practical relevant knowledge. Based upon this Starkey and Madan (2001) observe that research within the Mode 2 approach offers a way of bringing the supply side of knowledge represented by universities together with the demand side represented by businesses and overcoming the double hurdle.

Drawing from these debates, it could be argued that business and management research not only needs to provide findings that advance knowledge and understanding, it also needs to address business issues and practical managerial problems. However, this would negate the observation that Mode 2 practices develop from Mode 1. It might also result in business and management research that did not have obvious commercial benefit not being pursued. This, Huff and Huff (2001) argue, could jeopardise future knowledge creation as research that is currently not valued commercially might have value in the future. Building upon these ideas they highlight a further form of knowledge production: Mode 3. Mode 3 knowledge production focuses on an appreciation of the human condition as it is and as it might become, its purpose being to ‘assure survival and promote the common good at various levels of social aggregation’ (Huff and Huff 2001:553). This emphasises the importance of broader issues of human relevance of research. Consequently, in addition to research that satisfies your intellectual curiosity for its own sake, the findings of business and management research might also contain practical implications, and these findings may have societal consequences far broader and complex than perhaps envisaged by Mode 2.

Within these boundaries of advancing knowledge, addressing business issues, solving managerial problems and promoting the common good, the purpose and the context of
your research project can differ considerably. For some research projects your purpose may be to understand and explain the impact of something, such as a particular policy. You may undertake this research within an individual organisation and suggest appropriate action on the basis of your findings. For other research projects you may wish to explore the ways in which various organisations do things differently. In such projects your purpose may be to discover and understand better the underlying processes in a wider context, thereby providing greater understanding for practitioners. For yet other research projects you may wish to place an in-depth investigation of an organisation within the context of a wider understanding of the processes that are operating.

Despite this variety, we believe that all business and management research projects can be placed on a continuum (Figure 1.1) according to their purpose and context. At one extreme of the continuum is research that is undertaken purely to understand the processes of business and management and their outcomes. Such research is undertaken largely in universities and largely as the result of an academic agenda. Its key consumer is the academic community, with relatively little attention being given to its practical applications. This is often termed \textit{basic}, \textit{fundamental} or \textit{pure research}. Given our earlier discussion it is unlikely that Mode 2 and Mode 3 business and management research would fulfil these criteria due to at least some consideration being made of the practical consequences. Through doing this, the research would start to move towards the other end of the continuum (Figure 1.1). At this end is research that is of direct and immediate relevance to managers, addresses issues that they see as important, and is presented in ways that they understand and can act on. This is termed \textit{applied research}.

Wherever your research project lies on this basic–applied continuum, we believe that you should undertake your research with rigour. To do this you will need to pay careful attention to the entire research process.

\textbf{BOX 1.2 FOCUS ON MANAGEMENT RESEARCH}

\textbf{Rigour and relevance}

In their \textit{British Journal of Management} paper Gerard Hodgkinson, Peter Herriot and Neil Anderson (2001) offer a fourfold taxonomy of the varieties of managerial knowledge. Using the dimensions of theoretical and methodological rigour and of practical relevance they identify four quadrants:

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
\textbf{Theoretical and methodological rigour} & \textbf{Practical relevance} & \textbf{Quadrant} \\
\hline
higher & lower & \textit{pedantic science} \\
lower & higher & \textit{popularist science} \\
lower & lower & \textit{puerile science} \\
higher & higher & \textit{pragmatic science} \\
\hline
\end{tabular}
\end{center}

Pedantic science, they argue, is characterised by a focus on increasing methodological rigour at the expense of results that are relevant and can sometimes be found in refereed academic journals. In contrast, popularist science is characterised by a focus on relevance and usefulness whilst neglecting theoretical and methodological rigour, examples being found in some books targeted at practising managers. Consequently, whilst findings might be useful to managers, the research upon which they are based is unlikely to be valid or reliable. Puerile science both lacks methodological rigour and is of limited practical relevance and, although unlikely to be found in refereed academic journals, can be found in other media. Finally, pragmatic science is both theoretically and methodologically rigorous and relevant.
Inevitably, your own beliefs and feelings will impact upon your research. Although you might feel that your research will be value neutral (we will discuss this in greater detail later, particularly in Chapter 4), it is unlikely that you will stop your own beliefs and feelings influencing your research. Your choice of what to research is also likely to be influenced by topics that excite you, and the way you collect and analyse your data by the skills you have or are able to develop. Similarly, as we discuss in Chapter 2, practical considerations such as access to data and the time and resources you have available will also impact upon your research process.

1.4 The research process

Most research textbooks represent research as a multi-stage process that you must follow in order to undertake and complete your research project. The precise number of stages varies, but they usually include formulating and clarifying a topic, reviewing the literature, designing the research, collecting data, analysing data and writing up. In the majority of these the research process, although presented with rationalised examples, is described as a series of stages through which you must pass. Articles you have read may also suggest that the research process is rational and straightforward. Unfortunately this is very rarely true, and the reality is considerably messier, with what initially appear as great ideas sometimes having little or no relevance (Saunders and Lewis, 1997). While research is often depicted as moving through each of the stages outlined above, one after the other, this is unlikely to be the case. In reality you will probably revisit each stage more than once. Each time you revisit a stage you will need to reflect on the associated issues and refine your ideas. In addition, as highlighted by some textbooks, you will need to consider ethical and access issues during the process.

This textbook also presents the research process as a series of linked stages and gives the appearance of being organised in a linear manner. However, as you use the book you will see from the text, extensive use of cross-referencing, examples of research by well-known researchers and how research is reported in the news, worked examples and case studies that we have recognised the iterative nature of the process you will follow. As part of this process, we believe that it is vital that you spend time formulating and clarifying
your research topic. This we believe should be expressed as one or more research questions that your research must answer, accompanied by a set of objectives that your research must address. However, we would also stress the need to reflect on your ideas continually and revise both these and the way in which you intend to progress your research. Often this will involve revisiting stages (including your research question(s) and objectives) and working through them again. There is also a need to plan ahead, thereby ensuring that the necessary preliminary work for later stages has been undertaken. This is emphasised by Figure 1.2, which also provides a schematic index to the remaining chapters of the book. Within this flow chart (Figure 1.2) the stages you will need to complete as part of your research project are emphasised in the centre of the chart. However, be warned: the process is far messier than a brief glance at Figure 1.2 suggests!

1.5 The purpose and structure of this book

The purpose

As we stated earlier (Section 1.1), the overriding purpose of this book is to help you to undertake research. This means that early on in your research project you will need to be clear about what you are doing, why you are doing it, and the associated implications of what you are seeking to do. You will also need to ensure that you can show how your ideas relate to research that has already been undertaken in your topic area and that you have a clear research design and have thought about how you will collect and analyse your data. As part of this you will need to consider the validity and reliability of the data you intend to use, along with associated ethical and access issues. The appropriateness and suitability of the analytical techniques you choose to use will be of equal importance. Finally, you will need to write and present your research project report as clearly and precisely as possible.

The structure of each chapter

Each of the subsequent chapters deals with part of the research process outlined in Figure 1.2. The ideas, techniques and methods are discussed using as little jargon as is possible. Where appropriate you will find summaries of these, using tables, checklists or diagrams. When new terms are introduced for the first time they are shown in **bold**, and a definition or explanation follows shortly afterwards. They are also listed with a brief definition in the **glossary**. The application of appropriate information technology is considered, in most instances as an integral part of the text. Discussion of information technology is not software specific but is concerned with general principles. However, we recognise that you may wish to find out more about how to use data analysis software packages and so have included tutorials for the quantitative data analysis software SPSS™ and the qualitative data analysis software NVivo™ (with practice data sets) on this book’s Companion Website. These will enable you to utilise whatever software you have available most effectively. We have also included the Smarter Online Searching Guide to help you with your Internet searches. Chapters have been cross-referenced as appropriate, and an index is provided to help you to find your way around the book.

Included within the text of each chapter is a series of boxed **worked examples**. These are based on actual research projects, undertaken by students, in which points made in the text are illustrated. In many instances these worked examples illustrate possible pitfalls...
Wish to do research

Formulate and clarify your research topic (Chapter 2)

Critically review the literature (Chapter 3)

Understand your philosophy and approach (Chapter 4)

Formulate your research design (Chapter 5)

Negotiate access and address ethical issues (Chapter 6)

Plan your data collection and collect the data using one or more of:

- Sampling (Chapter 7)
- Secondary data (Chapter 8)
- Observation (Chapter 9)
- Semi-structured and in-depth interviews (Chapter 10)
- Questionnaires (Chapter 11)

Analyse your data using one or both of:

- Quantitative methods (Chapter 12)
- Qualitative methods (Chapter 13)

Write your project report and prepare your presentation (Chapter 14)

Submit your project report and give your presentation

Figure 1.2 The research process

Source: © Mark Saunders, Philip Lewis and Adrian Thornhill 2006
you may come across while undertaking your research. Further illustrations are provided by focus on management research and research in the news boxes. Focus on management research boxes discuss recent research in business and management. These are normally derived from refereed academic journal articles and you are likely to be able to download the actual articles from online databases at your university. Research in the news boxes provide topical newspaper articles that illustrate pertinent research-related issues. All these will help you to understand the technique or idea and to assess its suitability or appropriateness to your research. Where a pitfall has been illustrated, it will, it is hoped, help you to avoid making the same mistake. There are also a series of boxed checklists to provide you with further focused guidance for your own research. At the end of each chapter there is a summary of key points, which you may look at before and after reading the chapter to ensure that you have digested the main points.

To enable you to check that you have understood the chapter a series of self-check questions is included at the end. These can be answered without recourse to other (external) resources. Answers are provided to all these self-check questions at the end of each chapter. Self-check questions are followed by review and discussion questions. These suggest a variety of activities you can undertake to help you further develop your knowledge and understanding of the material in the chapter, often involving discussion with a friend. Self-test multiple choice questions are available on this book’s companion website. Each chapter also includes a section towards the end headed ‘Progressing your research project’. This contains a series of questions that will help you to consider the implications of the material covered by the chapter for your research project. Answering the questions in the section ‘Progressing your research project’ for each chapter will enable you to generate all the material that you will need to include in your project report. Each chapter’s questions involve you in undertaking activities that are more complex than self-check questions, such as a library-based literature search or designing and piloting a questionnaire. They are designed to help you to focus on the techniques that are most appropriate to your research. However, as emphasised by Figure 1.2, you will almost certainly need to revisit and revise your answers as your research progresses.

Each chapter is also accompanied by references, further reading and a case study. Further reading is included for two distinct reasons:

- to direct you to other work on the ideas contained within the chapter;
- to direct you to further examples of research where the ideas contained in the chapter have been used.

The main reasons for our choice of further reading are therefore indicated.

The new case studies at the end of each chapter are drawn from a variety of business and management research scenarios and have been based on the case study’s authors’ and students’ experiences when undertaking a research project. They have been written to highlight real issues that occur when undertaking business and management research. To help to focus your thoughts or discussion on some of the pertinent issues, each case is followed by evaluative questions. Additional case studies relating to each chapter are available from the book’s companion website. A case study follows every chapter other than Chapter 1.

An outline of the chapters

The book is organised in the following way.

Chapter 2 is written to assist you in the generation of ideas, which will help you to choose a suitable research topic, and offers advice on what makes a good research topic.
If you have already been given a research topic, perhaps by an organisation or tutor, you will need to refine it into one that is feasible, and should still therefore read this chapter. After your idea has been generated and refined, the chapter discusses how to turn this idea into clear research question(s) and objectives. (Research questions and objectives are referred to throughout the book.) Finally, the chapter provides advice on how to write your research proposal.

The importance of the critical literature review to your research is discussed in Chapter 3. This chapter outlines what a critical review needs to include and the range of primary, secondary and tertiary literature sources available. The chapter explains the purpose of reviewing the literature, discusses a range of search strategies, and contains advice on how to plan and undertake your search and to write your review. The processes of identifying key words and searching using online databases and the Internet are outlined. It also offers advice on how to record items and to evaluate their relevance.

Chapter 4 addresses the issue of understanding different research philosophies, including positivism, realism, interpretivism, objectivism, subjectivism and pragmatism. Within this the functionalist, interpretive, radical humanist and radical structuralist paradigms are discussed. Deductive and inductive approaches to research are also considered. In this chapter we challenge you to think about your own values and how you view the world and the impact this will have on the way you undertake your research.

These ideas are developed further in Chapter 5 which explores formulating your research design. As part of this, a range of research strategies are discussed and the difference between quantitative and qualitative methods explained. The use of multiple methods is explored and consideration given to the implications of design choices for the credibility of your research findings and conclusions.

Chapter 6 explores issues related to gaining access and to research ethics. It offers advice on how to gain access both to organisations and to individuals. Potential ethical issues are discussed in relation to each stage of the research process and different data collection methods. Issues of data protection are also introduced.

A range of the probability and non-probability sampling techniques available for use in your research is explained in Chapter 7. The chapter considers why sampling is necessary, and looks at issues of sample size and response rates. Advice on how to relate your choice of sampling techniques to your research topic is given, and techniques for assessing the representativeness of those who respond are discussed.

Chapters 8, 9, 10 and 11 are concerned with different methods of obtaining data. The use of secondary data is discussed in Chapter 8, which introduces the variety of data that are likely to be available and suggests ways in which they can be used. Advantages and disadvantages of secondary data are discussed, and a range of techniques for locating these data, including using the Internet, is suggested. Chapter 8 also offers advice on how to evaluate the suitability of secondary data for your research.

In contrast, Chapter 9 is concerned with collecting primary data through observation. The chapter examines two types of observation: participant observation and structured observation. Practical advice on using each is offered, and particular attention is given to ensuring that the data you obtain are both valid and reliable.

Chapter 10 is also concerned with collecting primary data, this time using semi-structured, in-depth and group interviews. The appropriateness of using these interviews in relation to your research strategy is discussed. Advice on how to undertake such interviews is offered, including the conduct of focus groups, Internet-mediated (including online) and telephone interviews. Particular attention is given to ensuring that the data collected are both reliable and valid.
Chapter 11 is the final chapter concerned with collecting data. It introduces you to the use of both self-administered and interviewer-administered questionnaires, and explores their advantages and disadvantages. Practical advice is offered on the process of designing, piloting and administering Internet-mediated, postal, delivery and collection, and telephone questionnaires to enhance their response rates. Particular attention is again given to ensuring that the data collected are both reliable and valid.

Analysis of data is covered in Chapters 12 and 13. Chapter 12 outlines and illustrates the main issues that you need to consider when preparing data for quantitative analysis and when analysing these data by computer. Different types of data are defined, and advice is given on how to create a data matrix and to code data. Practical advice is also offered on the analysis of these data using computerised analysis software. The most appropriate diagrams to explore and illustrate data are discussed, and suggestions are made about the most appropriate statistics to use to describe data, to explore relationships and to examine trends.

Chapter 13 outlines and discusses the main approaches available to you to analyse data qualitatively both manually and using computer aided qualitative data analysis software (CAQDAS). The nature of qualitative data and issues associated with transcription are discussed. Following an overview of the analysis process, the use of deductively based and inductively based analytical procedures is discussed. These include pattern matching, explanation building, data display and analysis, template analysis, analytic induction, grounded theory, discourse analysis and narrative analysis.

Chapter 14 helps you with the structure, content and style of your final project report and any associated oral presentations. Above all, it encourages you to see writing as an intrinsic part of the research process that should not be left until everything else is completed.

Appendices and glossary

This book contains five appendices designed to support you at different stages of your research project. In the early stages when you are thinking about possible research ideas, you will find the list of new example research project titles in Appendix 1 helpful. As you begin to read, you will need to keep a reference of what you have read using a recognised system, the most frequently used of which are detailed in Appendix 2. When selecting your sample you may need to calculate the minimum sample size required and use random sampling numbers (Appendices 3 and 4). Finally, when designing your data collection tools and writing your project report you will need to ensure that the language you use is non-discriminatory. Guidelines for these are given in Appendix 5. A separate glossary of over 400 research-methods-related terms is also included for quick reference.
Wherever your research project lies on this continuum, you should undertake your research with rigour. To do this you will need to pay careful attention to the entire research process.

In this book, research is represented as a multi-stage process; however, this process is rarely straightforward and will involve both reflecting on and revising stages already undertaken and forward planning.

The text of each chapter is supported through worked examples, focus on management research and research in the news boxes, checklists, self-check questions and review and discussion questions, an assignment and a case study with questions. Answers to all self-check questions are at the end of the appropriate chapter.

Answering the questions in the section ‘Progressing your research project’ for Chapters 2–13 will enable you to generate all the material that you will need to include in your project report. When you have also answered the questions in this section for Chapter 14, you will have written your research report.

Self-Check Questions

Help with these questions is available at the end of the chapter.

1.1 Outline the features that can make business and management research distinctive from research in other disciplines.

1.2 What are the key differences between basic and applied research?

1.3 Examine Figure 1.2. What does this suggest about the need to plan and to reflect on and revise your ideas?

1.4 Agree with a friend to each read a different quality newspaper. Make a note of at least ten articles in your newspaper that mention the word ‘research’. Now examine the articles one at a time. As you examine each article, does the reference to research...

- refer to the collection of facts or information with no clear purpose?
- refer to the reassembling and reordering of facts or information without interpretation?
- provide a means of getting the reader to respect what is being written?
- refer to the systematic collection and interpretation of data with a clear purpose?

Discuss your answers with your friend.

1.5 Obtain a copy of one or two of the articles referred to in Section 1.3. Read the article carefully. To what extent do you believe that business and management research should always meet the twin requirements of rigour and relevance? Give reasons for your answer.

References

1.1 The features you outline are likely to include the:
- transdisciplinary nature of business and management research;
- development of ideas that are related to practice and in particular the requirement for the research to have some practical consequence;
- need for research to complete the virtuous circle of theory and practice;
- addressing of problems that grow out of the interaction between the worlds of theory and practice.

1.2 The key differences between basic and applied research relate to both the purpose and the context in which it is undertaken. They are summarised in Figure 1.1.

1.3 Figure 1.2 emphasises the importance of planning during your research project. Forward planning needs to occur at all stages up to submission. In addition, you will need to reflect on and to revise your work throughout the life of the research project. This reflection needs to have a wide focus. You should both consider the stage you have reached and revisit earlier stages and work through them again. Reflection may also lead you to amend your research plan. This should be expected, although large amendments in the later stages of your research project are unlikely.
Get ahead using resources on the Companion Website at:
www.pearsoned.co.uk/saunders
- Improve your SPSS and NVivo research analysis with practice tutorials.
- Save time researching on the Internet with the Smarter Online Searching Guide.
- Test your progress using self-assessment questions.
- Follow live links to useful websites.
Formulating and clarifying the research topic

LEARNING OUTCOMES

By the end of this chapter you should be able to:

➔ generate ideas that will help in the choice of a suitable research topic;
➔ identify the attributes of a good research topic;
➔ turn research ideas into a research project that has clear research question(s) and objectives;
➔ draft a research proposal.

2.1 Introduction

Many students think that choosing their research topic is the most exciting part of their course. After all, this is something that they get to decide for themselves rather than having to complete a task decided by their tutors. We will stress in this chapter that it is important to choose something that will sustain your interest throughout the months that you will need to complete it. You may even decide to do some research that is something that forms part of your leisure activities, like playing video games!

Before you start your research you need to have at least some idea of what you want to do. This is probably the most difficult, and yet the most important, part of your research project. Up until now most of your studies have been concerned with answering questions that other people have set. This chapter is concerned with how to formulate and clarify your research topic and your research question. Without being clear about what you are going to research it is difficult to plan how you are going to research it. This reminds us of a favourite quote in *Alice's Adventures in Wonderland*. This is part of Alice's conversation with the Cheshire Cat. In this Alice asks the Cat (Carroll, 1989:63–4):

‘Would you tell me, please, which way I ought to walk from here?’
‘That depends a good deal on where you want to get to’, said the Cat.
‘I don’t much care where’, said Alice.
‘Then it doesn’t matter which way you walk’, said the Cat.
Formulating and clarifying the research topic is the starting point of your research project (Ghauri and Grønhaug, 2005; Smith and Dainty, 1991). Once you are clear about this you will be able to choose the most appropriate research strategy and data collection and analysis techniques. The formulating and clarifying process is time consuming and will probably take you up blind alleys (Saunders and Lewis, 1997). However, without spending time on this stage you are far less likely to achieve a successful project (Raimond, 1993).

In the initial stages of the formulating and clarifying process you will be generating and refining research ideas (Section 2.3). It may be that you have already been given a research idea, perhaps by an organisation or tutor. Even if this has happened you will still need to refine the idea into one that is feasible. Once you have done this you will need to turn the idea into research questions and objectives (Section 2.4) and to write the research proposal for your project (Section 2.5).

However, before you start the formulating and clarifying process we believe that you need to understand what makes a good research topic. For this reason we begin this chapter with a discussion of the attributes required for a good research topic.

2.2 Attributes of a good research topic

The attributes of a business and management research topic do not vary a great deal between universities (Raimond, 1993), although there will be differences in the emphasis.

The impact of video games on culture and society is a serious research topic, with Copenhagen University’s Centre for Computer Games Research at the forefront (Boyd, 2004). This is one of the few places in the world where you can do PhD-level work in video game studies. The centre’s purpose is to study how games are both made and played with the aim of using the findings to help design better games in the future. The centre’s game room features a giant, flat panel television, complete with surround sound speakers as well as every available console gaming system, whilst shelves are filled with all the latest titles.

Academic interest in computer games has, like the industry, grown rapidly in recent years. Universities have added computer game design and theory courses to their portfolio and academics undertake research. Games similar to that illustrated in the photograph here have been used to explore how players develop hand–eye coordination and in multi-player mode study human rivalries! Researchers have looked at the ethics of games, women and women’s issues in gaming and the practice of designing games. The theory that is being developed is influencing and informing game design.
placed on different attributes. If you are undertaking your research project as part of a
course of study the most important attribute will be that it meets the examining body’s
requirements and, in particular, that it is at the correct level. This means that you must
choose your topic with care. For example, some universities require students to collect
their own data as part of their research project whereas others allow them to base their
project on data that have already been collected. You therefore need to check the assess-
ment criteria for your project and ensure that your choice of topic will enable you to
meet these criteria. If you are unsure, you should discuss any uncertainties with your
project tutor.

In addition, your research topic must be something you are capable of undertaking
and one that excites your imagination. Capability can be considered in a variety of ways.
At the personal level you need to feel comfortable that you have, or can develop, the
skills that will be required to research the topic. We hope that you will develop your
research skills as part of undertaking your project. However, some skills, for example
foreign languages, may be impossible to acquire in the time you have available. As well
as having the necessary skills we believe that you also need to have a genuine interest in
the topic. Most research projects are undertaken over at least a six-month period. A topic
in which you are only vaguely interested at the start is likely to become a topic in which
you have no interest and with which you will fail to produce your best work.

Your ability to find the financial and time resources to undertake research on the topic
will also affect your capability. Some topics are unlikely to be possible to complete in the
time allowed by your course of study. This may be because they require you to measure
the impact of an intervention over a long time period (Box 2.1). Similarly, topics that are
likely to require you to travel widely or need expensive equipment should also be disre-
garded unless financial resources permit.

Capability also means you must be reasonably certain of gaining access to any data you
might need to collect. Gill and Johnson (2002) argue that this is usually relatively straightfor-
ward to assess. They point out that many people start with ideas where access to data will prove
difficult. Certain, more sensitive topics, such as financial performance or decision making by
senior managers, are potentially fascinating. However, they may present considerable access
problems. You should therefore discuss this with your project tutor after reading Chapter 6.

For most topics it is important that the issues within the research are capable of being
linked to theory (Raimond, 1993). Initially, theory may be based just on the reading you
have undertaken as part of your study to date. However, as part of your assessment cri-
teria you are almost certain to be asked to set your topic in context (Section 3.2). As a
consequence you will need to have a knowledge of the literature and to undertake further
reading as part of defining your research questions and objectives (Section 2.4).

Most project tutors will argue that one of the attributes of a good topic is clearly
defined research questions and objectives (Section 2.4). These will, along with a good
knowledge of the literature, enable you to assess the extent to which your research is
likely to provide fresh insights into the topic. Many students believe this is going to be
difficult. Fortunately, as pointed out by Phillips and Pugh (2005), there are many ways in
which such insight can be defined as ‘fresh’ (Section 2.5).

If you have already been given a research idea (perhaps by an organisation) you will
need to ensure that your questions and objectives relate clearly to the idea (Kervin, 1999).
It is also important that your topic will have a symmetry of potential outcomes: that
is, your results will be of similar value whatever you find out (Gill and Johnson, 2002).
Without this symmetry you may spend a considerable amount of time researching your
topic only to find an answer of little importance. Whatever the outcome, you need to
ensure you have the scope to write an interesting project report.
Finally, it is important to consider your career goals (Creswell, 2002). If you wish to become an expert in a particular subject area or industry sector, it is sensible to use the opportunity to develop this expertise.

It is almost inevitable that the extent to which these attributes apply to your research topic will depend on your topic and the reasons for which you are undertaking the research. However, most of these attributes will apply. For this reason it is important that you check and continue to check any potential research topic against the summary checklist contained in Box 2.2.

2.3 Generating and refining research ideas

Some business and management students are expected both to generate and to refine their own research ideas. Others, particularly those on professional and post-experience

BOX 2.1 WORKED EXAMPLE

The problem of timescale and resources in doing research

Andrew was a part-time student who worked in a large firm of consulting engineers with projects throughout Europe and Asia. The company undertook such major projects as the building of a hospital in Asia and the construction of a major conference centre in a southern European city. Andrew was an operations director and had had particular responsibility for introducing a company intranet three months previous to the time of his research proposal. In part, the intranet was introduced with the idea of forging a sense of shared community between the consultants working on projects, whatever that project may be or wherever it was located. The consultant engineers were from all parts of the world, although English was the language in which the company’s business was conducted. English would therefore be the medium for the intranet.

The specific ‘shared community’ objectives of the intranet were to reduce the feeling of isolation among the engineers, give them an immediate source of important company and technical information, and foster a sense of team spirit at both company and project level.

Andrew knew that the intranet was being used frequently and that informal feedback suggested that people liked it and found it useful. However, he wanted ‘harder’ evidence that the considerable resources the company had devoted to the introduction and implementation of the intranet were worth while.

He drafted an outline proposal and took it along to the first meeting with Sarah, his project tutor. To Andrew’s surprise Sarah was sceptical about his idea. She thought three months was too short a timescale in which to judge the effects of the intranet in relation to the ‘softer’ anticipated outcomes of lack of isolation and fostering team spirit. She also thought that to meet the objectives Andrew would need to do some qualitative work. That would involve talking to engineers of different nationalities in different locations throughout the world. She felt that the quality of the data from the questionnaire that Andrew had thought about was unlikely to meet his objectives with sufficient authority.

Andrew felt dispirited when he left the meeting with Sarah. He’d agreed to think the matter over and then they would meet again a week later. But Andrew felt that Sarah might be right in her misgivings about the six-month period and he knew that he simply had insufficient time to carry out the primary research in the way Sarah had suggested. Maybe he would have to think of another approach . . . or another dissertation topic.

Finally, it is important to consider your career goals (Creswell, 2002). If you wish to become an expert in a particular subject area or industry sector, it is sensible to use the opportunity to develop this expertise.

It is almost inevitable that the extent to which these attributes apply to your research topic will depend on your topic and the reasons for which you are undertaking the research. However, most of these attributes will apply. For this reason it is important that you check and continue to check any potential research topic against the summary checklist contained in Box 2.2.
courses, are provided with a research idea by an organisation or their university. In the initial stages of their research they are expected to refine this to a clear and feasible idea that meets the requirements of the examining organisation. If you have already been given a research idea we believe you will still find it useful to read the next subsection, which deals with generating research ideas. Many of the techniques which can be used for generating research ideas can also be used for the refining process.

Generating research ideas

If you have not been given an initial research idea there is a range of techniques that can be used to find and select a topic that you would like to research. They can be thought of as those that are predominantly rational thinking and those that involve more creative thinking (Table 2.1). The precise techniques that you choose to use and the order in which you use them are entirely up to you. However, like Raimond (1993), we believe you should use both rational and creative techniques, choosing those that you believe are going to be of most use to you and which you will enjoy using. By using one or more creative techniques you are more likely to ensure that your heart as well as your head is in your research project. In our experience, it is usually better to use a variety of techniques. In order to do this you will need to have some understanding of the tech-
niques and the ways in which they work. We therefore outline the techniques in Table 2.1 and suggest possible ways they might be used to generate research ideas. These techniques will generate one of two outcomes:

- one or more possible project ideas that you might undertake;
- absolute panic because nothing in which you are interested or which seems suitable has come to mind (Jankowicz, 2005).

In either instance, but especially the latter, we suggest that you talk to your project tutor. Box 2.3 illustrates how ideas are at the heart of business and management life.

Examining own strengths and interests

It is important that you choose a topic in which you are likely to do well and, if possible, already have some academic knowledge. Jankowicz (2005) suggests that one way of doing this is to look at those assignments for which you have received good grades. For most of these assignments they are also likely to be the topics in which you were interested (Box 2.1). They will provide you with an area in which to search and find a research idea. In addition you may, as part of your reading, be able to focus more precisely on the sort of ideas about which you wish to conduct your research.

As noted in Section 2.2, there is the need to think about your future. If you plan to work in financial management it would be sensible to choose a research project in the financial management field. One part of your course that will inevitably be discussed at any job interview is your research project. A project in the same field will provide you with the opportunity to display clearly your depth of knowledge and your enthusiasm.

Looking at past project titles

Many of our students have found looking at past projects a useful way of generating research ideas. For undergraduate and taught masters degrees these are often called dissertations. For research degrees they are termed theses. A common way of doing this is to scan a list of past project titles (such as those in Appendix 1) for anything that captures your imagination. Titles that look interesting or which grab your attention should be noted down, as should any thoughts you have about the title in relation to your own research idea. In this process the fact that the title is poorly worded or the project report received a low mark is immaterial. What matters is the fact that you have found a topic that interests you. Based on this you can think of new ideas in the same general area that will enable you to provide fresh insights.

Scanning actual research projects may also produce research ideas. However, you need to beware. The fact that a project is in your library is no guarantee of the quality of the arguments and observations it contains. In many universities all projects are placed in the library whether they are bare passes or distinctions.

Table 2.1 More frequently used techniques for generating and refining research ideas

<table>
<thead>
<tr>
<th>Rational thinking</th>
<th>Creative thinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examining your own strengths and interests</td>
<td>Keeping a notebook of ideas</td>
</tr>
<tr>
<td>Looking at past project titles</td>
<td>Exploring personal preferences using past projects</td>
</tr>
<tr>
<td>Discussion</td>
<td>Relevance trees</td>
</tr>
<tr>
<td>Searching the literature</td>
<td>Brainstorming</td>
</tr>
</tbody>
</table>

The role of ideas in the manager's workplace

The conclusions in a 2004 article in *Management Decision* are not encouraging for part-time students who are practising managers. In this article Rothberg (2004) explores the role of ideas in organisations. He argues that ideas are critical for the ultimate success of organisations. Indeed, they are an essential management resource. He notes that those managers who understand what is happening to ideas in their workplace, and their organisation's environment, will be well placed to benefit from them.

In Rothberg's view ideas may be implicit, taken for granted, encouraged or ignored. He points out that ideas are understood relative to their framework. This includes the interaction of ideas within the framework in use (such as accepted practice), against the framework in use (such as unconventional or hostile activity) and in terms of shifting the framework (such as by changing the rules).

Rothberg's study is an interesting look at how to understand the role of ideas within and upon management and the organisation. It is also a study of the way in which ideas are accommodated in the frameworks used by managers.

Rothberg addresses the topic in four stages: the available frameworks or mindsets within which ideas are approached; the selective framework of mainstream management theory; a survey of what happens to ideas in the workplace; and conclusions from the study.

A pilot survey about what happens to ideas in the workplace was undertaken among 49 managers participating in advanced management programmes at two Australian universities during 2002 and 2003. The exploratory study focused upon the perceived assessment of ideas in the organisations of these managers. The participants had no forewarning of the survey, nor its intent. The managers were from different organisations. They voluntarily and anonymously completed a questionnaire of 23 questions about what was happening to ideas in their organisation. The managers were asked their views about themselves, their workplaces and their managers.

Rothberg's research suggests the following.

1. There is a clear dichotomy of support for ideas in the workplace; in effect, some workplaces are considered friendly and others unfriendly to ideas. Only about half of the respondents thought that it was possible to get ideas considered in their workplace. There was wide reporting of a substantial lack of support, and lack of encouragement for ideas. A significant minority of managers were reported never to offer support for ideas, with a sizable proportion reporting equivocation about the availability of support.

2. The general environment for ideas appears disparate and lax, with managers contributing considerably less than their potential to their enterprises and society. Based on the reported dichotomy among the workplaces, clearly some organisations and their managers are consistently un-engaged in implementing ideas. The findings suggest that the approach managers use in their enterprises shows very wide variation to the point of suppressing, ignoring and being indifferent to ideas.

3. In the functional areas of task and process, there is encouraging evidence that managers know more about improving outcomes than they are sharing. While this may simply be a boast, other evidence suggests that there is sub-optimal encouragement and reward for ideas.

4. Colleagues are not overwhelmingly supportive of each other when it comes to approachability and follow-through with ideas. There is a lack of collegiate confidence, while dependability offers scope for improvement.
Discussion

Colleagues, friends and university tutors are all good sources of possible project ideas. Often project tutors will have ideas for possible student projects, which they will be pleased to discuss with you. In addition, ideas can be obtained by talking to practitioners and professional groups (Gill and Johnson, 2002). It is important that as well as discussing possible ideas you also make a note of them. What seemed like a good idea in the coffee shop may not be remembered quite so clearly after the following lecture!

Searching the literature

As part of your discussions, relevant literature may also be suggested. Sharp et al. (2002) discuss types of literature that are of particular use for generating research ideas. These include:

- articles in academic and professional journals;
- reports;
- books.

Of particular use are academic review articles. These articles contain both a considered review of the state of knowledge in that topic area and pointers towards areas where further research needs to be undertaken. In addition you can browse recent publications, in particular journals, for possible research ideas (Section 3.5). For many subject areas your project tutor will be able to suggest possible recent review articles, or articles that contain recommendations for further work. Reports may also be of use. The most recently published are usually up to date and, again, often contain recommendations that may form the basis of your research idea. Books by contrast are less up to date than other written sources. They do, however, often contain a good overview of research that has been undertaken, which may suggest ideas to you.

Searching for publications is only possible when you have at least some idea of the area in which you wish to undertake your research. One way of obtaining this is to re-examine your lecture notes and course textbooks and to note those subjects that appear most interesting (discussed earlier in this section) and the names of relevant authors. This will give you a basis on which to undertake a preliminary search (using techniques outlined in Sections 3.4 and 3.5). When the articles, reports and other items have been obtained it is often helpful to look for unfounded assertions and statements on the absence of research (Raimond, 1993), as these are likely to contain ideas that will enable you to provide fresh insights.

Keeping a notebook of ideas

One of the more creative techniques that we all use is to keep a notebook of ideas. All this involves is simply noting down any interesting research ideas as you think of them and, of equal importance, what sparked off your thought. You can then pursue the idea using more rational thinking techniques later. Mark keeps a notebook by his bed so he can jot down any flashes of inspiration that occur to him in the middle of the night!

Exploring personal preferences using past projects

Another way of generating possible project ideas is to explore your personal preferences using past project reports from your university. To do this Raimond (1993) suggests that you:

1. Select six projects that you like.
2. For each of these six projects note down your first thoughts in response to three questions (if responses for different projects are the same this does not matter):
a What appeals to you about the project?
b What is good about the project?
c Why is the project good?

3 Select three projects that you do not like.

4 For each of these three projects note down your first thoughts in response to three questions (if responses for different projects are the same, or cannot be clearly expressed, this does not matter; note them down anyway):
a What do you dislike about the project?
b What is bad about the project?
c Why is the project bad?

You now have a list of what you consider to be excellent and what you consider to be poor in projects. This will not be the same as a list generated by anyone else. It is also very unlikely to match the attributes of a good research project (Box 2.2). However, by examining this list you will begin to understand those project characteristics that are important to you and with which you feel comfortable. Of equal importance is that you will have identified those that you are uncomfortable with and should avoid. These can be used as the parameters against which to evaluate possible research ideas.

Relevance trees

Relevance trees may also prove useful in generating research topics. In this instance, their use is similar to that of mind mapping (Buzan, 2006), in which you start with a broad concept from which you generate further (usually more specific) topics. Each of these topics forms a separate branch from which you can generate further, more detailed sub-branches. As you proceed down the sub-branches more ideas are generated and recorded. These can then be examined and a number selected and combined to provide a research idea (Sharp et al., 2002). This technique is discussed in more detail in Section 3.4, which also includes a worked example of a relevance tree.

Brainstorming

The technique of brainstorming (Box 2.4), taught as a problem-solving technique on many business and management courses, can also be used to generate and refine research ideas. It is best undertaken with a group of people, although you can brainstorm on your own. To brainstorm, Moody (1988) suggests that you:

1 Define your problem – that is, the sorts of ideas you are interested in – as precisely as possible. In the early stages of formulating a topic this may be as vague as 'I am interested in marketing but don’t know what to do for my research topic.'

2 Ask for suggestions, relating to the problem.

3 Record all suggestions, observing the following rules:
 – No suggestion should be criticised or evaluated in any way before all ideas have been considered.
 – All suggestions, however wild, should be recorded and considered.
 – As many suggestions as possible should be recorded.

4 Review all the suggestions and explore what is meant by each.

5 Analyse the list of suggestions and decide which appeal to you most as research ideas and why.
The Delphi technique

An additional approach that our students have found particularly useful in refining their research ideas is the Delphi technique (Box 2.5). This involves using a group of people who are either involved or interested in the research idea to generate and choose a more specific research idea (Robson, 2002). To use this technique you need:

1. to brief the members of the group about the research idea (they can make notes if they wish);
2. at the end of the briefing to encourage group members to seek clarification and more information as appropriate;
3. to ask each member of the group, including the originator of the research idea, to generate independently up to three specific research ideas based on the idea that has been described (they can also be asked to provide a justification for their specific ideas);
4. to collect the research ideas in an unedited and non-attributable form and to distribute them to all members of the group;
5. a second cycle of the process (steps 2 to 4) in which individuals comment on the research ideas and revise their own contributions in the light of what others have said;
6. subsequent cycles of the process until a consensus is reached. These either follow a similar pattern (steps 2 to 4) or use discussion, voting or some other method.

This process works well, not least because people enjoy trying to help one another. In addition, it is very useful in moulding groups into a cohesive whole.

Box 2.4 Worked Example

Brainstorming

George’s main interest was football. When he finished university he wanted to work in marketing, preferably for a sports goods manufacturer. He had examined his own strengths and discovered that his best marks were in marketing. He wanted to do his research project on some aspect of marketing, preferably linked to football, but had no real research idea. He asked three friends, all taking business studies degrees, to help him brainstorm the problem.

George began by explaining the problem in some detail. At first the suggestions emerged slowly. He noted them down on the whiteboard. Soon the board was covered with suggestions. George counted these and discovered there were over 100.

Reviewing individual suggestions produced nothing that any of the group felt to be of sufficient merit for a research project. However, one of George’s friends pointed out that combining the suggestions of Premier League football, television rights and sponsorship might provide an idea which satisfied the assessment requirements of the project.

They discussed the suggestion further, and George noted the research idea as ‘something about how confining the rights to show live Premiership football to Sky TV would impact upon the sale of Premiership club-specific merchandise’.

George arranged to see his project tutor to discuss how to refine the idea they had just generated.
The preliminary study

Even if you have been given a research idea, it is still necessary to refine it in order to turn it into a research project. Some authors, for example Bennett (1991), refer to this process as a preliminary study. For some research ideas this will be no more than a review of some of the literature, including news items (Box 2.6). This can be thought of as the first iteration of your critical literature review (Figure 3.1). For others it may include revisiting the techniques discussed earlier in this section as well as informal discussions with people who have personal experience of and knowledge about your research ideas. In some cases shadowing employees who are likely to be important in your research may also provide insights. If you are planning on undertaking your research within an organisation it is important to gain a good understanding of your host organisation (Kervin, 1999). However, whatever techniques you choose, the underlying purpose is to gain a greater understanding so that your research question can be refined.

At this stage you need to be testing your research ideas against the checklist in Box 2.2 and where necessary changing them. It may be that after a preliminary study, or discussing your ideas with colleagues, you decide that the research idea is no longer feasible in the form in which you first envisaged it. If this is the case, do not be too downhearted. It is far better to revise your research ideas at this stage than to have to do it later, when you have undertaken far more work.
Integrating ideas

The integration of ideas from these techniques is essential if your research is to have a clear direction and not contain a mismatch between objectives and your final project report. Jankowicz (2005:34–6) suggests an integrative process that our students have found most useful. This he terms ‘working up and narrowing down’. It involves classifying each research idea first into its area, then its field, and finally the precise aspect in which you are interested. These represent an increasingly detailed description of the research idea. Thus your initial area, based on examining your course work, might be accountancy. After browsing some recent journals and discussion with colleagues this becomes more focused on the field of financial accounting methods. With further reading, the use of the Delphi technique and discussion with your project tutor you decide to focus on the aspect of activity-based costing.

You will know when the process of generating and refining ideas is complete as you will be able to say ‘I’d like to do some research on . . .’. Obviously there will still be a big

BOX 2.6 RESEARCH IN THE NEWS

China’s increasing influence in IT research and manufacturing

Recent research by economist Jonathan Anderson of UBS suggests that rather than taking over the role in IT supply played by neighbours Japan, South Korea and Taiwan, China has instead become a new link in the supply chain that connects its neighbours to global markets. “Based on broad trade data, China’s electronics growth still looks relatively ‘friendly’ for the rest of the world,” Mr Anderson says.

Indeed, much of the shift of production to China has been organised by foreign companies themselves, and they dominate the industry. Overseas-invested companies accounted for more than 87 per cent of China’s 2004 exports of “new and high technology” products, a category dominated by IT, according to data from the Ministry of Commerce.

There are plenty of exceptions. Chinese telecom equipment manufacturers ZTE and Huawei, for example, now compete internationally with global giants such as Nokia and Lucent for contracts to build the newest “third generation” mobile networks.

Both companies are making full use of their ability to hire large corps of engineers for salaries just a fraction of those commanded by counterparts in the US, Europe or Japan.

ZTE and Huawei also spend 10 per cent or more of their revenue on R&D, allowing them to make up ground rapidly on market leaders. Chinese companies can spend less on R&D but get more researchers, says Hou Weigui, chairman of ZTE: “In some ways this is our edge.”

The telecom equipment vendors are exceptions however. Few Chinese companies are willing to put as much into R&D. Mr De Luca of Logitech for example, notes that local competitors in the computer peripherals business usually spend less than 1 per cent, while the Swiss-US market leader invests 5.5 per cent. That means it can keep coming up with new features such as laser-equipped mice that command higher prices and fatter margins.

Chinese companies also have no monopoly of access to the 300,000 or so engineers who graduate from the country’s universities every year. Clusters of well-funded foreign-owned R&D centres are growing in Beijing, Shanghai and in second-tier cities – and they compete with local ventures for the best talent.

Mr Hou says ZTE’s two decades of experience in Chinese R&D is difficult to match, but he acknowledges that this will not be true forever. “It’s hard to say for sure, but our advantage will be relatively clear for the next three to five years,” he says.

ZTE and its peers have already largely lost any edge gained by using factories in China, as foreign IT manufacturers cut the numbers of their expatriate staff to reduce costs, while often also benefiting from special tax breaks and investment incentives.

Integrating ideas

The integration of ideas from these techniques is essential if your research is to have a clear direction and not contain a mismatch between objectives and your final project report. Jankowicz (2005:34–6) suggests an integrative process that our students have found most useful. This he terms ‘working up and narrowing down’. It involves classifying each research idea first into its area, then its field, and finally the precise aspect in which you are interested. These represent an increasingly detailed description of the research idea. Thus your initial area, based on examining your course work, might be accountancy. After browsing some recent journals and discussion with colleagues this becomes more focused on the field of financial accounting methods. With further reading, the use of the Delphi technique and discussion with your project tutor you decide to focus on the aspect of activity-based costing.

You will know when the process of generating and refining ideas is complete as you will be able to say ‘I’d like to do some research on . . .’. Obviously there will still be a big
gap between this and the point when you are ready to start serious work on your research. Sections 2.4 and 2.5 will ensure that you are ready to bridge that gap.

Refining topics given by your employing organisation

If, as a part-time student, your manager gives you a topic, this may present particular problems. It may be something in which you are not particularly interested. In this case you will have to weigh the advantage of doing something useful to the organisation against the disadvantage of a potential lack of personal motivation. You therefore need to achieve a balance. Often the project your manager wishes you to undertake is larger than that which is appropriate for your course project. In such cases, it may be possible to complete both by isolating an element of the larger organisational project that you find interesting and treating this as the project for your course.

One of our students was asked to do a preliminary investigation of the strengths and weaknesses of her organisation’s pay system and then to recommend consultants to design and implement a new system. She was not particularly interested in this project. However, she was considering becoming a freelance personnel consultant. Therefore, for her course project she decided to study the decision-making process in relation to the appointment of personnel consultants. Her organisation’s decision on which consultant to appoint, and why this decision was taken, proved to be a useful case study against which to compare management decision-making theory.

In this event you would write a larger report for your organisation and a part of it for your project report. Section 14.4 offers some guidance on writing two separate reports for different audiences.

2.4 Turning research ideas into research projects

Writing research questions

Much is made in this book of the importance of defining clear research questions at the beginning of the research process. The importance of this cannot be overemphasised. One of the key criteria of your research success will be whether you have a set of clear conclusions drawn from the data you have collected. The extent to which you can do that will be determined largely by the clarity with which you have posed your initial research questions (Box 2.7).

Defining research questions, rather like generating research ideas (Section 2.3), is not a straightforward matter. It is important that the question is sufficiently involved to generate the sort of project that is consistent with the standards expected of you (Box 2.2). A question that prompts a descriptive answer, for example ‘What is the proportion of graduates entering the civil service who attended the old-established UK universities?’, is far easier to answer than: ‘Why are graduates from old-established UK universities more likely to enter the civil service than graduates from other universities?’ More will be said about the importance of theory in defining the research question later in this section. However, beware of research questions that are too easy.

It is perhaps more likely that you fall into the trap of asking research questions that are too difficult. The question cited above, ‘Why are graduates from old-established UK universities more likely to enter the civil service than graduates from other universities?’ is a case in point. It would probably be very difficult to gain sufficient access to the inner portals of the civil service to get a good grasp of the subtle ‘unofficial’ processes that go
on at staff selection which may favour one type of candidate over another. Over-reaching yourself in the definition of research questions is a danger.

Clough and Nutbrown (2002) use what they call the ‘Goldilocks test’ to decide if research questions are either ‘too big’, ‘too small’, ‘too hot’ or ‘just right’. Those that are too big probably need significant research funding because they demand too many resources. Questions that are too small are likely to be of insufficient substance, while those that are too ‘hot’ may be so because of sensitivities that may be aroused as a result of doing the research. This may be because of the timing of the research or the many other reasons that may upset key people who have a role to play, either directly or indirectly, in the research context. Research questions that are ‘just right’, note Clough and Nutbrown (2002:34), are those that are ‘just right for investigation at this time, by this researcher in this setting’.

The pitfall that you must avoid at all costs is asking research questions that will not generate new insights (Box 2.2). This raises the question of the extent to which you have consulted the relevant literature. It is perfectly legitimate to replicate research because you have a genuine concern about its applicability to your research setting (for example, your organisation). However, it certainly is not legitimate to display your ignorance of the literature.

McNiff and Whitehead (2000) make the point that the research question may not emerge until the research process has started and is therefore part of the process of ‘progressive illumination’. They note that this is particularly likely to be the case in practitioner action research (Section 4.3).

It is often a useful starting point in the writing of research questions to begin with one general focus research question that flows from your research idea. This may lead to several more detailed questions or the definition of research objectives. Table 2.2 has some examples of general focus research questions.

In order to clarify the research question Clough and Nutbrown (2002) talk of the Russian doll principle. This means taking the research idea and ‘breaking down the research questions from the original statement to something which strips away the complication of layers and obscurities until the very essence – the heart – of the question can be expressed ... just as the Russian doll is taken apart to reveal a tiny doll at the centre’ (Clough and Nutbrown, 2002:34).

Writing your research questions will be, in most cases, your individual concern but it is useful to get other people to help you. An obvious source of guidance is your project
Consulting your project tutor will avoid the pitfalls of the questions that are too easy or too difficult or have been answered before. Discussing your area of interest with your project tutor will lead to your research questions becoming much clearer.

Prior to discussion with your project tutor you may wish to conduct a brainstorming session with your peers or use the Delphi technique (Section 2.3). Your research questions may flow from your initial examination of the relevant literature. As outlined in Section 2.3, journal articles reporting primary research will often end with a conclusion that includes the consideration by the author of the implications for future research of the work in the article. This may be phrased in the form of research questions. However, even if it is not, it may suggest pertinent research questions to you.

Writing research objectives

Your research may begin with a general focus research question that then generates more detailed research questions, or you may use your general focus research question as a base from which you write a set of research objectives. Objectives are more generally acceptable to the research community as evidence of the researcher’s clear sense of purpose and direction. It may be that either is satisfactory. Do check whether your examining body has a preference.

We contend that research objectives are likely to lead to greater specificity than research or investigative questions. Table 2.3 illustrates this point. It summarises the objectives of some research conducted by one of our students. Expression of the first research question as an objective prompted a consideration of the objectives of the organisations. This was useful because it led to the finding that there often were no clear objectives. This in itself was an interesting theoretical discovery.

The second and third objectives operationalise the matching research questions by introducing the notion of explicit effectiveness criteria. In a similar way the fourth objective (parts a and b) and the fifth objective are specific about factors that lead to effectiveness in question 4. The biggest difference between the questions and objectives is illustrated by the way in which the fifth question becomes the fifth objective. They are similar but differ in the way that the objective makes clear that a theory will be developed that will make a causal link between two sets of variables: effectiveness factors and team briefing success.
This is not to say that the research questions could not have been written with a similar amount of specificity. They could. Indeed, you may find it easier to write specific research questions than objectives. However, we doubt whether the same level of precision could be achieved through the writing of research questions alone. Research objectives require more rigorous thinking, which derives from the use of more formal language.

Maylor and Blackmon (2005) recommend that personal objectives may be added to the list of research objectives. These may be concerned with your specific learning objectives from completion of the research (e.g. to learn how to use a particular statistical software package or improve your word processing ability) or more general personal objectives such as enhancing your career prospects through learning about a new field of your specialism.

Maylor and Blackmon suggest that such personal objectives would be better were they to pass the well-known SMART test. That is that the objectives are:

- **Specific.** What precisely do you hope to achieve from undertaking the research?
- **Measurable.** What measures will you use to determine whether you have achieved your objectives? (e.g. secured a career-level first job in software design).
- **Achievable.** Are the targets you have set for yourself achievable given all the possible constraints?
- **Realistic.** Given all the other demands upon your time, will you have the time and energy to complete the research on time?
- **Timely.** Will you have time to accomplish all your objectives in the time frame you have set?

The importance of theory in writing research questions and objectives

Section 4.1 outlines the role of theory in helping you to decide your approach to research design. However, your consideration of theory should begin earlier than this. It should inform your definition of research questions and objectives.
Theory (Box 2.8) is defined by Gill and Johnson (2002:229) as ‘a formulation regarding the cause and effect relationships between two or more variables, which may or may not have been tested’.

BOX 2.8 FOCUS ON MANAGEMENT RESEARCH

Clarifying what theory is not

Sutton and Staw (1995) make a useful contribution to the clarification of what theory is by defining what it is not. In their view theory is not:

1. **References.** Listing references to existing theories and mentioning the names of such theories may look impressive. But what is required if a piece of writing is to ‘contain theory’ is that a logical argument to explain the reasons for the described phenomena must be included. The key word here is ‘why’: why did the things you describe occur? What is the logical explanation?

2. **Data.** In a similar point to the one above, Sutton and Staw argue that data merely describe which empirical patterns were observed: theory explains why these patterns were observed or are expected to be observed. ‘The data do not generate theory – only researchers do that’ (Sutton and Staw, 1995:372).

3. **Lists of variables.** Sutton and Staw argue that a list of variables which constitutes a logical attempt to cover the determinants of a given process or outcome do not comprise a theory. Simply listing variables which may predict an outcome is insufficient: what is required for the presence of theory is an explanation of why predictors are likely to be strong predictors.

4. **Diagrams.** Boxes and arrows can add order to a conception by illustrating patterns and causal relationships but they rarely explain why the relationships have occurred. Indeed, Sutton and Staw (1995:374) note that ‘a clearly written argument should preclude the inclusion of the most complicated figures – those more closely resembling a complex wiring diagram than a comprehensible theory’.

5. **Hypotheses or predictions.** Hypotheses can be part of a sound conceptual argument. But they do not contain logical arguments about why empirical relationships are expected to occur.

Sutton and Staw (1995:375) sum up by stating that ‘theory is about the connections between phenomena, a story about why events, structure and thoughts occur. Theory emphasises the nature of causal relationships, identifying what comes first as well as the timing of events. Strong theory, in our view, delves into underlying processes so as to understand the systematic reasons for a particular occurrence or nonoccurrence’.

In a similar contribution to that of Sutton and Staw (1995), Whetten (1989) contends that if the presence of theory is to be guaranteed, the researcher must ensure that what is passing as good theory includes a plausible, coherent explanation for why certain relationships should be expected in our data.

There is probably no word that is more misused and misunderstood in education than the word ‘theory’. It is thought that material included in textbooks is ‘theory’ whereas what is happening in the ‘real world’ is practice. Students who saw earlier drafts of this book remarked that they were pleased that the book was not too ‘theoretical’. What they meant was that the book concentrated on giving lots of practical advice. Yet the book is full of theory. Advising you to carry out research in a particular way (variable A) is based
on the theory that this will yield effective results (variable B). This is the cause and effect relationship referred to in the definition of theory cited above.

The definition demonstrates that ‘theory’ has a specific meaning. It refers to situations where if A is introduced B will be the consequence. Therefore the marketing manager may theorise that the introduction of loyalty cards by a supermarket will lead to customers being less likely to shop regularly at a competitor supermarket. That is a theory. Yet the marketing manager would probably not recognise it as such. He or she is still less likely to refer to it as a theory, particularly in the company of fellow managers. Many managers are very dismissive of any talk that smacks of ‘theory’. It is thought of as something that is all very well to learn about at business school but bears little relation to what goes on in everyday organisational life. Yet the loyalty card example shows that it has everything to do with what goes on in everyday organisational life.

Section 4.1 notes that every purposive decision we take is based on theory: that certain consequences will flow from the decision. It follows from this that every managers’ meeting that features a number of decisions will be a meeting that is highly theory dependent (Gill and Johnson, 2002). All that will be missing is a realisation of this fact. So, if theory is something that is so rooted in our everyday lives it certainly is something that we need not be apprehensive about. If it is implicit in all our decisions and actions, then recognising its importance means making it explicit. In research the importance of theory must be recognised: therefore it must be made explicit.

Kerlinger and Lee (2000) reinforce Gill and Johnson’s definition by noting that the purpose of examining relationships between two or more variables is to explain and predict these relationships. Gill and Johnson (2002:33) neatly tie these purposes of theory to their definition:

. . . it is also evident that if we have the expectation that by doing A, B will happen, then by manipulating the occurrence of A we can begin to predict and influence the occurrence of B. In other words, theory is clearly enmeshed in practice since explanation enables prediction which in turn enables control.

In our example, the marketing manager theorised that the introduction of loyalty cards by a supermarket would lead to customers being less likely to shop regularly at a competitor supermarket. Following Gill and Johnson’s (2002:33) point that ‘explanation enables prediction which in turn enables control’, the supermarket would be well advised to conduct research that yielded an explanation of why loyalty cards encourage loyalty. Is it a purely economic rationale? Does it foster the ‘collector’ instinct in all of us? Does it appeal to a sense of thrift in us that helps us cope with an ever more wasteful world? These explanations are probably complex and interrelated. Reaching a better understanding of them would help the marketing manager to predict the outcome of any changes to the scheme. Increasing the amount of points per item would be effective if the economic explanation was valid. Increasing the range of products on which extra points were offered might appeal to the ‘collector’ instinct. More accurate prediction would offer the marketing manager increased opportunities for control.

The explanations for particular outcomes are a concern for Mackenzie (2000a, 2000b). His argument is that much research (he used the example of employee opinion surveys) yield ambiguous conclusions because they only ask questions which reveal the state of affairs as they exist (in his example, the thinking of employees in regard to, say, their pay). What they do not ask is questions which help those using the research results to draw meaningful conclusions as to why the state of affairs is as it is. If meaningful conclusions cannot be drawn then appropriate actions cannot be taken to remedy such deficiencies (or improve upon the efficiencies) that the research reveals. Usually such
additional questions would involve discovering the key implementation processes (in the case of pay these may be the way in which managers make and communicate pay distribution decisions) which may shed light on the reasons why such deficiencies (or efficiencies) exist.

Mackenzie used the metaphor of the knobs on an old-fashioned radio to illustrate his argument. If the radio is playing a station and you are unhappy with what is being received, you will turn the volume knob to alter the volume or the tuning knob to change the station. He argues that the typical questionnaire survey is like the radio without knobs. You cannot make the results more useful, by knowing more about their causes, because you have no means to do so. All you have for your results is a series of what Mackenzie (2000a:136) terms ‘knobless items’, in which you are asking for respondents’ opinions without asking for the reasons why they hold these opinions. What Mackenzie advocates is including ‘knobs’ in the data collection process so that the causal relationship between a process and an outcome can be established.

Phillips and Pugh (2005) distinguish between research and what they call intelligence gathering, using what Mackenzie (2000a, 2000b) calls ‘knobless items’. The latter is the gathering of facts (Box 2.9). For example, what is the relative proportion of undergraduates to postgraduates reading this book? What is the current spend per employee on training in the UK? What provision do small businesses make for bad debts? This is often called descriptive research (Section 4.2) and may form part of your research project. Descriptive research would be the first step in our example of supermarket loyalty card marketing. Establishing that there had been a change in customer behaviour following the introduction of supermarket loyalty cards would be the first step prior to any attempt at explanation.

Phillips and Pugh contrast such ‘what’ questions with ‘why’ questions. Examples of these ‘why’ questions are as follows: Why do British organisations spend less per head on training than German organisations? Why are new car purchasers reluctant to take out extended warranties on their vehicles? Why do some travellers still prefer to use cross-channel ferries as opposed to the Channel Tunnel? Such questions go ‘beyond description and require analysis’. They look for ‘explanations, relationships, comparisons, predictions, generalisations and theories’ (Phillips and Pugh, 2005:48).

It is a short step from the ‘why’ research question to the testing of an existing theory in a new situation or the development of your own theory. This may be expressed as a hypothesis that is to be tested (Section 4.1), or the eventual answer to your research question may be the development or amendment of a theory (Box 2.10).

Although intelligence gathering will play a part in your research, it is unlikely to be enough. You should be seeking to explain phenomena, to analyse relationships, to compare what is going on in different research settings, to predict outcomes and to gen-

Figure 2.1 Grand, middle range and substantive theories

Increasing capacity to change the way we think about the world

Increasing restrictions in terms of general applicability

Grand theories

Middle-range theories

Substantive theories
Although the role and status of women in Hong Kong have come a long way and a growing number of successful businesses are now run by women, some executives say the territory’s corporate world is still dominated by men. Women certainly make less money on average.

According to a recent government report, the number of female managers and administrators in Hong Kong rose from 40,300 in 1993 to 73,900 in 2004, while their male counterparts fell from 211,400 in 1993 to 202,000 in 2004.

Meanwhile, the number of male homemakers has risen from 9,100 in 2000 to 11,800 last year, as the number of housewives dropped from 730,000 to 647,500.

Women last year made up 26.8 per cent of all management positions in Hong Kong, compared with 16 per cent in 1993. And although the figure is quite low, it is considered high in Asia.

According to the Switzerland based International Labour Organisation, a quarter of legislators, senior officials and managers in Hong Kong were women in 2003, higher than the 5 per cent in South Korea, 9 per cent in Japan, 20 per cent in Malaysia and 24 per cent in Singapore. The average in Denmark, Finland, Sweden, Canada and the US was 32 per cent.

Executives and human resources professionals say women in Hong Kong enjoy equal opportunities at work. They also say Hong Kong is an easy place for women to work even compared with Europe and the US, thanks to the short distance between homes and offices as well as the availability of domestic helpers and, more importantly, parents. Many people in Hong Kong live close to their parents after they marry, relying on them for everything from meals to childcare. But in spite of the growing status of women they still earn less than men generally, says the government report. The median monthly incomes for men and women in 2004 were HK$11,000 and HK$8,000 respectively. While a typical female manager earned HK$25,000 per month last year, her male counterpart made HK$30,000. A women professional was paid HK$28,000, but a male one received HK$30,000.

The most senior positions in Hong Kong are still occupied by men. Only 4.5 per cent of board directors in Hong Kong are women, compared with 6 per cent in Singapore and 26.2 per cent in Norway, according to the London-based Ethical Investment Research Service.

A recent survey by the Hong Kong Institute of Certified Public Accountants also shows that although nearly half of the accounting jobs in Hong Kong are held by women, only 22 per cent of the territory’s chief financial officials are female.

Copyright © 2005 The Financial Times Ltd.
Writing a research question based on theory

Justine was a final-year marketing undergraduate who was interested in the theory of cognitive dissonance (Festinger, 1957). She wanted to apply this to the consumer purchasing decision in the snack foods industry (for example, potato crisps) in the light of the adverse publicity that the consumption of such foods was having as a result of the ‘healthy eating’ campaign.

Justine applied Festinger’s theory by arguing in her research project proposal that a consumer who learns that snack over-eating is bad for her health will experience dissonance, because the knowledge that snack over-eating is bad for her health is dissonant with the cognition that she continues to over-eat snacks. She can reduce the dissonance by changing her behaviour, i.e., she could stop over-eating. (This would be consonant with the cognition that snack over-eating is bad for her health.) Alternatively, she could reduce dissonance by changing her cognition about the effect of snack over-eating on health and persuade herself that snack over-eating does not have a harmful effect on health. She would look for positive effects of snack over-eating, e.g. by believing that snack over-eating is an important source of enjoyment which outweighs any harmful effects. Alternatively she might persuade herself that the risk to health from snack over-eating is negligible compared with the danger of car accidents (reducing the importance of the dissonant cognition).

Justine’s research question was ‘How does the adverse “healthy eating” campaign publicity affect the consumer’s decision to purchase snack foods?’

This discussion of theory does assume that a clear theoretical position is developed prior to the collection of data (the deductive approach). This will not always be the case. It may be that your study is based on the principle of developing theory after the data have been collected (the inductive approach). This is a fundamental difference in research approach, and will be discussed in detail in Section 4.3.

2.5 Writing your research proposal

At the start of all courses or modules we give our students a plan of the work they will be doing. It includes the learning objectives, the content, the assessment strategy and the recommended reading. This is our statement of our side of the learning contract. Our students have a right to expect this.

However, when we insist on a proposal for a dissertation that is often the equivalent of at least two other modules, there is often a marked reluctance to produce anything other than what is strictly necessary. This is unsatisfactory. It is unfair to your project tutor because you are not making entirely clear what it is you intend to do in your research. You are also being unfair to yourself because you are not giving yourself the maximum opportunity to have your ideas and plans scrutinised and subjected to rigorous questioning.

Writing a research proposal is a crucial part of the research process. If you are applying for research funding, or if your proposal is going before an academic research committee,
then you will know that you will need to put a great deal of time into the preparation of your proposal. However, even if the official need for a proposal is not so vital it is still a process that will repay very careful attention.

The purposes of the research proposal

Organising your ideas

Section 14.1 notes that writing can be the best way of clarifying our thoughts. This is a valuable purpose of the proposal. Not only will it clarify your thoughts but it will help you to organise your ideas into a coherent statement of your research intent. Your reader will be looking for this.

Convincing your audience

However coherent your ideas and exciting your research plan, it counts for little if the proposal reveals that what you are planning to do is simply not possible. As part of research methods courses many tutors ask students to draft a research proposal. This is then discussed with a tutor. What usually happens is that this discussion is about how the proposed research can be amended so that something more modest in scope is attempted. Initially work that is not achievable in the given timescale is proposed. The student's task is to amend their initial ideas and convince the module tutor that the proposed research is achievable within the time and other resources available.

Contracting with your 'client'

If you were asked to carry out a research project for a commercial client or your own organisation it is unthinkable that you would go ahead without a clear proposal that you would submit for approval. Acceptance of your proposal by the client would be part of the contract that existed between you. So it is with your proposal to your project tutor or academic committee. Acceptance implies that your proposal is satisfactory. While this is obviously no guarantee of subsequent success, it is something of comfort to you to know that at least you started your research journey with an appropriate destination and journey plan. It is for you to ensure that you do not get lost!

The content of the research proposal

Title

This may be your first attempt at the title. It may change as your work progresses. At this stage it should closely mirror the content of your proposal.

Background

This is an important part of the proposal. It should tell the reader why you feel the research that you are planning is worth the effort. This may be expressed in the form of a problem that needs solving or something that you find exciting and has aroused your curiosity. The reader will be looking for evidence here that there is sufficient interest from you to sustain you over the long months (or years) ahead.

This is also the section where you will demonstrate your knowledge of the relevant literature. Moreover, it will clarify where your proposal fits into the debate in the literature. You will be expected to show a clear link between the previous work that has been done in your field of research interest and the content of your proposal. In short, the literature
should be your point of departure. This is not the same as the critical literature review (Section 3.2) you will present in your final project report. It will just provide an overview of the key literature sources from which you intend to draw.

Research questions and objectives
The background section should lead smoothly into a statement of your research question(s) and objectives. These should leave the reader in no doubt as to precisely what it is that your research seeks to achieve. Be careful here to ensure that your objectives are precisely written and will lead to observable outcomes (look again at Table 2.3, e.g., ‘to describe the extent to which the effectiveness criteria specified for the team briefing scheme have been met’). Do not fall into the trap of stating general research aims that are little more than statements of intent (e.g. ‘to discover the level of effectiveness of the team briefing scheme’).

Method
This and the background sections will be the longest sections of the proposal. It will detail precisely how you intend to go about achieving your research objectives. It will also justify your choice of method in the light of those objectives. These two aims may be met by dividing your method section into two parts: research design and data collection.

In the part on research design you will explain where you intend to carry out the research. If your earlier coverage has pointed out that your research is a single-organisation issue, then this will be self-evident. However, if your research topic is more generic you will wish to explain, for example, which sector(s) of the economy you have chosen to research and why you chose these sectors. You will also need to explain the identity of your research population (for example, managers or trade union officials) and why you chose this population.

This section should also include an explanation of the general way in which you intend to carry out the research. Will it be based, for example, on a questionnaire, interviews, examination of secondary data or use a combination of data collection techniques? Here again it is essential to explain why you have chosen your approach. Your explanation should be based on the most effective way of meeting your research objectives.

The research design section gives an overall view of the method chosen and the reason for that choice. The data collection section goes into much more detail about how specifically the data are to be collected. For example, if you are using a survey strategy you should specify your population and sample size. You should also clarify how the survey instrument such as a questionnaire will be distributed and how the data will be analysed. If you are using interviews you should explain how many interviews will be conducted, their intended duration, whether they will be audio-recorded, and how they will be analysed. In short, you should demonstrate to your reader that you have thought carefully about all the issues regarding your method and their relationship to your research objectives. However, it is normally not necessary in the proposal to include precise detail of the method you will employ, for example the content of an observation schedule or questionnaire questions.

You will also need to include a statement about how you are going to adhere to any ethical guidelines. This is particularly important in some research settings, such as those involving medical patients or children.
Timescale

This will help you and your reader to decide on the viability of your research proposal. It will be helpful if you divide your research plan into stages. This will give you a clear idea as to what is possible in the given timescale. Experience has shown that however well the researcher's time is organised the whole process seems to take longer than anticipated (Box 2.11).

BOX 2.11 WORKED EXAMPLE

Louisa's research timescale

As part of the final year of her undergraduate business studies degree Louisa had to undertake an 8000–10 000-word research project. In order to assist her with her time management she discussed the following outline timescale with her tutor.

<table>
<thead>
<tr>
<th>Target date</th>
<th>Month number</th>
<th>Task to be achieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start October</td>
<td>1</td>
<td>Start thinking about research ideas (latest start date)</td>
</tr>
<tr>
<td>End November</td>
<td>2</td>
<td>Literature read</td>
</tr>
<tr>
<td>End December</td>
<td>3</td>
<td>Objectives clearly defined with reference to literature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Literature review written</td>
</tr>
<tr>
<td>End January</td>
<td>4</td>
<td>Methodology literature read for dissertations involving secondary/primary data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Literature review extended further</td>
</tr>
<tr>
<td>Mid-February</td>
<td>5</td>
<td>Secondary/primary data collected and analysed (analysis techniques linked to methodology/research literature)</td>
</tr>
<tr>
<td>End March</td>
<td>6</td>
<td>Further writing up and analysis</td>
</tr>
<tr>
<td>Mid-May</td>
<td>8</td>
<td>Draft completed including formatting bibliography etc.</td>
</tr>
<tr>
<td>End May</td>
<td>8</td>
<td>Draft revised as necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Submission</td>
</tr>
</tbody>
</table>

As part of this section of their proposal, many researchers find it useful to produce a schedule for their research using a Gantt chart. Developed by Henry Gantt in 1917, this provides a simple visual representation of the tasks or activities that make up your research project, each being plotted against a time line. The time we estimate each task will take is represented by the length of an associated horizontal bar, whilst the task's start and finish times are represented by its position on the time line. Figure 2.2 shows a Gantt chart for a student's research project. As we can see from the first bar on this chart, the student has decided to schedule in two weeks of holiday. The first of these occurs over the Christmas and New Year period, and the second occurs while her tutor is reading a draft copy of the completed project in April. We can also see from the second and fourth bar that, like many of our students, she intends to begin to draft her literature review while she is still reading new articles and books. However, she has also recognised that some activities must be undertaken sequentially. For example, bars 9 and 10 highlight that before she can administer her questionnaire (bar 10) she must complete all the revisions highlighted as necessary by the pilot testing (bar 9).
Resources

This is another facet of viability (Box 2.2). It will allow you and the reader to assess whether what you are proposing can be resourced. Resource considerations may be categorised as finance, data access and equipment.

Conducting research costs money. This may be for travel, subsistence, help with data analysis, or postage for questionnaires. Think through the expenses involved and ensure that you can meet these expenses.

Assessors of your proposal will need to be convinced that you have access to the data you need to conduct your research. This may be unproblematic if you are carrying out research in your own organisation. Many academic committees wish to see written approval from host organisations in which researchers are planning to conduct research. You will also need to convince your reader of the likely response rate to any questionnaire that you send.

It is surprising how many research proposals have ambitious plans for large-scale data collection with no thought given to how the data will be analysed. It is important that you convince the reader of your proposal that you have access to the necessary computer hardware and software to analyse your data. Moreover, it is necessary for you to demonstrate that you have either the necessary skills to perform the analysis or can learn the skills in an appropriate time, or you have access to help.

References

It is not necessary to try to impress your proposal reader with an enormous list of references (Robson, 2002). A few key literature sources to which you have referred in the
background section and which relate to the previous work that is directly informing your
own proposal should be all that is necessary.

Criteria for evaluating research proposals

The extent to which the components of the proposal fit together

Your rationale for conducting the research should include a study of the previous published research, including relevant theories in the topic area. This study should inform your research question(s) and objectives. Your proposed methodology should flow directly from these research question(s) and objectives (Box 2.12). The time that you have allocated should be a direct reflection of the methods you employ, as should the resources that you need.

BOX 2.12 WORKED EXAMPLE

Fitting together the various components of the research proposal

Jenny was a middle manager in a large insurance company. She was very interested in the fact that electronic forms of communication meant that organisations could move information-based administrative work round different locations. Her company was scanning paper applications for insurance policies onto their computer system and delivering these into a central electronic bank of work. The company had employees in three different locations in the UK, and work was drawn from the bank on the basis of workload existing in each particular location. Recently senior management had been considering developing work locations in South Asian cities, where it felt the standard of English meant that such functions could be fulfilled effectively. Jenny anticipated that this would pose certain logistical problems, for example staff training and communications. Knowledge of these problems would give her a clear picture of the limit of complexity of the work that could be done. This was particularly important since the complexity range went from the simple to the technically complex. Research into the literature on cross-cultural training justified Jenny’s concern. As a consequence of her thought and reading she developed her research question as: ‘What cross-cultural problems may be posed by international electronic work transfer in the insurance industry, and how may these problems limit the complexity of the work that may be transferred?’

Through her reading of the practitioner journals Jenny was aware that some other financial services organisations had been sending their work to Asia for some time. She decided that approaching these companies and interviewing their key personnel would be a fruitful approach. The main problem that Jenny would have with this research would be the time that the interview work would take, given that such companies were located all over the UK and North America. She was unsure how many interviews would be necessary. This would become clearer as she progressed in the research. However, it was unlikely that fewer than 10 companies would yield sufficient valuable data. She thought that she could collect the necessary data in a four-month period, which fitted in with her university deadline. There were no specific resources that Jenny needed other than finance and time. Since her research would be of immediate benefit to her employer she thought that neither would pose a problem.

The viability of the proposal

This is the answer to the question: ‘Can this research be carried out satisfactorily within the timescale and with available resources?’
The absence of preconceived ideas
Your research should be an exciting journey into the unknown. Do not be like the student who came to Phil to talk over a research proposal and said ‘Of course, I know what the answer will be’. When asked to explain the purpose of doing the research if he already knew the answer he became rather defensive and eventually looked for another supervisor and, probably, another topic.

A written research proposal

Puvadol was a student from Thailand who returned home from the UK to complete his MA dissertation. His proposed dissertation concerned the applicability of Western methods of involving employees in decision-making in Thai organisations.

An abbreviated version of Puvadol’s proposal follows:

Title
The influences of Thai culture on employee involvement.

Background
Involving employees in the decision-making of their employing organisations has been increasingly popular in Europe and North America in recent years. The influx of American organisations into Thailand has meant that similar approaches are being adopted. However, this assumes that Thai employees will respond to these techniques as readily as their European and American counterparts.

Doubts about the validity of these assumptions derive from studies of Thai national culture (Komin, 1990). Using Rokeach’s (1979) conceptual framework, Komin characterised Thai culture in a number of ways. I have isolated those that relate to employee involvement. These are that Thais wish to:

a save face, avoid criticism and show consideration to others;
b exhibit gratitude to those who have shown kindness and consideration;
c promote smooth, conflict-free interpersonal relations;
d interpret ‘rules’ in a flexible way with little concern for principles;
e promote interdependent social relations;
f be seen to be achieving success through good social relations rather than individual success.

I intend to demonstrate in this section that these six cultural values contradict the values of employee involvement (e.g. employee involvement may involve employees in openly criticising managers, which directly contradicts a above).

Research objectives
1 To examine the assumptions behind the management technique of employee involvement.
2 To establish the characteristics of the Thai national culture.
3 To identify the opinions of Thai employees and their managers, working in American-owned organisations in Thailand, towards values underpinning employee involvement.
4 To draw conclusions about the applicability of employee involvement to Thai employees.
Method

1. Conduct a review of the literatures on employee involvement and Thai national culture in order to develop research hypotheses.

2. Carry out primary research in three American-owned petrochemical and manufacturing organisations in Thailand to assess the opinions of Thai employees and their managers towards values underpinning employee involvement. Informal approval has been gained from three organisations. American-owned organisations are relevant because it is in these that employee involvement is most likely to be found and values underpinning employee involvement exhibited. Petrochemical and manufacturing organisations are chosen because the occupations carried out in these organisations are likely to be similar, thus ensuring that any differences are a function of Thai national culture rather than of occupational culture.

A questionnaire will be developed with questions based on the Thai values a–f in the Background section above. Each value will lead to a hypothesis (e.g. employee involvement may not be appropriate to Thai culture because it may mean that employees openly criticise their managers). The questions in the questionnaire will seek to test these hypotheses. The questionnaire will be distributed to a sample (size to be agreed) of employees and of managers across all three organisations.

Data analysis will use the SPSS software. Statistical tests will be run to ensure that results are a function of Thai cultural values rather than of values that relate to the individual organisations.

Timescale

January–March 2006: review of literature
April 2006: draft literature review
May 2006: review research methods literature and agree research strategy
June 2006: agree formal access to three organisations for collection of primary data
July–August 2006: compile, pilot and revise questionnaire
September 2006: administer questionnaire
October–November 2006: final collection of questionnaires and analysis of data
November 2002–February 2007: completion of first draft of project report
March–May 2007: final writing of project report

Resources

I have access to computer hardware and software. Access to three organisations has been negotiated, subject to confirmation. My employer has agreed to pay all incidental costs as part of my course expenses.

References

If it is absolutely crucial that your proposal is of the highest quality then you may wish to use an expert system such as Peer Review Emulator™. This software is available either on its own or as part of the Methodologist’s Toolchest™ suite of programs. It asks you a series of questions about your proposed research. The program then critiques these answers to ensure that common research standards are achieved (idea Works, 2005).
2.6 Summary

- The process of formulating and clarifying your research topic is the most important part of your research topic.
- Attributes of a research topic do not vary a great deal between universities. The most important of these is that your research topic will meet the requirements of the examining body.
- Generating and refining research ideas makes use of a variety of techniques. It is important that you use a variety of techniques, including those that involve rational thinking and those that involve creative thinking.
- The ideas generated can be integrated subsequently using a technique such as working up and narrowing down.
- Clear research questions, based on the relevant literature, will act as a focus for the research that follows.
- Research can be distinguished from intelligence gathering. Research is theory dependent.
- Writing a research proposal helps you to organise your ideas, and can be thought of as a contract between you and the reader.
- The content of the research proposal should tell the reader what you want to do, why you want to do it, what you are trying to achieve, and how you to plan to achieve it.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

2.1 For the workplace project for her professional course, Karen had decided to undertake a study of the effectiveness of the joint consultative committee in her NHS Trust. Her title was ‘An evaluation of the effectiveness of the Joint Consultative Committee in Anyshire’s Hospitals NHS Foundation Trust’. Draft some objectives which Karen may adopt to complement her title.

2.2 You have decided to search the literature to ‘try to come up with some research ideas in the area of Operations Management’. How will you go about this?

2.3 A colleague of yours wishes to generate a research idea in the area of accounting. He has examined his own strengths and interests on the basis of his assignments and has read some review articles, but has failed to find an idea about which he is excited. He comes and asks you for advice. Suggest two techniques that your colleague could use, and justify your choice.

2.4 You are interested in doing some research on the interface between business organisations and schools. Write three research questions that may be appropriate.

2.5 How may the formulation of an initial substantive theory help in the development of a research proposal?

2.6 How would you demonstrate the influence of relevant theory in your research proposal?
2.7 Together with your colleagues, decide on the extent to which a set of research topics constitute a ‘good research topic’ according to the checklist in Box 2.2. The set of topics you choose may be past topics obtained from your tutor which relate to your course. Alternatively they may be those which have been written by you and your colleagues as preparation for your project(s).

2.8 Look through several of the academic journals which relate to your subject area. Choose an article which is based upon primary research. Assuming that the research question and objectives are not made explicit, infer from the content of the article what the research question and objectives may have been.

2.9 Watch the news on television. Most bulletins will contain stories on research which has been carried out to report the current state of affairs in a particular field. Spend some time investigating news sites on the Internet (for example http://www.news.google.com) in order to learn more about the research which relates to the news story. Study the story carefully and decide what further questions the report raises. Use this as the basis to draft an outline proposal to seek answers to one (or more) of these questions.

REVIEW AND DISCUSSION QUESTIONS

2.7 Together with your colleagues, decide on the extent to which a set of research topics constitute a ‘good research topic’ according to the checklist in Box 2.2. The set of topics you choose may be past topics obtained from your tutor which relate to your course. Alternatively they may be those which have been written by you and your colleagues as preparation for your project(s).

2.8 Look through several of the academic journals which relate to your subject area. Choose an article which is based upon primary research. Assuming that the research question and objectives are not made explicit, infer from the content of the article what the research question and objectives may have been.

2.9 Watch the news on television. Most bulletins will contain stories on research which has been carried out to report the current state of affairs in a particular field. Spend some time investigating news sites on the Internet (for example http://www.news.google.com) in order to learn more about the research which relates to the news story. Study the story carefully and decide what further questions the report raises. Use this as the basis to draft an outline proposal to seek answers to one (or more) of these questions.

PROGRESSING YOUR RESEARCH PROJECT

From research ideas to a research proposal

- If you have not been given a research idea, consider the techniques available for generating and refining research ideas. Choose a selection of those with which you feel most comfortable, making sure to include both rational and creative thinking techniques. Use these to try to generate a research idea or ideas. Once you have got some research ideas, or if you have been unable to find an idea, talk to your project tutor.

- Evaluate your research ideas against the checklist of attributes of a good research project (Box 2.2).

- Refine your research ideas using a selection of the techniques available for generating and refining research ideas. Re-evaluate your research ideas against the checklist of attributes of a good research project (Box 2.2). Remember that it is better to revise (and in some situations to discard) ideas that do not appear to be feasible at this stage. Integrate your ideas using the process of working up and narrowing down to form one research idea.

- Use your research idea to write a general focus research question. Where possible this should be a ‘why?’ or a ‘how?’ rather than a ‘what?’ question.

- Use the general focus research question to write more detailed research questions and your research objectives.

- Write your research proposal making sure it includes a clear title and sections on:
 - the background to your research;
 - your research questions and objectives;
 - the method you intend to use;
 - the timescale for your research;
 - the resources you require;
 - references to any literature to which you have referred.
References

Lau, J. (2005) ‘In Hong Kong, women “just have to work harder”’, *Financial Times*, 20 October.

Further reading

Maylor, H. and Blackmon, K. (2005) *Researching Business and Management*, Basingstoke, Palgrave Macmillan. Chapter 3 covers similar ground to this chapter and has some useful ideas on generating research topics and some very interesting examples of student topics.

Sutton, R. and Staw, B. (1995) ‘What theory is not’, *Administrative Science Quarterly* 40: 3, 371–84. This is an excellent article which makes very clear what theory is by explaining what theory is not. The authors draw on their experience as journal editors who constantly have to examine articles submitted for publication. They report that the reason for refusals is usually that there is no theory in the article. This leads to some very clear and practical advice for us all to follow.

Catherine Chang was a Chinese MBA student studying at a large university in the North of England. Her MBA was designed for international students, most of whom were Chinese although there were students from other Asian countries and mainland Europe. Catherine’s specialist stream was in accounting, but for her research project she wanted to study the role of women in management positions in Chinese organisations. In particular, she was interested in difficulties women experience in management positions.

Catherine arrived at the decision to study this topic as a result of the difficulties she had experienced in her employment in China. She had been employed by a large organisation partly owned by the State. Her organisation espoused the principles of gender equality but the fact was that very few of the senior management positions in her organisation were occupied by women. Management in her organisation was thought to be largely a ‘man’s world’. At first she thought that this topic would not be acceptable to the university, partly because it did not relate to her specialism, and partly because it seemed to her that it might not be sufficiently ‘theoretical’. However, a brief discussion with one of her tutors, who acted as a member of a group of MBA project tutors, set her mind at rest on both counts. She also valued the encouragement from her fellow female Chinese students, some of whom had noted similar difficulties in their employment experience in China.

The process of collecting ideas for the proposal started with the perusal of books and journal articles in the university library. Catherine found many ideas from Maddock (1999), Moore and Buttner (1997) and Marshall (1995) which she used to build her research proposal. Although these were Western books she found the ideas pertinent to the changing social context in China. The process was also helped by attendance at the MBA research methods course which helped Catherine prepare the proposal in the format required by the university. Formal submission of the proposal was required but this did not form part of the assessment of the research methods course. Indeed, the course was not assessed as such, only the research project itself was the subject of formal assessment.

After some practice drafts which she shared with her fellow students, Catherine finally arrived at the following title: ‘Women in management in China: what role do they play and what problems are they facing?’

The research objectives were:

1. To find out the reasons why so many women are now working in Chinese organisations.
2. To identify what difficulties and problems women face when they work in management.
3. To recommend actions that senior management should take to overcome the problems women face when they work in management.
4. To understand the barriers which women may face when seeking top managerial jobs.

As well as the title and objectives, Catherine included in her proposal the background to the research. This included material on the problem facing women managers in China and an indication of the literature which she used in preparing the proposal and would be used in preparing the dissertation. In addition, Catherine included some detail on the methods she would use to collect her data (this was to be a questionnaire and some follow-up interviews conducted on a return visit to China).

Catherine submitted her proposal and waited for the decision of the course tutor. It was made clear to her and her fellow students that they should not commence their research until such time as the proposal was approved.

After three weeks’ waiting Catherine received approval from the course tutor. She was pleased
that her proposal had been accepted but disappointed to note that the proposal document contained no indication of what the tutor thought of the proposal. She found this demotivating at a time when she felt her enthusiasm for the research should be at its highest. It was little consolation to her that her fellow students had also received little or no feedback from the tutor. Nonetheless Catherine forged ahead with her research.

References

QUESTIONS
1. How advisable do you think it was for Catherine to concentrate her study in China?

2. Had you been Catherine’s course tutor, what comments would you have made in response to her proposal?

3. Why do you think Catherine was so disappointed to receive no feedback from her tutor?

4. What difficulties, of both a theoretical and a practical nature, would you alert Catherine to were you her course tutor?

5. What specific comments would you make to Catherine about the main source books she used in preparing her proposal?

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:
- The use of internal and word of mouth recruitment methods
- Strategic issues in the brewing industry.

SELF-CHECK ANSWERS

2.1 These may include:
- a Identify the management and trade union objectives for the Joint Consultative Committee and use this to establish suitable effectiveness criteria.
- b Review key literature on the use of Joint Consultative Committees.
- c Carry out primary research in the organisation to measure the effectiveness of the Joint Consultative Committee.
- d Identify the strengths and weaknesses of the Joint Consultative Committee.
- e Where necessary, make recommendations for action to ensure the effective function of the Joint Consultative Committee.

2.2 One starting point would be to ask your project tutor for suggestions of possible recent review articles or articles containing recommendations for further work that he or she has read. Another would be to browse recent editions of operations management journals such as the International Journal of Operations & Production Management for possible research ideas. These would include both statements of the absence of research and unfounded assertions. Recent reports held in your library or on the Internet may also be of use here. You could also scan one or two recently published operations management textbooks for overviews of research that has been undertaken.

2.3 From the description given it would appear that your colleague has considered only rational thinking techniques. It would therefore seem sensible to suggest two creative thinking techniques, as these would hopefully generate an idea that would appeal to him. One technique that you could suggest is brainstorming, perhaps emphasising the need to do it with other colleagues. Exploring past projects in the accountancy area would be another possibility. You might also suggest that he keeps a notebook of ideas.
CHAPTER 2 · FORMULATING AND CLARIFYING THE RESEARCH TOPIC

2.4 Your answer will probably differ from that below. However, the sorts of things you could be considering include:
 a. How do business organisations benefit from their liaison with schools?
 b. Why do business organisations undertake school liaison activities?
 c. To what degree do business organisations receive value for money in their school liaison activities?

2.5 Let us go back to the example used in the chapter of the supermarket marketing manager who theorises that the introduction of a loyalty card will mean that regular customers are less likely to shop at competitor supermarkets. This could be the research proposal’s starting point, i.e. a hypothesis that the introduction of a loyalty card will mean that regular customers are less likely to shop at competitor supermarkets. This prompts thoughts about the possible use of literature in the proposal and the research project itself. This literature could have at least two strands. First, a practical strand which looks at the research evidence which lends credence to the hypothesis. Second, a more abstract strand that studies human consumer behaviour and looks at the cognitive processes which affect consumer purchasing decisions.

This ensures that the proposal and resultant research project are both theory driven and also ensures that relevant theory is covered in the literature.

2.6 Try including a subsection in the background section that is headed ‘how the previous published research has informed my research questions and objectives’. Then show how, say, a gap in the previous research that is there because nobody has pursued a particular approach before has led to you filling that gap.

Get ahead using resources on the Companion Website at:
www.pearsoned.co.uk/saunders

- Improve your SPSS and NVivo research analysis with practice tutorials.
- Save time researching on the Internet with the Smarter Online Searching Guide.
- Test your progress using self-assessment questions.
- Follow live links to useful websites.
LEARNING OUTCOMES

By the end of this chapter you should:

➔ understand the importance and purpose of the critical literature review to your research project;
➔ know what you need to include when writing your critical review;
➔ be aware of the range of primary, secondary and tertiary literature sources available;
➔ be able to identify key words and to undertake a literature search using a range of methods including the Internet;
➔ be able to evaluate the relevance, value and sufficiency of the literature found;
➔ be able to reference the literature found accurately;
➔ be able to apply the knowledge, skills and understanding gained to your own research project.

3.1 Introduction

As part of your studies, you have almost certainly already been asked by your tutors to ‘review the literature’, ‘write a literature review’ or ‘critically review the literature’ on topics they have specified. Indeed, you may be like many students and have grown to fear the literature review, not because of the associated reading but because of the requirement both to make judgements as to the value of each piece of work and to organise those ideas and findings that are of value into a review. It is these two processes in particular that people find both difficult and time consuming.

Two major reasons exist for reviewing the literature (Sharp et al., 2002). The first, the preliminary search that helps you to generate and refine your research ideas, has already been discussed in Section 2.3. The second, often referred to as the critical review or critical literature review, is part of your research project proper. Most research textbooks, as well as your project tutor, will argue that this critical review of the literature is necessary. Although you may feel that you already have a good knowledge of your
research area, we believe that reviewing the literature is essential. Project assessment criteria usually require you to demonstrate awareness of the current state of knowledge in your subject, its limitations, and how your research fits in this wider context (Gill and Johnson, 2002). In Jankowicz’s (2005:161) words:

There is little point in reinventing the wheel . . . the work that you do is not done in a vacuum, but builds on the ideas of other people who have studied the field before you. This requires you describe what has been published, and to marshal the information in a relevant and critical way.

The significance of your research and what you find out will inevitably be judged in relation to other people’s research and their findings. You therefore need both to ‘map and assess the existing intellectual territory’ (Tranfield et al., 2003:208), establishing what research has been published in your chosen area, and, if possible, to try to identify any other research that might currently be in progress. Consequently, the items you read and write about will enhance your subject knowledge and help you to clarify your research question(s) further. This process is called critically reviewing the literature.

Recently, we were discussing the difficulties students have when writing their literature reviews for their research projects. Mark summarised what he felt we and fellow project tutors were saying:

‘So what happens sometimes is . . . a student comes to see her or his project tutor having obviously done a great deal of work. The student presents the tutor with what she or he says is the finished literature review. Yet the purpose of their review is unclear. It is little more than a summary of the articles and books read, each article or book being given one paragraph. Some students have arranged these paragraphs alphabetically in author order, others have arranged them in chronological order. None have linked or juxtaposed the ideas. Their literature reviews look more like adjacent pages from a catalogue rather than a critical review. Just like the items on these pages, each article or book has some similarities in terms of subject matter and so are grouped together. As in the catalogue, the reasons for these groupings are not made explicit. In addition, like the summary descriptions of items on the pages of a home shopping catalogue, each book or article is accorded equal status rather than the amount written reflecting its value to the student’s research project.’

He concluded:

‘Whilst such an approach obviously makes good sense for a shopping catalogue, it does not work for the critical review of the literature. We obviously need to explain better what we mean by a critical review of the literature to our students.’
For most research projects, your literature search will be an early activity. Despite this early start, it is usually necessary to continue searching throughout your project’s life. The process can be likened to an upward spiral, culminating in the final draft of a written critical literature review (Figure 3.1). In the initial stage of your literature review, you will start to define the parameters to your research question(s) and objectives (Section 3.4). After generating key words and conducting your first search (Section 3.5), you will have a list of references to authors who have published on these subjects. Once these have been obtained, you can read and evaluate them (Section 3.6), record the ideas (Section 3.7) and start drafting your review. After the initial search, you will be able to redefine your parameters more precisely and undertake further searches, keeping in mind your research question(s) and objectives. As your thoughts develop, each subsequent search will be focused more precisely on material that is likely to be relevant. At the same time, you will probably be refining your research question(s) and objectives in the light of your reading (Section 2.4).

Figure 3.1 The literature review process

Source: © Mark Saunders, Philip Lewis, Adrian Thornhill and Martin Jenkins 2003
Unlike some academic disciplines, business and management research makes use of a wide range of literature. While your review is likely to include specific business disciplines such as finance, marketing and human resource management, it is also likely to include other disciplines. Those most frequently consulted by our students include economics, psychology, sociology and geography. Given this, and the importance of the review to your research, it is vital for you to be aware of what a critical literature review is and the range of literature available before you start the reviewing process. For these reasons, we start this chapter by outlining the purpose of your critical review of the literature, its content and what we mean by ‘critical’ (Section 3.2) and then discussing those literature resources available (Section 3.3).

3.2 The critical review

The purpose of the critical review

Reviewing the literature critically will provide the foundation on which your research is built. As you will have gathered from the introduction, its main purpose is to help you to develop a good understanding and insight into relevant previous research and the trends that have emerged. You would not expect a scientific researcher inquiring into the causes of cot death to start his or her research without first reading about the findings of other cot death research. Likewise you should not expect to start your research without first reading what other researchers in your area have already found out.

The precise purpose of your reading of the literature will depend on the approach you are intending to use in your research. For some research projects you will use the literature to help you to identify theories and ideas that you will test using data. This is known as a **deductive approach** (Section 4.3) in which you develop a theoretical or conceptual framework, which you subsequently test using data. For other research projects you will be planning to explore your data and to develop theories from them that you will subsequently relate to the literature. This is known as an **inductive approach** (Section 4.3) and, although your research still has a clearly defined purpose with research question(s) and objectives, you do not start with any predetermined theories or conceptual frameworks. We believe such an approach cannot be taken without a competent knowledge of your subject area. It is, however, impossible to review every single piece of the literature before collecting your data. The purpose of your literature review is not to provide a summary of everything that has been written on your research topic, but to review the most relevant and significant research on your topic. If your analysis is effective, new findings and theories will emerge that neither you nor anyone else has thought about (Strauss and Corbin, 1998). Despite this, when you write your critical review, you will need to show how your findings and the theories you have developed or are using relate to the research that has gone before, thereby demonstrating that you are familiar with what is already known about your research topic.

Your review also has a number of other purposes. Many of these have been highlighted by Gall *et al.* (2002) in their book for students undertaking educational research and are, we believe, of equal relevance to business and management researchers:

- to help you to refine further your research question(s) and objectives;
- to highlight research possibilities that have been overlooked implicitly in research to date;
CHAPTER 3 · CRITICALLY REVIEWING THE LITERATURE

- to discover explicit recommendations for further research. These can provide you with a superb justification for your own research question(s) and objectives;
- to help you to avoid simply repeating work that has been done already;
- to sample current opinions in newspapers, professional and trade journals, thereby gaining insights into the aspects of your research question(s) and objectives that are considered newsworthy;
- to discover and provide an insight into research approaches, strategies (Section 4.3) and techniques that may be appropriate to your own research question(s) and objectives.

The content of the critical review

As you begin to find, read and evaluate the literature, you will need to think how to combine the academic theories and ideas about which you are reading to form the critical review that will appear in your project report. Your review will need to evaluate the research that has already been undertaken in the area of your research project, show and explain the relationships between published research findings and reference the literature in which they were reported (Appendix 2). It will draw out the key points and trends (recognising any omissions and bias) and present them in a logical way which also shows the relationship to your own research. In doing this you will provide readers of your project report with the necessary background knowledge to your research question(s) and objectives and establish the boundaries of your own research. Your review will also enable the readers to see your ideas against the background of previous published research in the area. This does not necessarily mean that your ideas must extend, follow or approve those set out in the literature. You may be highly critical of the earlier research reported in the literature and seek to discredit it. However, if you wish to do this you must still review this literature, explain clearly why it is problematic, and then justify your own ideas.

In considering the content of your critical review you will therefore need:

- to include the key academic theories within your chosen area of research;
- to demonstrate that your knowledge of your chosen area is up to date;
- through clear referencing, enable those reading your project report to find the original publications you cite.

In addition, by fully acknowledging the research of others you will avoid charges of plagiarism and the associated penalties. The content of your critical review can be evaluated using the checklist in Box 3.1.

What is really meant by being 'critical' about the content

Within the context of your course you have probably already been asked to take a critical approach for previous assignments. However, it is worth considering what we mean by critical within the context of your literature review. Mingers (2000:225–6) argues that there are four aspects of a critical approach that should be fostered by management education:

- critique of rhetoric;
- critique of tradition;
critique of authority;

- critique of objectivity.

The first of these, the ‘critique of rhetoric’, means appraising or evaluating a problem with effective use of language. In the context of your critical literature review, this emphasises the need for you, as the reviewer, to use your skills both of making reasoned judgements and of arguing effectively in writing. The other three aspects Mingers identifies also have implications for being critical when reading and writing about the work of others. This includes you questioning, where justification exists to do so, the conventional wisdom, the ‘critique of tradition’ and the dominant view portrayed in the literature you are reading, the ‘critique of authority’. Finally, it is likely also to include recognising in your review that the knowledge and information you are discussing are not value free, the ‘critique of objectivity’.

Being critical in reviewing the literature is therefore a combination of your skills and the attitude with which you read. In critically reviewing the literature, you need to read the literature about your research topic with some scepticism and be willing to question what you read. This means you need to be constantly considering and justifying with clear arguments your own critical stance. You will therefore have to read widely on your research topic and have a good understanding of the literature. Critically reviewing the literature for your research project therefore requires you to have gained topic-based background knowledge, understanding, the ability to reflect upon and to analyse the literature and, based on this, to make reasoned judgements that are argued effectively. When you use these skills to review the literature, the term ‘critical’ refers to the judgement you exercise. It therefore describes the process of providing a detailed and justified analysis of, and commentary on, the merits and faults of the key literature within your chosen area. This means that, for your review to be critical, you will need to have shown critical judgement.

Part of this judgement will inevitably mean being able to identify the most relevant and significant theories and recognised experts highlighted in Box 3.1. In addition, Dees (2003) suggests that this means you should:

- refer to and assess research by recognised experts in your chosen area;
- consider and discuss research that supports and research that opposes your ideas;

BOX 3.1 CHECKLIST

Evaluating the content of your critical literature review

- Have you ensured that the literature covered relates clearly to your research question and objectives?
- Have you covered the most relevant and significant theories of recognised experts in the area?
- Have you covered the most relevant and significant literature or at least a representative sample?
- Have you included up-to-date literature?
- Have you referenced all the literature used in the format prescribed in the assessment criteria?
CHAPTER 3 · CRITICALLY REVIEWING THE LITERATURE

- make reasoned judgements regarding the value of others’ research, showing clearly how it relates to your research;
- justify your arguments with valid evidence in a logical manner;
- distinguish clearly between fact and opinion.

These points are developed in Box 3.2, which contains a checklist to evaluate the extent to which your literature review is critical. The more questions to which you can answer ‘yes’, the more likely your review will be critical!

BOX 3.2 CHECKLIST

Evaluating whether your literature review is critical

✔ Have you shown how your research question relates to previous research reviewed?
✔ Have you assessed the strengths and weaknesses of the previous research reviewed?
✔ Have you been objective in your discussion and assessment of other people’s research?
✔ Have you included references to research that is counter to your own opinion?
✔ Have you distinguished clearly between facts and opinions?
✔ Have you made reasoned judgements about the value and relevance of others’ research to your own?
✔ Have you justified clearly your own ideas?
✔ Have you highlighted those areas where new research (yours!) is needed to provide fresh insights and taken these into account in your arguments. In particular:
 ✔ where there are inconsistencies in current knowledge and understanding?
 ✔ where there are omissions or bias in published research?
 ✔ where research findings need to be tested further?
 ✔ where evidence is lacking, inconclusive, contradictory or limited?
✔ Have you justified your arguments by referencing correctly published research?

The structure of the critical review

The literature review that you write for your project report should therefore be a description and critical analysis of what other authors have written (Jankowicz, 2005). When drafting your review you therefore need to focus on your research question(s) and objectives. One way of helping you to focus is to think of your literature review as discussing how far existing published research goes in answering your research question(s). The shortfall in the literature will be addressed, at least partially, in the remainder of your project report. Another way of helping you to focus is to ask yourself how your review relates to your objectives. If it does not, or does only partially, there is a need for a clearer focus on your objectives. The precise structure of the critical review is usually your choice, although you should check, as it may be specified in the assessment criteria. Three common structures are:
a single chapter;
■ a series of chapters;
■ throughout the project report as you tackle various issues.

In all project reports, you should return to the key issues from the literature in your discussion and conclusions (Section 14.3).

Within your critical review, you will need to juxtapose different authors’ ideas and form your own opinions and conclusions based on these. Although you will not be able to start writing until you have undertaken some reading, we recommend that you start drafting your review early (Figure 3.1). What you write can then be updated and revised as you read more.

A common mistake with critical literature reviews, highlighted at the start of this chapter, is that they become uncritical listings of previous research. Often they are little more than annotated bibliographies (Hart, 1998), individual items being selected because they fit with what the researcher is proposing (Greenhalgh, 1997). Although there is no single structure that your critical review should take, our students have found it useful to think of the review as a funnel in which you:

1. start at a more general level before narrowing down to your specific research question(s) and objectives;
2. provide a brief overview of key ideas and themes;
3. summarise, compare and contrast the research of the key writers;
4. narrow down to highlight previous research work most relevant to your own research;
5. provide a detailed account of the findings of this research and show how they are related;
6. highlight those aspects where your own research will provide fresh insights;
7. lead the reader into subsequent sections of your project report, which explore these issues.

In addition, some writers argue that, in order to improve the transparency of your review process, you should explain precisely how you searched for selected the literature you have included in your review, outlining your choice of key words and of databases used (Tranfield et al., 2003). Within the ‘funnel’ we have just proposed, this can be thought of as step 0! This is discussed in more detail in sections 3.4 and 3.5.

Whichever way you structure your review you must demonstrate that you have read, understood and evaluated the items you have located. The key to writing a critical literature review is therefore to link the different ideas you find in the literature to form a coherent and cohesive argument, which sets in context and justifies your research. Obviously, it should relate to your research question and objectives. It should show a clear link from these as well as a clear link to the empirical work that will follow. Box 3.3 provides a checklist to help you ensure that the structure of your literature review supports this. Subsequent parts of your project report (Section 14.3) must follow on from this.
CHAPTER 3 · CRITICALLY REVIEWING THE LITERATURE

BOX 3.3 CHECKLIST

Evaluating the structure of your literature review

☑ Does your literature review have a clear title which describes the focus of your research rather than just saying ‘literature review’?

☑ Have you explained precisely how you searched the literature, and the criteria used to select those studies included?

☑ Does your review start at a more general level before narrowing down?

☑ Is your literature review organised thematically around the ideas contained in the research being reviewed rather than the researchers?

☑ Are your arguments coherent and cohesive – do your ideas link in a way that will be logical to your reader?

☑ Have you used sub-headings within the literature review to help guide your reader?

☑ Does the way you have structured your literature review draw your reader’s attention to those issues which are going to be the focus of your research?

☑ Does your literature review lead your reader into subsequent sections of your project report?

BOX 3.4 FOCUS ON MANAGEMENT RESEARCH

Structure of the literature review

An article published by Mark and Adrian in Personnel Review (Saunders and Thornhill, 2003:361–2) includes a review of the literature on organisational justice and trust. The following extract is taken from the introduction of this review and the first subsection. Although your literature review will be longer than this, the extract illustrates:

- the overall structure of starting at a more general level before narrowing down;
- the provision of a brief overview of the key ideas;
- the linking of ideas;
- narrowing down to highlight that work which is most relevant to the research reported.

In their paper, Mark and Adrian subsequently provide more detail about the findings of that research which is most relevant.

Organisational Justice, Trust and Change: An Overview

Organisational justice theory (Greenberg, 1987) focuses on perceptions of fairness in organisations, by categorising employees’ views and feelings about their treatment and that of others within an organisation. Three types of organisational justice theory have been identified in the literature (Greenberg, 1987; Folger and Cropanzano, 1998). Perceptions about the outcomes of decisions taken form the basis of distributive justice (Homans, 1961; Leventhal, 1976). Perceptions about the processes used to arrive at, and to implement, these decisions form the basis of two further types of justice that are often treated as one in the literature; these are procedural justice and interactional justice (for example Cropanzano and Greenberg, 1997). Procedural justice focuses on employee
perceptions of the fairness of procedures used to make decisions (Thibaut and Walker, 1975). This has been distinguished from interactional justice which focuses on employees’ perceptions about the fairness of the interpersonal treatment received during implementation (Bies and Moag, 1986).

Development of trust theory has, to date, been more disparate focusing on a range of levels of analysis from the interpersonal to the inter-organisational (e.g. Rousseau et al., 1998). Although this has resulted in a variety of definitions of trust, these exhibit a number of common elements including notions of ‘favourable expectations’ and a ‘willingness to become vulnerable’. Möllering (2001) has sought to use and develop these elements, arguing that trust develops from favourable expectations that are based upon interpretations of the reality to which trust relates, enabled by a suspension of disbelief and a corresponding leap of faith. This suggests that the process through which trust is developed is informed by socially constructed interpretations of reality that include a willingness to make judgements about as yet unresolved situations and a leap of faith about unknown ones. Trust, according to this approach, is based upon the acceptance of interpretations that includes awareness that information is imperfect. Accordingly, a ‘mental leap of trust’ is made, or required, from interpretation to expectation for trust to be developed (Möllering 2001: 412).

Herriot et al (1998)’s four manifestations of trust offer a means of relating Möllering’s (2001) process based definition to organisational change. Their first manifestation emphasises confidence that expectations of the outcomes of change will be favourable, namely that obligations will be fulfilled. The second relates to a belief about not being deceived. For example, that managers will not be selective with the truth or actively deceive those they manage. In contrast, the third emphasises a willingness to become vulnerable, focusing on the trust placed in the abilities of those managing the change process to undertake this role. Finally, the fourth deals with trust originating from a belief that people are benevolent, will not harm employees (again emphasising vulnerability) and may even care for their welfare during the change process (implying an additional leap of faith). We consider each of the types of organisational justice in turn alongside the likely implications for these manifestations of trust.

Distributive justice and trust

Within a change context, distributive justice is concerned with perceptions of fairness arising from organisational allocations and outcomes. Pillai et al (2001) argue that when distributions of organisational outcomes are considered fair, higher levels of trust are likely to ensue. In a similar way, Herriot et al.’s (1998) first manifestation of trust is based on the fulfilment of perceived obligations. According to these formulations the experience of fulfilled obligations is directly related to the generation of trust.

Adams (1965) proposed that feelings of inequity would arise where the ratio of a person’s outcomes in relation to their inputs from an exchange were perceived as disproportionate, as the result of a comparison with others. Perceptions of unfairness may lead to positive inequity, where a person perceives that another had a greater claim to a particular allocation leading to a feeling of guilt. In this way an outcome may be favourable but it may not facilitate fairness or trust due to perceptions about lack of integrity in relation to the process (e.g. Bews and Uys, 2002). Alternatively, perceptions of unfairness may lead to negative inequity, where a person feels that they had a greater claim to an outcome compared to the person receiving it, leading to feelings of anger and possibly mistrust.

Perceptions of distributive justice are based largely on comparisons with others (Adams, 1965; Cropanzano and Greenberg, 1997; Greenberg, 1987). Similarly, perceptions about obligations and trust are likely to be related not just to an absolute measure, about whether obligations have been fulfilled, but also to one or more relative, social comparisons. These are termed referent comparisons or standards. Feelings of trust are therefore likely to be affected by the relative treatment of others and by more generalised opportunities available within a person’s occupational group, organisation or perhaps even another organisational context.

An overview

The literature sources available to help you to develop a good understanding of, and insight into, previous research can be divided into three categories: primary (published and unpublished), secondary, and tertiary (Figure 3.2). In reality these categories often overlap: for example, primary literature sources, including conference proceedings, can appear in journals, and some books contain indexes to primary and secondary literature.

The different categories of literature resources represent the flow of information from the original source. Often as information flows from primary to secondary to tertiary sources it becomes less detailed and authoritative but more easily accessible. It is because primary literature sources can be difficult to trace that they are sometimes referred to as grey literature. Recognising this information flow helps you to identify the most appropriate sources of literature for your needs. Some research projects may access only secondary literature sources whereas others will necessitate the use of primary sources.

The nature of this information flow is typical of traditional printed publications. However, the Internet is changing this situation, providing a more direct means of both publishing and accessing information. Alongside this, moves toward ‘freedom of information’ mean that what were traditionally ‘grey literature’, such as some government publications, are increasingly being made available, usually via the Internet. The majority of academic publications still exhibit this information flow, although the final place of publication is increasingly the Internet.

Figure 3.2 also illustrates the reduced currency of secondary literature sources, which are utilising information already published in primary sources. Because of the time taken to publish, the information in these sources can be dated. Your literature review should reflect current thinking as far as possible, so the limitations of such sources must be recognised.

Primary literature sources (also known as grey literature) are the first occurrence of a piece of work. They include published sources such as reports and some central and local...
government publications such as White Papers and planning documents. They also include unpublished manuscript sources such as letters, memos and committee minutes that may be analysed as data in their own right (Section 8.2).

Secondary literature sources such as books and journals are the subsequent publication of primary literature. These publications are aimed at a wider audience. They are easier to locate than primary literature as they are better covered by the tertiary literature.

Tertiary literature sources, also called search tools, are designed either to help to locate primary and secondary literature or to introduce a topic. They therefore include indexes and abstracts as well as encyclopaedias and bibliographies.

Your use of these literature sources will depend on your research question(s) and objectives, the need for secondary data to answer them (Section 8.3) and the time available. For some research projects you may use only tertiary and secondary literature; for others you may need to locate primary literature as well. Most research projects will make the greatest use of secondary literature, and so it is this we consider first, followed by the primary literature. Tertiary literature sources are not discussed until Section 3.5, as their major use is in conducting a literature search.

Secondary literature sources

The number of secondary literature sources available to you is expanding rapidly, especially as new resources are developed or made available via the Internet. Your university’s librarians are likely to be aware of a wide range of secondary literature in business and management that can be accessed from your library, and will keep themselves up to date with new resources.

The main secondary literature sources that you are likely to use, along with those primary sources most frequently used for a literature review, are outlined in Table 3.1. The most important when placing your ideas in the context of earlier research are refereed academic journals. Books are, however, likely to be more important than professional and trade journals in this context.

Journals

Journals are also known as periodicals, serials and magazines, and are published on a regular basis. While most are still produced in printed form, many additionally provide online access, via a subscription service. Journals are a vital literature source for any research. The articles are easily accessible. They are well covered by tertiary literature, and a good selection can be accessed from most university libraries either in print, for reference purposes, or via their online services. This online access is usually restricted to members of the university (Table 3.1). Trade and some professional journals may be covered only partially by the tertiary literature (Table 3.2). You therefore need to browse these journals regularly to be sure of finding useful items. Many journals’ content pages can also be browsed via the Internet (Section 3.5).

Articles in refereed academic journals (such as the Journal of Management Studies) are evaluated by academic peers prior to publication, to assess their quality and suitability. These are usually the most useful for research projects as they will contain detailed reports of relevant earlier research. Not all academic journals are refereed. Most other academic journals will have an editor and possibly an editorial board with subject knowledge to select articles. The relevance and usefulness of such journals varies considerably, and occasionally you may need to be wary of possible bias (Section 3.6).

Professional journals (such as People Management) are produced for their members by organisations such as the Chartered Institute of Personnel and Development (CIPD), the
<table>
<thead>
<tr>
<th>Source</th>
<th>Frequency of publication</th>
<th>Format of publication</th>
<th>Coverage by abstracts and indexes (tertiary sources)</th>
<th>Likely availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refereed academic journal</td>
<td>Mainly monthly or quarterly</td>
<td>Mainly printed, but many now available via the Internet. Can be also available on CD-ROM</td>
<td>Well covered. In addition, content pages often available for searching via publishers' websites</td>
<td>Kept as reference in most university libraries, with many accessible via the Internet through various subscription services. Those not available locally can usually be obtained using inter-library loans. Professional organisations may also provide access to their journals via their own web pages</td>
</tr>
<tr>
<td>Other academic journal</td>
<td>Mainly monthly or quarterly</td>
<td>Mainly printed, but many now available via the Internet. Can be also available on CD-ROM</td>
<td>Increasingly well covered by services such as ABI/Inform and Business Source Premier. In addition, content pages often available for searching via publishers' websites</td>
<td>Not as widely available in university libraries as academic and refereed journals. Can be obtained using inter-library loans. Most trade associations will have an associated website</td>
</tr>
<tr>
<td>Professional journal</td>
<td>Mainly weekly or monthly</td>
<td>Mainly printed, but many now available via the Internet. Can be also available on CD-ROM</td>
<td>Well covered by abstracts and indexes. Searches can be undertaken on remote university OPACs* via the Internet</td>
<td>Widely available. Those not available locally can be obtained using inter-library loans</td>
</tr>
<tr>
<td>Trade journal</td>
<td>Mainly weekly or monthly</td>
<td>Mainly printed, occasionally available via the Internet. Can also be available on CD-ROM</td>
<td>Specialised indexes available. CD-ROM and Internet format easy to search using key words</td>
<td>Home nation 'quality' newspapers kept as reference in most university libraries. Internet access to stories, often with additional information on the websites, for most national and international 'quality' newspapers</td>
</tr>
<tr>
<td>Books</td>
<td>Once; subsequent editions may be published</td>
<td>Mainly printed, occasionally available via the Internet. Can also be available on CD-ROM</td>
<td>Specialised indexes available. CD-ROM and Internet format easy to search using key words</td>
<td>Widely available. Those not available locally can be obtained using inter-library loans</td>
</tr>
<tr>
<td>Newspapers</td>
<td>Mainly daily or weekly</td>
<td>Mainly printed, occasionally available via the Internet. Can also be available on CD-ROM</td>
<td>Specialised indexes available. CD-ROM and Internet format easy to search using key words</td>
<td>Home nation 'quality' newspapers kept as reference in most university libraries. Internet access to stories, often with additional information on the websites, for most national and international 'quality' newspapers</td>
</tr>
<tr>
<td>Conference proceedings</td>
<td>Dependent on the conference, sometimes as part of a journal</td>
<td>As for refereed academic journals. May be published in book form (e.g. Index to Conference Proceedings). Some conference proceedings or abstracts are published on the Internet</td>
<td>Depends on conference, although often limited. Specialist indexes sometimes available</td>
<td>Depends on conference, although often limited. Specialist indexes sometimes available</td>
</tr>
<tr>
<td>Reports</td>
<td>Once</td>
<td>As for refereed academic journals. Government reports increasingly accessible via the Internet</td>
<td>Poor compared with most secondary sources, although some specialised indexes exist</td>
<td>Not widely held by university libraries. May be possible to obtain using inter-library loans</td>
</tr>
<tr>
<td>Theses</td>
<td>On the awarding of the research degree</td>
<td>Mainly printed</td>
<td>Good for PhD and MPhil research degrees, otherwise poor</td>
<td>Usually obtained using inter-library loans. Often only one copy</td>
</tr>
</tbody>
</table>

*OPAC, Online Public Access Catalogue
Source: © Mark Saunders, Philip Lewis, Adrian Thomhill and Martin Jenkins 2006
Table 3.2 Tertiary literature sources and their coverage

<table>
<thead>
<tr>
<th>Name</th>
<th>Format</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Inform</td>
<td>Internet, CD-ROM</td>
<td>Indexes approximately 1000 international business and management journals. Also contains a wide range of trade and professional titles. Covers additional subjects such as engineering, law and medicine. Full text of selected articles from 500 journals may be available depending on subscription (CD-ROM updated monthly)</td>
</tr>
<tr>
<td>BIDS</td>
<td>Internet</td>
<td>Offers access to a wide range of services, including journals’ contents pages</td>
</tr>
<tr>
<td>British National Bibliography (BNB)</td>
<td>CD-ROM, print</td>
<td>Bibliographic information for books and serials (journals) deposited at the British Library by UK and Irish publishers since 1950</td>
</tr>
<tr>
<td>British National Bibliography for Report Literature (formerly British Reports, Translations and Theses)</td>
<td>Microfiche, print</td>
<td>Detailed listings of research and practice reports produced by non-commercial publishers, local and national government, industry, research institutions and charities. Includes UK doctoral theses since 1970</td>
</tr>
<tr>
<td>British Library Public Catalogue</td>
<td>Internet</td>
<td>Gives access to British Library catalogues including reference collections and document supply collections (books, journals, reports, conferences, theses)</td>
</tr>
<tr>
<td>Business Periodicals Index</td>
<td>Internet, CD-ROM, print</td>
<td>Indexes English language business periodicals (articles and book reviews). North American focus. Selection for indexing is by subscriber preference and has altered over time (since 1959)</td>
</tr>
<tr>
<td>EBSCO Business Source Premier</td>
<td>Internet</td>
<td>Full-text articles from over 2000 management, business, economics and information technology journals, over 600 of which are refereed. Also contains a wide range of trade and professional titles</td>
</tr>
<tr>
<td>EMERALD Fulltext</td>
<td>Internet</td>
<td>801 full-text journals from MCB University Press</td>
</tr>
<tr>
<td>Emerald Management Reviews</td>
<td>Internet, CD-ROM</td>
<td>Abstracts of articles selected from more than 400 English language publications on the basis of a significant contribution to knowledge</td>
</tr>
<tr>
<td>European Business ASAP</td>
<td>Internet, CD-ROM</td>
<td>100 journals, mostly full text. Includes a mix of academic journals and business press</td>
</tr>
<tr>
<td>Global Books in Print</td>
<td>Internet</td>
<td>English language bibliographic information for books in print from most of the world</td>
</tr>
<tr>
<td>Helecon</td>
<td>Internet, CD-ROM</td>
<td>Combined indexes from seven European databases on business and management. European focus (updated three times a year)</td>
</tr>
<tr>
<td>Index to Conference Proceedings</td>
<td>CD-ROM, Internet, print</td>
<td>Indexes all conference publications, regardless of subject or language, held by British Library Document Supply Centre (updated monthly – print, quarterly – CD-ROM)</td>
</tr>
<tr>
<td>Index to Theses</td>
<td>Internet, print</td>
<td>Indexes theses accepted for higher degrees by universities in Great Britain and Ireland and by the CNAA (Council for National Academic Awards)</td>
</tr>
<tr>
<td>Ingenta</td>
<td>Internet</td>
<td>Journals contents page service, updated daily</td>
</tr>
<tr>
<td>ISI Web of Science</td>
<td>Internet</td>
<td>Includes access to a wide range of services, including citation indexes</td>
</tr>
<tr>
<td>HMSO Monthly Catalogue</td>
<td>Print</td>
<td>Lists all publications published and distributed through HMSO (includes parliamentary, government department and European)</td>
</tr>
<tr>
<td>Key Note Reports</td>
<td>Internet</td>
<td>Key Note market information reports</td>
</tr>
<tr>
<td>Lexis Nexis Executive</td>
<td>Internet</td>
<td>Worldwide business media database; includes national and regional newspapers, trade journals and company annual reports</td>
</tr>
<tr>
<td>MINTEL</td>
<td>Internet, CD-ROM</td>
<td>Mintel reports plus short business press articles used in the compilation of the reports</td>
</tr>
<tr>
<td>Research Index</td>
<td>Internet, print</td>
<td>Indexes articles and news items of financial interest that appear in the UK national newspapers, professional and trade journals (updated frequently)</td>
</tr>
<tr>
<td>Sage Publications/ SRM Database of Social Research Methodology</td>
<td>CD-ROM</td>
<td>Abstracts of methodological literature published in English, German, French and Dutch since 1970</td>
</tr>
<tr>
<td>Social Science Citation Index</td>
<td>Internet</td>
<td>Indexes 130,000 articles each year from over 1400 journals in behavioural and social sciences and selected articles from 3100 journals from physical and natural sciences</td>
</tr>
</tbody>
</table>
Association of Chartered Certified Accountants (ACCA) and the American Marketing Association (AMA). They contain a mix of news-related items and articles that are more detailed. However, you need to exercise caution, as articles can be biased towards their author’s or the organisation’s views. Articles are often of a more practical nature and more closely related to professional needs than those in academic journals. Some organisations will also produce newsletters or current awareness publications that you may find useful for up-to-date information. Some professional organisations now give access to selected articles in their journals via their web pages, though these may be only accessible to members (see Table 8.2 and Section 3.5). Trade journals fulfil a similar function to professional journals. They are published by trade organisations or aimed at particular industries or trades such as catering or mining. Often they focus on new products or services and news items. They rarely contain articles based on empirical research, although some provide summaries of research. You should therefore use these with considerable caution for your research project.

Books

Books and monographs are written for specific audiences. Some are aimed at the academic market, with a theoretical slant. Others, aimed at practising professionals, may be more applied in their content. The material in books is usually presented in a more ordered and accessible manner than in journals, pulling together a wider range of topics. They are therefore particularly useful as introductory sources to help clarify your research question(s) and objectives or the research methods you intend to use. Some academic textbooks, such as this one, are now supported by web pages providing additional information. However, books may contain out-of-date material even by the time they are published.

Newspapers

Newspapers are a good source of topical events, developments within business and government, as well as recent statistical information such as share prices. They also sometimes review recent research reports (Box 3.5). The main ‘quality’ newspapers have websites carrying the main stories and supporting information. Back copies starting in the early 1990s are available on CD-ROM or online via a full-text subscription service, such as Proquest Newspapers (Table 3.1). Current editions of newspapers can usually be found via the Internet. Most newspapers have a dedicated website and provide access to a limited full-text service free of charge. Items in earlier issues are more difficult to access, as they are usually stored on microfilm and need to be located using printed indexes. However, you need to be careful, as newspapers may contain bias in their coverage, be it political, geographical or personal. Reporting can also be inaccurate, and you may not pick up any subsequent amendments. In addition, the news presented is filtered depending on events at the time, with priority given to more headline-grabbing stories (Stewart and Kamins, 1993).

Primary literature sources

Primary literature sources are more difficult to locate, although an increasing number are now being made available via the Internet (Table 3.1). The most accessible, and those most likely to be of use in showing how your research relates to that of other people, are reports, conference proceedings and theses.
Reports

Reports include market research reports such as those produced by Mintel and Keynote, government reports and academic reports. Even if you are able to locate these, you may find it difficult to gain access to them because they are not as widely available as books (Section 8.4). Reports are not well indexed in the tertiary literature, and you will need to rely on specific search tools such as the British National Bibliography for Report Literature and the British Library Public Catalogue (see Table 3.2).

The move toward ‘freedom for information’ by many Western governments has resulted in more information being made available via the web, for example the European Union’s (EU) European Commission website and the Commission’s Statistics website Eurostat. These and other governmental websites are listed in Table 8.3. European ‘grey literature’, including reports, conference proceedings, and discussion and policy papers, has been covered since 1980 by SIGLE (System for Information on Grey Literature in Europe) and is available from the publisher OVID.

Individual academics are also increasingly publishing reports and their research on the Internet. These can be a useful source of information. However, they may not have gone through the same review and evaluation process as journal articles and books. It is therefore important to try to assess the authority of the author, and to beware of personal bias.

Conference proceedings

Conference proceedings, sometimes referred to as symposia, are often published as unique titles within journals or as books. Most conferences will have a theme that is very specific, but some have a wide-ranging overview. Proceedings are not well indexed by tertiary literature so, as with reports, you may have to rely on specific search tools such as Index to Conference Proceedings and the British Library Public Catalogue (Table 3.2) as well as more general search engines such as Google. If you do locate and are able to obtain the proceedings for a conference on the theme of your research, you will have a wealth of relevant information. Many conferences have associated web pages providing abstracts and occasionally the full papers presented at the conference.

Theses

Theses are unique and so for a major research project can be a good source of detailed information; they will also be a good source of further references. Unfortunately, they can be difficult to locate and, when found, difficult to access as there may be only one copy at the awarding institution. Specific search tools are available, such as Index to Theses.
Only research degrees such as PhD and MPhil are covered well by these tertiary resources. Research undertaken as part of a taught masters degree is not covered as systematically.

3.4 Planning your literature search strategy

It is important that you plan this search carefully to ensure that you locate relevant and up-to-date literature. This will enable you to establish what research has been previously published in your area and to relate your own research to it. All our students have found their literature search a time-consuming process, which takes far longer than expected. Fortunately, time spent planning will be repaid in time saved when searching the literature. As you start to plan your search, you need to beware of information overload! One of the easiest ways to achieve this is to start the main search for your critical review without a clearly defined research question(s), objectives and outline proposal (Sections 2.4 and 2.5). Before commencing your literature search, we suggest that you undertake further planning by writing down your search strategy and, if possible, discussing it with your project tutor. This should include:

- the parameters of your search;
- the key words and search terms you intend to use;
- the databases and search engines you intend to use;
- the criteria you intend to use to select the relevant and useful studies from all the items you find.

Whilst it is inevitable that your search strategy will be refined as your literature search progresses, we believe that such a planned approach is important as it forces you to think carefully about your research strategy and justify, at least to yourself, why you are doing what you are doing.

Defining the parameters of your search

For most research questions and objectives you will have a good idea of which subject matter is going to be relevant. You will, however, be less clear about the parameters within which you need to search. In particular, you need to be clear about the following (Bell, 2005):

- language of publication (for example, English);
- subject area (for example, accountancy);
- business sector (for example, manufacturing);
- geographical area (for example, Europe);
- publication period (for example, the last 10 years);
- literature type (for example, refereed journals and books).

One way of starting to firm up these parameters is to re-examine your lecture notes and course textbooks in the area of your research question. While re-examining these, we suggest you make a note of subjects that appear most relevant to your research question and the names of relevant authors. These will be helpful when generating possible key words later.
For example, if your research was on the marketing benefits of arts sponsorship to UK banking organisations you might identify the subject area as marketing and sponsorship. Implicit in this is the need to think broadly. A common comment we hear from students who have attempted a literature search is ‘there’s nothing written on my research topic’. This is usually because they have identified one or more of their parameters too narrowly (or chosen key words that do not match the control language, Section 3.5). We therefore recommend that if you encounter this problem you broaden one or more of your parameters to include material that your narrower search would not have located (Box 3.6).

BOX 3.6 WORKED EXAMPLE

Defining parameters for a research question

Simon’s research question was ‘How have green issues influenced the way in which manufacturers advertise cars?’ To be certain of finding material he defined each parameter in narrow and, in most instances, broader terms:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Narrow</th>
<th>Broader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>UK (e.g. car)</td>
<td>UK and USA (e.g. car and automobile)</td>
</tr>
<tr>
<td>Subject area</td>
<td>Green issues</td>
<td>Environmental issues</td>
</tr>
<tr>
<td></td>
<td>Motor industry</td>
<td>Manufacturing</td>
</tr>
<tr>
<td></td>
<td>Advertising</td>
<td>Marketing</td>
</tr>
<tr>
<td>Business sector</td>
<td>Motor industry</td>
<td>Manufacturing</td>
</tr>
<tr>
<td>Geographical area</td>
<td>UK</td>
<td>Europe and North America</td>
</tr>
<tr>
<td>Publication period</td>
<td>Last 5 years</td>
<td>Last 15 years</td>
</tr>
<tr>
<td>Literature type</td>
<td>Refereed journals and books</td>
<td>Journals and books</td>
</tr>
</tbody>
</table>

Generating your key words

It is important at this stage to read both articles by key authors and recent review articles in the area of your research. This will help you to define your subject matter and to suggest appropriate key words. Recent review articles in your research area are often helpful here as they discuss the current state of research for a particular topic and can help you to refine your key words. In addition, they will probably contain references to other work that is pertinent to your research question(s) and objectives (Box 3.7). If you are unsure about review articles, your project tutor should be able to point you in the right direction. Another potentially useful source of references is dissertations and theses in your university’s library.

After re-reading your lecture notes and textbooks and undertaking this limited reading you will have a list of subjects that appear relevant to your research project. You now need to define precisely what is relevant to your research in terms of key words.

The identification of **key words** or **search terms** is the most important part of planning your search for relevant literature (Bell, 2005). Key words are the basic terms that describe your research question(s) and objectives, and will be used to search the tertiary literature. Key words (which can include authors’ surnames identified in the examination of your lecture notes and course textbooks) can be identified using one or a number of different techniques in combination. Those found most useful by our students include:
Discussion

We believe you should be taking every opportunity to discuss your research. In discussing your work with others, whether face to face, by email or by letter, you will be sharing your ideas, getting feedback and obtaining new ideas and approaches. This process will help you to refine and clarify your topic.
Initial reading, dictionaries, encyclopaedias, handbooks and thesauruses

To produce the most relevant key words you may need to build on your brainstorming session with support materials such as dictionaries, encyclopaedias, handbooks and thesauruses, both general and subject specific. These are also good starting points for new topics with which you may be unfamiliar and for related subject areas. Initial reading, particularly of recent review articles, may also be of help here. Project tutors, colleagues and librarians can also be useful sources of ideas.

It is also possible to obtain definitions via the Internet. The online search engine Google offers a ‘define’ search option (by typing ‘Define:[enter term]’) that provides links to websites providing definitions. Definitions are also offered in free online encyclopaedias such as Wikipedia. These are often available in multiple languages and, although anyone is allowed to edit the entries, inappropriate changes are usually removed quickly (Wikipedia, 2005). However, whilst these websites may be useful for a quick reference or in helping to define keywords, your university will almost certainly expect you to justify the definitions in your research project using refereed journal articles or textbooks.

Brainstorming

Brainstorming has already been outlined as a technique for helping you to develop your research question (Section 2.3). However, it is also helpful for generating key words. Either individually or as part of a group, you write down all the words and short phrases that come to mind on your research topic (Box 3.8). These are then evaluated and key words (and phrases) selected.

BOX 3.8 WORKED EXAMPLE

Generating key words

Han’s research question was ‘How do the actual management requirements of a school pupil record administration system differ from those suggested by the literature?’ She brainstormed this question with her peer group, all of whom were teachers in Hong Kong. The resulting list included the following key words and phrases:

- schools, pupil records, administration, user requirements, computer, management information system, access, legislation, information, database, security, UK, Hong Kong, theories

The group evaluated these and others. As a result, the following key words (and phrases) were selected:

- pupil records, management information system, computer, database, user requirement

Dictionaries and encyclopaedias were used subsequently to add to the choice of key words:

- student record, MIS, security

Han made a note of these prior to using them in combination to search the tertiary literature sources.

1 The Internet address for Wikipedia is http://www.wikipedia.org/.
Relevance trees

Relevance trees provide a useful method of bringing some form of structure to your literature search and of guiding your search process (Sharp et al., 2002). They look similar to an organisation chart and are a hierarchical ‘graph-like’ arrangement of headings and subheadings (Box 3.9). These headings and subheadings describe your research question(s) and objectives and may be key words (including authors’ names) with which you can search. Relevance trees are often constructed after brainstorming. They enable you to decide either with help or on your own (Jankowicz, 2005):

- which key words are directly relevant to your research question(s) and objectives;
- which areas you will search first and which your search will use later;
- which areas are more important – these tend to have more branches.

To construct a relevance tree:

1. Start with your research question or objective at the top level.
2. Identify two or more subject areas that you think are important.
3. Further subdivide each major subject area into sub-areas that you think are of relevance.
4. Further divide the sub-areas into more precise sub-areas that you think are of relevance.
5. Identify those areas that you need to search immediately and those that you particularly need to focus on. Your project tutor will be of particular help here.
6. As your reading and reviewing progress, add new areas to your relevance tree.

Computer software to help generate relevance trees, such as Inspiration (2005) and MindGenius (2005), is also increasingly available in universities. Using this software also allows you to attach notes to your relevance tree and can help generate an initial structure for your literature review.

3.5 Conducting your literature search

Your literature search will probably be conducted using a variety of approaches:

- searching using tertiary literature sources;
- obtaining relevant literature (Section 3.6) referenced in books and journal articles you have already read;
- scanning and browsing secondary literature in your library;
- searching using the Internet.

Eventually it is likely you will be using a variety of these in combination. However, we suggest that you start your search by obtaining relevant literature that has been referenced in books and articles you have already read. Although books are unlikely to give adequate up-to-date coverage of your research question, they provide a useful starting point and usually contain some references to further reading. Reading these will enable you to refine your research question(s), objectives and the associated key words prior to searching using tertiary literature sources. It will also help you to see more clearly how your research relates to previous research, and will provide fresh insights.
Tertiary literature sources

A variety of tertiary literature is available to help you in your search. Most of these publications are called indexes and abstracts, and a selection will be accessible via the Internet or held by your university library. It is very tempting with easy access to the Internet to start your literature search with an Internet search engine. Whilst this can retrieve some useful information it must be treated with care. Your project report is expected to be an academic piece of work and hence must use academic sources. Therefore it is essential that you use tertiary sources that provide access to academic literature. Many of these can now be easily accessed via the Internet anyway. An index will, as its name suggests, index articles from a range of journals and sometimes books, chapters from books, reports, theses, conferences and research. The information provided will be sufficient to locate the item – for example, for journal articles:

- author or authors of the article;
- date of publication;
- title of the article;
- title of the journal;
- volume and part number of the journal issue;
- page numbers of the article.

BOX 3.9 WORKED EXAMPLE

Using a relevance tree

Sadie’s research question asked ‘Is there a link between benchmarking and Total Quality Management?’ After brainstorming her question, she decided to construct a relevance tree using the key words and phrases that had been generated.

Using her relevance tree Sadie identified those areas that she needed to search immediately (underlined) and those that she particularly needed to focus on (starred):

![Relevance Tree Diagram]

Tertiary literature sources

A variety of tertiary literature is available to help you in your search. Most of these publications are called indexes and abstracts, and a selection will be accessible via the Internet or held by your university library. It is very tempting with easy access to the Internet to start your literature search with an Internet search engine. Whilst this can retrieve some useful information it must be treated with care. Your project report is expected to be an academic piece of work and hence must use academic sources. Therefore it is essential that you use tertiary sources that provide access to academic literature. Many of these can now be easily accessed via the Internet anyway. An index will, as its name suggests, index articles from a range of journals and sometimes books, chapters from books, reports, theses, conferences and research. The information provided will be sufficient to locate the item – for example, for journal articles:

- author or authors of the article;
- date of publication;
- title of the article;
- title of the journal;
- volume and part number of the journal issue;
- page numbers of the article.
Most index searches will be undertaken to find articles using key words, including the author's name. Occasionally you may wish to search by finding those authors who have referenced (cited) a key article after it has been published. A citation index enables you to do this as it lists by author the other authors who have cited that author's publications subsequent to their publication.

An abstract provides the same information as an index but also includes a summary of the article, hence the term abstract. This abstract can be useful in helping you to assess the content and relevance of an article to your research before obtaining a copy. You should beware of using abstracts, as a substitute for the full article, as a source of information for your research. They contain only a summary of the article and are likely to exclude much of relevance.

Indexes and abstracts are produced in printed and electronic (computerised) formats, the latter often being referred to as online databases. This is the term we shall use to refer to all electronic information sources. With the increasing amount of information available electronically, printed indexes and abstracts are often overlooked. Yet they can still provide a valuable resource, providing a varied and sometimes more specific range of information. An increasing number of online databases contain full-text articles. This has helped both to simplify literature searching and to make it a more seamless process, with the searching and retrieval of the full text available from the same source. Most of these online databases will allow you to print, save or email your results. The latter two options will obviously help save you printing costs.

Access to the majority of databases that you will use via the Internet will be paid for by a subscription from your university. There are, however, some pay-as-you-use databases, where the cost of the search is passed on to the user. Online databases provide a wealth of information. Whilst many online databases are intuitive to use, it is still advisable to obtain a librarian's help or to attend a training session prior to your search to find out about the specific features available. It is also vital that you plan and prepare your search in advance so your time is not wasted. For many databases, access is now possible from remote sites such as home or work as well as from your university. Some use a generic username and password specific to your university, although many use the ATHENS service. To gain access via the Internet you will need either your university’s specific username and password or to set up an ATHENS account. Your librarian should have more information on this. An additional source of information via the Internet, which our students have found useful, is publishers’ web pages. These often include journals’ content pages (see Table 3.4 on page 80).

Most university library OPACs (online public access catalogues) are now accessible via the Internet (see Table 3.5 on page 81). These provide a very useful means of locating resources. If you identify useful collections of books and journals, it is possible to make use of other university libraries in the vacations. Within the UK, the SCONUL Vacation Access Scheme gives details of access policies of the libraries in UK higher-education institutions.2

To ensure maximum coverage in your search you need to use all appropriate abstracts and indexes. One mistake many people make is to restrict their searches to one or two business and management tertiary sources rather than to use a variety. The coverage of each abstract and index differs in both geographical coverage and type of journal (Section 3.3). In addition, an abstract or index may state that it indexes a particular journal yet may do so only selectively. This emphasises the importance of using a range of databases to ensure a wide coverage of available literature. Some of those more

2 Details of these can be found on the Internet at http://www.sconul.ac.uk/use_lib/vacation.html.
Search terms are outlined in Table 3.2. However, new databases are being developed all the time so it is worth asking a librarian for advice.

Searching using tertiary literature

Once your key words have been identified, searching using tertiary literature is a relatively straightforward process. You need to:

1. ensure your key words match the controlled index language (unless you can use free text searching);
2. search appropriate printed and database sources;
3. note precise details, including the search strings used, of the actual searches you have undertaken for each database;
4. note the full reference of each item found; this can normally be done by cutting and pasting the references.

Tranfield et al. (2003), in their article on systemic review, emphasize the importance of reporting your search strategy in sufficient detail to ensure that your search could be replicated (Boxes 3.11, 3.7). Your review will be based on the subset of those items found which you consider are relevant.

Printed sources

Searching printed indexes and abstracts requires a different technique from electronic databases. The coverage of printed indexes tends to be smaller and possibly more specialized than that of databases. Unlike databases, it is normally only possible to search by author or one broad subject heading, although some cross-references may be included. Because they are paper based, each issue or annual accumulation must be searched individually, which can be time consuming.

Databases

Most databases, in contrast, allow more precise searches using combinations of search terms. These can include indexed key words, which will need to match the database’s controlled index language of pre-selected terms and phrases or descriptors. These can include specified subject words, author names, and journal titles. If your key words do not match those in the controlled index language, your search will be unsuccessful. You therefore need to check your key words with the index or browse option prior to searching. This is especially useful to establish how an author is indexed or whether hyphens should be used when entering specific terms. Some databases will also have a thesaurus which links words in the controlled index language to other terms. Some thesauruses will provide a definition of the term used as well as indicating other broader subject areas, more specific subject areas or subjects related to the original term. Despite using these tools your searches may still be unsuccessful. The most frequent causes of failure are summarised in Box 3.10 as a checklist.

Once individual key words have been checked, subsequent searches normally use a combination of key words linked using Boolean logic. These are known as search strings and enable you to combine, limit or widen the variety of items found using link terms (Table 3.3). Boolean logic can also be used to construct search strings using dates, journal titles and names of organisations or people. Initially it may be useful to limit your search to journal titles to which your university subscribes. It may also be valuable to narrow your search to specific years, especially if you are finding a wealth of items and
need to concentrate on the most up to date. By contrast, searching by author allows you to broaden your search to find other work by known researchers in your area.

You can also search just one or more specified fields in the database such as the author, title or abstract. This may be useful if you wish to find articles by a key author in your subject area. Alternatively, many databases allow you to search the entire database rather than just the controlled vocabulary using free text searching. Free text searching is

BOX 3.10 CHECKLIST

Minimising problems with your key words

- ✔ Is the spelling incorrect? Behaviour is spelt with a ‘u’ in the UK but without in the USA.
- ✔ Is the language incorrect? Chemists in the UK but drug stores in the USA.
- ✔ Are you using incorrect terminology? In recent years some terms have been replaced by others, such as ‘redundancy’ being replaced by ‘downsizing’.
- ✔ Are you using recognised acronyms and abbreviations? For example, UK for United Kingdom or ICI instead of Imperial Chemical Industries.
- ✔ Are you avoiding jargon and using accepted terminology? For example, downsizing rather than redundancy.
- ✔ Are you avoiding words that are not in the controlled index language?

Table 3.3 Common link terms that use Boolean logic

<table>
<thead>
<tr>
<th>Link term</th>
<th>Purpose</th>
<th>Example</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>Narrows search</td>
<td>Recruitment AND interviewing AND skills</td>
<td>Only articles containing all three key words selected</td>
</tr>
<tr>
<td>OR</td>
<td>Widens search</td>
<td>Recruitment OR selection</td>
<td>Articles with at least one key word selected</td>
</tr>
<tr>
<td>NOT</td>
<td>Excludes terms from search</td>
<td>Recruitment NOT selection</td>
<td>Selects articles containing the key word ‘recruitment’ that do not contain the key word ‘selection’</td>
</tr>
<tr>
<td>* (truncation)</td>
<td>Uses word stems to pick up different words</td>
<td>Motivat*</td>
<td>Selects articles with: Motivate, Motivation, Motivating</td>
</tr>
<tr>
<td>? (wild card)</td>
<td>Picks up different spellings</td>
<td>behavio?r</td>
<td>Selects articles with: Behavior, Behaviour</td>
</tr>
</tbody>
</table>
increasingly common for electronic publications both on CD-ROM and accessed via the Internet, in particular quality newspapers and journals. These may not have a controlled index language. There are, however, problems with using a free text search. In particular, the context of a key word may be inappropriate, leading to retrieval of numerous irrelevant articles and information overload.

Scanning and browsing

Any search will find only some of the relevant literature. You will therefore also need to scan and browse the literature. New publications such as journals are unlikely to be indexed immediately in tertiary literature, so you will need to **browse** these publications to gain an idea of their content. In contrast, **scanning** will involve you going through individual items such as a journal article to pick out points that relate to your own research. It is particularly important that you browse and scan trade and professional journals, as these are less likely to be covered by the tertiary literature.

To make browsing and scanning easier you should:
- identify when those journals that are the most relevant are published and regularly browse them;
- browse new book displays in libraries;
- scan new book reviews in journals and newspapers;
- scan publishers’ new book catalogues where available;
- discuss your research with your project tutor and librarians, who may be aware of other relevant literature.

Internet access to resources now allows you to browse journals that may not be held in, or accessible from, your university library. Many publishers make the contents pages of their journals available without charge on the web (Table 3.4) and may offer an **article alert** service where they will provide a regular email update of articles in your area of interest. Alternatively, databases such as Ingenta provide access to thousands of journals’ contents pages (Table 3.2). Professional journals may also be accessible through the web page of the professional organisation (Table 8.2). Many publishers make their current book catalogues available on the Internet, and these can be accessed either directly (Table 3.4) or through the publishers’ catalogues’ home page information gateway (see Table 3.5). In addition, websites of bookshops such as Amazon, Blackwell and the Internet Book Shop provide access to catalogues of books in print. These can usually be searched by author, title and subject, and may have reviews attached (Table 3.4). However, as when using electronic indexes and abstracts, it is important that you keep full details of the literature you have scanned and browsed (Box 3.11). As well as enabling you to outline the method you used for your literature review, it will also help prevent you repeating searches you have already undertaken.

Searching the Internet

The development of the **Internet**, a worldwide network of computers providing access to a vast range of literature and other resources, has revolutionised information gathering, including searching for literature. It will provide you with access to resources that may be of use either for your literature review or as secondary data (Chapter 8). However, you should beware, as these resources may be difficult to locate and the quality of the
Table 3.4 Selected publishers’ and bookshops’ Internet addresses

Name	Internet address	Contents
-----------------------------	---	
Publishers		
Blackwell Publishers	http://www.blackwellpublishing.com	Books and journals
Cambridge University Press	http://www.cup.cam.ac.uk	Books and journals; links to other university presses and publishing-related services
Pearson Education Limited	http://www.pearsoned.co.uk	Business and management books for practitioners and students. Links to book-specific web pages
Office of Public Sector Information	http://www.opsi.gov.uk	OPSI publications, including full text of Statutory Instruments and Public Acts
MCB University Press	http://www.mcb.co.uk	Over 100 professional and academic management journals
Open University Press	http://www.openup.co.uk	Books and journals
Oxford University Press	http://www.oup.co.uk	Books and journals, including full-text online journals, a database of abstracts
Prentice Hall	http://www.pearsoned.co.uk	Books and other study materials
Routledge	http://www.routledge.com	Books
Sage	http://www.sagepub.co.uk	Books, journals, software, CD-ROMs
Thomson	http://www.thomsonlearning.co.uk	Books, and other study materials
Bookshops		
Amazon	http://www.amazon.co.uk	Searchable database principally of books (UK site)
	http://www.amazon.com	Searchable database principally of books (USA site)
Blackwell	http://www.blackwell.co.uk	Searchable database principally of books
Internet Book Shop UK	http://www.ibuk.com	Searchable database principally of books
The Book Place	http://www.thebookplace.co.uk	Searchable database principally of books
TSO (The Stationery Office)	http://www.tsoshop.co.uk	Searchable database of UK books in print. Especially useful for UK government reports

NB. All services in this table were free at the time of writing.

Material is highly variable. This is emphasised by Clausen (1996:4), who likens the Internet to:

...a huge vandalized library where someone has destroyed the catalogue and removed the front matter and indexes from most of the books. In addition thousands of unorganized fragments are added daily by a myriad of cranks, sages and persons with time on their hands who launch their unfiltered messages into cyberspace.
Table 3.5 Selected Internet search tools and their coverage

<table>
<thead>
<tr>
<th>Name</th>
<th>Internet address</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>General search engines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alta Vista Search</td>
<td>http://www.altavista.com</td>
<td>Searches web and Usenet newsgroups</td>
</tr>
<tr>
<td></td>
<td>http://uk.altavista.com</td>
<td>Differentiates between simple and advanced searches and between languages</td>
</tr>
<tr>
<td>Google</td>
<td>http://www.google.com</td>
<td>Access to over 3 billion documents</td>
</tr>
<tr>
<td>Google UK</td>
<td>http://www.google.co.uk</td>
<td></td>
</tr>
<tr>
<td>Google Scholar</td>
<td>http://scholar.google.com/</td>
<td>Access to academic journals, theses, books, journals and abstracts from a limited number of academic and professional organisations. Access to the full text is often dependent on an institution’s subscription to a journal or service</td>
</tr>
<tr>
<td>HotBot</td>
<td>http://www.hotbot.co.uk/</td>
<td>Searches web; useful features include sorting by date and media type</td>
</tr>
<tr>
<td>Lycos</td>
<td>http://www.lycos.com</td>
<td>Searches web, gopher and ftp sites; offers both key word and subject searching</td>
</tr>
<tr>
<td>Meta search engines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogpile</td>
<td>http://www.dogpile.com</td>
<td>Searches a selection of search engines and subject directories, including Yahoo, Lycos and Yellow Pages</td>
</tr>
<tr>
<td>Specialised search engines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK government</td>
<td>http://www.direct.gov.uk</td>
<td>Searches central and local government websites and government agencies</td>
</tr>
<tr>
<td>Information gateways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biz/Ed</td>
<td>http://www.bized.ac.uk</td>
<td>Information service, links economics and business students and teachers and information providers</td>
</tr>
<tr>
<td>BUBL subject tree</td>
<td>http://bubl.ac.uk</td>
<td>Links to a vast range of Internet resources by alphabetical subject list or by class (subject) number order</td>
</tr>
<tr>
<td>HERO (UK Universities and Colleges OPACs)</td>
<td>http://www.hero.ac.uk</td>
<td>Links to UK university and college online public access (library) catalogues (OPACs)</td>
</tr>
<tr>
<td>Pinakes</td>
<td>http://www.hw.ac.uk/libWWW/irn/pinakes/pinakes.html</td>
<td>Links to major information gateways to Internet resources (especially UK based)</td>
</tr>
<tr>
<td>Publishers’ catalogues homepage</td>
<td>http://www.lights.com/publisher</td>
<td>Links to major publishers’ websites, listed alphabetically by country</td>
</tr>
<tr>
<td>Resource Discovery Network</td>
<td>http://www.rdn.ac.uk/</td>
<td>Subject-based information and Internet tutorials</td>
</tr>
<tr>
<td>SOSIG UK Business and Industrial Management Resources</td>
<td>http://www.sosig.ac.uk/roads/subject-listing/world-cat/busgen.html</td>
<td>Detailed descriptions and links to UK business and industrial management sites</td>
</tr>
<tr>
<td>Subject directories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yahoo</td>
<td>http://dir.yahoo.com/</td>
<td>Subject-based directory</td>
</tr>
<tr>
<td>Yahoo UK</td>
<td>http://uk.yahoo.com</td>
<td>Optionally limits searches to just Great Britain and Ireland</td>
</tr>
<tr>
<td></td>
<td>http://uk.dir.yahoo.com/news_and_media/newspapers</td>
<td>Comprehensive listing of newspapers available on the Internet, worldwide</td>
</tr>
<tr>
<td>Yellow Pages UK</td>
<td>http://www.yell.co.uk</td>
<td>Telephone yellow pages with useful links to UK companies’ home pages</td>
</tr>
</tbody>
</table>
Searching electronic indexes and abstracts

Matthew described his research project using the key words ‘small business’ and ‘finance’. Unfortunately, he encountered problems when carrying out his search using one of the online databases of full text and abstracts for business, management and economics journals to which his university subscribed:

- When he entered the key word ‘small business’ he retrieved references to over 18,000 items many of which were in trade magazines.
- He was unsure how to combine his key words into search strings to make his search more specific.
- Full-text versions were not available for some of the most recent items retrieved.

After discussing the problem, the librarian showed Matthew how to use the advanced search option of the online database. Using this, Matthew first searched using the terms ‘small business’ and ‘finance’ combined as a search string. This resulted in nearly 500 items being highlighted.

He then refined his search further by limiting it to the collection of scholarly (peer reviewed) journals. This resulted in just over 100 items being retrieved. Matthew made a note of the details of his search:

- Database: Business Source Premier
- Collection: Scholarly (peer reviewed) journals
- Dates: 1980 to 2005
- Search: small business AND finance
- Fields searched: Abstract
- Date of search: 30 November 2005
- Total items retrieved: 103

He then copied the references for these items (articles) onto his USB mass storage device. As Matthew scrolled through these he noted that some of them had direct links to copies of the full text stored as a .pdf file. For many of the others, the librarian informed him that he could access the full text using different online databases. However, he still needed to assess each article’s relevance to his research.
There are a variety of approaches you can use for searching the Internet. These are summarised in Figure 3.3. Printed guides are available and can be a useful starting point for information. However, because of the rate at which the Internet is growing and the fact that material can literally disappear overnight, these guidebooks are likely to become out of date extremely quickly. Alternatively you can use websites dedicated to providing support information on searching the Internet. One such example that our students have found useful is that provided by Phil Bradley, an information expert. This contains information on different search engines, articles on Internet searching and web page and website design and is regularly updated. Another useful site is hosted by RBA Information Services. This contains an excellent directory of business-related websites as well as a wealth of more generic information on searching the Internet. Once again, we recommend that you keep full details of the Internet searches you have undertaken, making a note of:

- the search engine used;
- the precise search undertaken;
- the date when the search was undertaken;
- the total number of items retrieved.

Home pages

Addresses of Internet sites or home pages (such as http://www.brookes.ac.uk) can be the quickest and most direct method of accessing these resources. Addresses can be obtained from many sources, the most frequently used of which are guidebooks (for example, Hahn, 2005), newspaper reviews, articles in journals, librarians and lecturers. Home pages, which can have multiple linked pages and hypertext links whereby pointing and clicking on the screen takes you to another website, are similar to a title or contents page. Although home pages often contain publicity for a company or institution, they are an excellent way of navigating around the Internet, as they bring a selection of Internet site addresses and search tools together (Table 3.5). A problem with going directly to one address is that your search is constrained by other people’s ideas. Similarly, hypertext links are limited by other people’s ideas and the way they have linked pages.

Search tools

Search tools, often referred to as search engines, are probably the most important method of Internet searching for your literature review as they will enable you to locate most current and up-to-date items. Although normally accessed through home pages, each search tool will have its own address (Table 3.5).

Most search tools search by key words or subject trees. A subject tree is similar to a contents page or index. Some are in the form of alphabetical subject lists, whereas others are in hierarchical groups of subjects that are then further subdivided with links to more narrowly focused subject groups. It is vital that you do not rely on one search tool but use a variety, noting and evaluating each as you use them. Each search tool will have different interfaces, ways of searching and methods of displaying information. They will search different areas of the Internet and are likely to display different results.

Search tools can be divided into four distinct categories (Figure 3.3, Table 3.5):

- general search engines;
- meta search engines;

3 The Internet address of the home page of this site is http://www.philb.com/.
4 The Internet address of the home page of this site is http://www.rba.co.uk.
specialised search engines and information gateways;

subject directories.

Most search engines index every separate document. In contrast, subject directories index only the 'most important' Internet documents. Therefore, if you are using a clear term to search for an unknown vaguely described document, use a search engine. If you
are looking for a document about a particular topic, use a subject directory (Habrakan et al., 2005).

General search engines such as Google and Google Scholar (Box 3.12) normally search parts of the Internet using key words and Boolean logic (Table 3.3) or a phrase. Each search engine uses an automated computer process to index and search, often resulting in a very large number of sites being found. As people have not evaluated these sites, many are usually inappropriate or unreliable. As no two general search engines search in precisely the same way it is advisable (and often necessary) to use more than one. In contrast, meta search engines allow you to search using a selection of search engines at the same time, using the same interface. This makes searching easier, and the search can be faster. Unfortunately, it is less easy to control the sites that are retrieved. Consequently, meta search engines often generate more inappropriate or unreliable sites than general search engines.

BOX 3.12 RESEARCH IN THE NEWS

Google to scan universities’ library books

Google, the leading service for finding information on the Internet, yesterday set out ambitious plans to become a catalogue and digital library for world literature.

It said it had struck a deal with four leading university libraries and the New York Public Library to scan digitally tens of millions of books from their collections so that users worldwide could search through them using the Google service.

While company officials presented the move as a philanthropic gesture, they also admitted there would be revenue opportunities and that the increased quality of their search results would maintain Google’s advantage over its rivals.

In addition to the New York Public Library, books from Harvard, Stanford, Michigan university libraries and Oxford’s Bodleian Library will be scanned and indexed as an extension of a project called Google Print.

This year, it launched Google Scholar – a project working with academic publishers to make scientific, technical and medical journals searchable online.

“Even before we started Google, we dreamed of making the incredible breadth of information that librarians so lovingly organise searchable online,” said Larry Page, Google co-founder.

Many libraries, including the Library of Congress, have explored digitising part of their collections and have carried out relatively small projects.

But most have been hampered by the cost involved and the slow speed of the scanning technology they have been using.

Google will undertake the scanning for the libraries and significantly increase the amount of searchable material through its engine.

Legally, the task is relatively easy for books published before 1923. Such books are no longer protected by copyright law and are in the public domain. Newer books could be more problematic since Google will have to obtain the permission from the publishers to reproduce the books online.

However, Google hopes to persuade publishers and authors that they will benefit because the scheme will increase the visibility of in and out-of-print books, and generate book sales via “Buy this Book” links, while providing them with a revenue-share of associated advertising.

Source: Article by Paul Taylor and Chris Nuttall, Financial Times, 15 December 2004. Copyright © 2004 The Financial Times Ltd.

Specialised search engines cater for specific subject areas. To use these it is necessary to define your general subject area prior to your search. Information gateways also require you to define your subject area. Information gateways are often compiled by staff from departments in academic institutions. Although the number of websites obtained is fewer, they can be far more relevant, as each site is evaluated prior to being added to the gateway.
Subject directories are hierarchically organised indexes categorised into subject areas, and are useful for searching for broad topics. As people normally compile them, their content has been partly censored and evaluated. Consequently, the number of sites retrieved is fewer but they usually provide material that is more appropriate. Most of the subject directories now offer some form of key word search and links to other search tools.

Search tools are becoming more prolific and sophisticated all the time. Be careful: their use can be extremely time consuming. Your search will probably locate a mass of resources, many of which will be irrelevant to you. It is also easy to become sidetracked to more interesting and glossy websites not relevant to your research needs! There are an increasing number of web-based tutorials to help you learn to search the web. One of these, Marketing Insights’ Smarter Online Searching Guide, is available via this book’s web page. This highlights using search tools, including Advanced search in Google and online e-business resources. Another, which our students have found useful and informative, is hosted by Tilburg University in the Netherlands. This offers interactive tutorials on searching as well as a brief history of the Internet and a glossary of terms.

Bookmarking

Once you have found a useful Internet site, you can note its address electronically. This process is termed bookmarking or add to favourites depending on your Internet software. It uses the software to note the Internet address, and means that you will be able to access it again directly. The vast amount of resources available, and the fact that resources, home pages and sites can be added and deleted by their producers, means it is vital to keep a record of the addresses and a note of the date you accessed it (Section 3.7). These will be needed to reference your sources when you write your critical review (Section 3.2). When sufficient sites have been bookmarked, it is possible to arrange them in whatever hierarchical way you wish.

3.6 Obtaining and evaluating the literature

Obtaining the literature

After your initial search of books and journal articles, tertiary literature will provide you with details of what literature is available and where to locate it. The next stage (Figure 3.1) is to obtain these items. To do this you need to:

1 check your library catalogue to find out whether your library holds the appropriate publication. Remember many libraries now hold publications such as journals and newspapers in electronic form on CD-ROM or provide access via the Internet;

2 (for those publications that are held by your library or available via the Internet) note their location and:

 a find the publication and scan it to discover whether it is likely to be worth reading thoroughly – for articles it is often possible to make a reasonable assessment of relevance using the abstract; or

5 The Internet address of this site is: http://www.tilburguniversity.nl/services/library/instruction/www/onlinecourse/.
browse other books and journals with similar class marks to see whether they may also be of use;

3 (for those items that are not held by your library or available via the Internet) order the item from another library on inter-library loan. This is not a free service so make sure you really need it first. Our students have found that, in general, it is only worthwhile to use inter-library loan for articles from refereed journals and books.

Evaluating the literature

Two questions frequently asked by our students are ‘How do I know what I’m reading is relevant?’ and ‘How do I know when I’ve read enough?’ Both of these are concerned with the process of evaluation. They involve defining the scope of your review and assessing the value of the items that you have obtained in helping you to answer your research question(s). Although there are no set ways of approaching these questions, our students have found the following advice helpful.

You should, of course, read all the literature that is closely related to your research question(s) and objectives. The literature that is most likely to cause problems is that which is less closely related (Gall et al., 2002). For some research questions, particularly for new research areas, there is unlikely to be much closely related literature and so you will have to review more broadly. For research questions where research has been going on for some years you may be able to focus on more closely related literature.

Assessing relevance and value

Assessing the relevance of the literature you have collected to your research depends on your research question(s) and objectives. Remember that you are looking for relevance, not critically assessing the ideas contained within. When doing this, it helps to have thought about and made a note of the criteria for inclusion and exclusion prior to assessing each item of literature. In contrast, assessing the value of the literature you have collected is concerned with the quality of the research that has been undertaken. As such it is concerned with issues such as methodological rigour and theory robustness as well as the quality of the arguments. For example, you need to beware of managerial autobiographies, where a successful entrepreneur’s or managing director’s work experiences are presented as the way to achieve business success (Fisher, 2004) and articles in trade magazines. The knowledge presented in such books and articles may well be subjective rather than based upon systematic research.

Box 3.13 provides a checklist to help you in this process.

Remember to make notes about the relevance of each item as you read it and the reasons why you came to your conclusion. You may need to include your evaluation as part of your critical review.

Assessing sufficiency

Your assessment of whether you have read a sufficient amount is even more complex. It is impossible to read everything, as you would never start to write your critical review, let alone your project report. Yet you need to be sure that your critical review discusses what research has already been undertaken and that you have positioned your research project in the wider context, citing the main writers in the field (Section 3.2). One clue that you have achieved this is when further searches provide mainly references to items you have already read. You also need to check what constitutes an acceptable amount of reading, in terms of both quality and quantity, with your project tutor.
CHAPTER 3 · CRITICALLY REVIEWING THE LITERATURE

BOX 3.13 CHECKLIST

Evaluating the relevance and value of literature to your research

Relevance

- How recent is the item?
- Is the item likely to have been superseded?
- Are the research questions or objectives sufficiently close to your own to make it relevant to your own research (in other words, does the item meet your relevance criteria for inclusion)?
- Is the context sufficiently different to make it marginal to your research question(s) and objectives (in other words, is the item excluded by your relevance criteria)?
- Have you seen references to this item (or its author) in other items that were useful?
- Does the item support or contradict your arguments? For either it will probably be worth reading!

Value

- Does the item appear to be biased? For example, does it use an illogical argument, emotionally toned words or appear to choose only those cases that support the point being made? Even if it is, it may still be relevant to your critical review!
- What are the methodological omissions within the work (for example, sample selection, data collection, data analysis)? Even if there are many it still may be of relevance!
- Is the precision sufficient? Even if it is imprecise it may be the only item you can find and so still of relevance!
- Does the item provide guidance for future research?

Sources: Authors’ experience; Bell (2005); Fisher (2004); Jankowicz (2005); McNeill (2005)

3.7 Recording the literature

The literature search, as you will now be aware, is a vital part of your research project, in which you will invest a great deal of time and effort. As you read each item, you need to ask yourself how it contributes to your research question(s) and objectives and to make notes with this focus (Bell, 2005). When doing this, many students download and print copies of articles or photocopy articles and pages from books to ensure that they have all the material. We believe that, even if you print or photocopy, you still need to make notes. The process of note making will help you to think through the ideas in the literature in relation to your research.

In addition to making notes, Sharp *et al.* (2002) identify three sets of information you need to record. These are:

- bibliographic details;
- brief summary of content;
- supplementary information.

Until the advent of inexpensive microcomputers it was usual to write this information on *index cards*. Database software such as Microsoft’s Access™ or specialist bibliographic
Undertaking an Internet search

Elaine’s research question was reasonably defined, if somewhat broad. She wanted to assess the impact of European enlargement on small to medium-sized organisations. As part of her search strategy she decided, in addition to the academic databases of business and management journals, also to search the Internet using a general search engine. Her first key word ‘European enlargement’ revealed that there were nearly 10 million sites and displayed the first 10. Of these, although in the broad topic area, none appeared to be relevant as they were not related specifically to small to medium-sized enterprises (SMEs):

She decided to refine her search using the advanced search feature of the search engine. Although the search engine still found over 200,000 sites, the content of the first 10 appeared more relevant to her research question:

Elaine looked at the first site and found that it contained links to a series of downloadable SME-related reports. These met her relevance criteria. The research for these reports had been carried out by ENSR (the European Network for SME Research) on behalf of the European Union and so were likely to be objective. These reports, coordinated by EIMit, appeared to contain a wealth of information that was useful to her research project. She therefore decided to download and save them as .pdf files prior to assessing their value to her research. She then proceeded to look at the next site in her list.
software such as Reference Manager for Windows™ or EndNote™ provide a powerful and flexible alternative method for recording the literature, although they will probably mean noting it down and transferring it to your database later. Recording can seem very tedious, but it must be done. We have seen many students frantically repeating searches for items that are crucial to their research because they failed to record all the necessary details in their database of references.

Bibliographic details

For some project reports you will be required to include a bibliography. Convention dictates that this should include all the relevant items you consulted for your project, including those not referred to directly in the text. For others, you will be asked to include only a list of references for those items referred to directly in the text. The bibliographic details contained in both need to be sufficient to enable readers to find the original items. These details are summarised in Table 3.6.

If an item has been taken from an electronic source you need to record as much of the information in Table 3.6 as is available along with details of format (e.g. CD-ROM). If you located the item via the Internet, you need to record the full address of the resource and the date you accessed the information as well (Appendix 2). This address is often referred to as the URL, the unique resource location or universal/uniform resource locator.

Most universities have a preferred referencing style that you must use in your project report. This will normally be prescribed in your assessment criteria. Three of the most common styles are the Harvard system (a version of which we have used in this book), the American Psychological Association (APA) System and the Vancouver or footnotes system. Guidelines on using each of these are given in Appendix 2.

Brief summary

A brief summary of the content of each item in your reference database will help you to locate the relevant items and facilitate reference to your notes and photocopies. This can be done by annotating each record with the key words used, to help locate the item and the abstract. It will also help you to maintain consistency in your searches.

Table 3.6 Bibliographic details required

<table>
<thead>
<tr>
<th>Journal</th>
<th>Book</th>
<th>Chapter in an edited book</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Author(s) – surname, first name initials</td>
<td>■ Author(s) – surname, first name initials</td>
<td>■ Author(s) – surname, first name initials</td>
</tr>
<tr>
<td>■ Year of publication (in parentheses)</td>
<td>■ Year of publication (in parentheses)</td>
<td>■ Year of publication (in parentheses)</td>
</tr>
<tr>
<td>■ Title of article</td>
<td>■ Title and subtitle of book (underlined)</td>
<td>■ Title of chapter</td>
</tr>
<tr>
<td>■ Title of journal (underlined)</td>
<td>■ Edition</td>
<td>■ Author(s) of book – surname, first name initials</td>
</tr>
<tr>
<td>■ Volume</td>
<td>■ Place of publication</td>
<td>■ Title and subtitle of book (underlined)</td>
</tr>
<tr>
<td>■ Part/issue</td>
<td>■ Publisher</td>
<td>■ Edition</td>
</tr>
<tr>
<td>■ Page numbers (preceded by ‘p.’ for page or ‘pp.’ for pages)</td>
<td>■ Page numbers of chapter</td>
<td>■ Place of publication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Publisher</td>
</tr>
</tbody>
</table>
Supplementary information

As well as recording the details discussed earlier, other information may also be worth recording. These items can be anything you feel will be of value. In Table 3.7 we outline those that we have found most useful.

Table 3.7 Supplementary information

<table>
<thead>
<tr>
<th>Information</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISBN</td>
<td>The identifier for any book, and useful if the book has to be requested on inter-library loan</td>
</tr>
<tr>
<td>Class number (e.g. Dewey decimal)</td>
<td>Useful to locate books in your university’s library and as a pointer to finding other books on the same subject</td>
</tr>
<tr>
<td>Quotations</td>
<td>Always note useful quotations in full and with the page number of the quote; if possible also take a photocopy</td>
</tr>
<tr>
<td>Where it was found</td>
<td>Noting where you found the item is useful, especially if it is not in your university library and you could only take notes</td>
</tr>
<tr>
<td>The tertiary resource used and the key words used to locate it</td>
<td>Useful to help identify resources for follow-up searches</td>
</tr>
<tr>
<td>Evaluative comments</td>
<td>Your personal notes on the value of the item to your research in relation to your relevance and value criteria</td>
</tr>
<tr>
<td>When the item was consulted</td>
<td>Especially important for items found via the Internet as these may disappear without trace</td>
</tr>
</tbody>
</table>

3.8 Summary

- A critical review of the literature is necessary to help you to develop a thorough understanding of, and insight into, previous research that relates to your research question(s) and objectives. Your review will set your research in context by critically discussing and referencing work that has already been undertaken, drawing out key points and presenting them in a logically argued way, and highlighting those areas where you will provide fresh insights. It will lead the reader into subsequent sections of your project report.

- There is no one correct structure for a critical review, although it is helpful to think of it as a funnel in which you start at a more general level prior to narrowing down to your specific research question(s) and objectives.

- Literature sources can be divided into three categories: primary, secondary and tertiary. In reality, these categories often overlap. Your use of these resources will depend on your research question(s) and objectives. Some may use only tertiary and secondary literature. For others, you may need to locate primary literature as well.

- When planning your literature search you need:
 - to have clearly defined research question(s) and objectives;
 - to define the parameters of your search;
CHAPTER 3 · CRITICALLY REVIEWING THE LITERATURE

- to generate key words and search terms;
- to discuss your ideas as widely as possible.

Techniques to help you in this include brainstorming and relevance trees.

■ Your literature search is likely to be undertaken using a variety of approaches in tandem. These will include:
 - searching using tertiary sources and the Internet;
 - following up references in articles you have already read;
 - scanning and browsing secondary literature in your library.

Don’t forget to make precise notes of the search processes you have used and their results.

■ Once obtained, the literature must be evaluated for its relevance to your research question(s) and objectives using clearly defined criteria. This must include a consideration of each item’s currency. Each item must be read and noted. Bibliographic details, a brief description of the content and appropriate supplementary information should also be recorded.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

3.1 The following extract and associated references are taken from the first draft of a critical literature review. The research project was concerned with the impact of direct insurers on the traditional motor insurer.

List the problems with this extract in terms of its:

a content;

b structure.

Jackson (1995) suggests that businesses must be developed from a customer rather than a product perspective. Lindesfarne (1994) demonstrates that direct selling gives the consumer increased control as it is up to them when and if they wish to respond to adverts or direct mail. MacKenzie (1995) comments that free gifts are useful for getting responses to adverts, which is ultimately what all direct insurers need. Bowen (1995) suggests that this type of company can be split into three equally important parts: marketing, insurance and information technology. Motor insurance is particularly price sensitive because of its compulsory nature and its perception by many to have no real ‘value’ to themselves.

3.2 Outline the advice you would give a colleague on:

a how to plan her search;

b which literature to search first.

3.3 Brainstorm at least one of the following research questions, either on your own or with a colleague, and list the key words that you have generated.

a How effective is profit-related pay as a motivator?

b How do the opportunities available to a first-time house buyer through interpersonal discussion influence the process of selecting a financial institution for the purposes of applying for a house purchase loan?

c To what extent do new methods of direct selling of financial services pose a threat to existing providers?
3.4 You are having considerable problems with finding relevant material for your research when searching online databases. Suggest possible reasons why this might be so.

3.5 Rewrite the following passage as part of a critical literature review using the Harvard system of referencing:

From what I’ve read, the English Language Teaching market, which this company serves, remains attractive for publishers despite a decline in growth as this quote shows: ‘Overall, the ELT materials market has continued to show growth, because, globally, the demand for English learning persists, albeit on a lower growth track than in the 1980s’.1 The latest published statistics that I’ve been able to find (1999) tell us that there are 1,300 million ELT learners worldwide.2 I therefore think that the need for good ELT authors is growing and, as Francis says: ‘the name of the author remains a critical success factor, and an important sub-brand in many cases’.3

3.6 Go to the website of the general search engine Google (http://www.google.com). Use the different Google services such as ‘Google Search’, ‘Google Scholar’ and ‘University Search’ to search for articles on a topic which you are currently studying as part of your course.
 a Make notes regarding the types of items that each of these services finds.
 b How do these services differ?
 c Which service do you think is likely to prove most useful to your research project?

3.7 Agree with a friend to each review the same article from a refereed academic journal, which contains a clear literature review section. Evaluate independently the literature review in your chosen article with regard to its content, critical nature and structure using the checklists in Boxes 3.1, 3.2 and 3.3 respectively. Do not forget to make notes regarding your answers to each of the points raised in the checklists. Discuss your answers with your friend.

3.8 Visit an online database or your university library and obtain a copy of an article that you think will be of use to an assignment you are both currently working on. Use the checklist in Box 3.13 to assess the relevance and value of the article to your assignment.

PROGRESSING YOUR RESEARCH PROJECT

Critically reviewing the literature

- Consider your research questions and objectives. Use your lecture notes, course textbooks and relevant review articles to define both narrow and broader parameters of your literature search, considering language, subject area, business sector, geographical area, publication period and literature type.

- Generate key words and search terms using one or a variety of techniques such as reading, brainstorming and relevance trees. Discuss your ideas widely, including with your project tutor and colleagues.
CHAPTER 3 · CRITICALLY REVIEWING THE LITERATURE

- Start your search using both database and printed tertiary sources to identify relevant secondary literature. Begin with those tertiary sources that abstract and index academic journal articles and books. At the same time, obtain relevant literature that has been referenced in articles you have already read. Do not forget to record your searches systematically and in detail.
- Expand your search via other sources such as the Internet and by browsing and scanning.
- Obtain copies of items, evaluate them systematically and make notes. Remember also to record bibliographic details, a brief description of the content and supplementary information on an index card or in your reference database.
- Start drafting your critical review as early as possible, keeping in mind its purpose.
- Continue to search the literature throughout your research project to ensure that your review remains up to date.

References

Further reading

Bell, J. (2005) Doing Your Research Project (4th edn), Maidenhead, Open University Press. Chapter 6 provides a good introduction to the process of reviewing the literature. The section on the critical review of the literature is especially helpful.

Tranfield, D., Denyer, D. and Smart, P. (2003) ‘Towards a methodology for developing evidence-informed management knowledge by means of systematic review’, British Journal of Management 14: 3, 207–22. This paper provides an excellent introduction to the process of systematic review. Although a full systematic review as outlined in this paper may be too time consuming for your research project, there are many useful points made regarding how to plan your search strategy and explain in your project report how your review was undertaken.
Petro decided to research cross-cultural management. He was interested particularly in national cultures and wished to compare and contrast differences between Britain, France and Nigeria in terms of their management theory and practices. He spent several days in the university library searching the online catalogue for information on national cultures in order to make comparisons between the countries selected for his project. He also used the Internet search engine Google and was taken by surprise to find over 50 million hits on ‘national cultures’.

He was aware of the research of Hofstede and Trompenaars from his third-year studies. Google highlighted 159 000 hits on Hofstede and 77 000 on Trompenaars. Given the numbers involved he quickly realised how time consuming this would be. Discussing this with a fellow student alerted him to the problems of such data. Apart from the fact that commercial and academic information was not easily differentiated, much of the information was not referenced in the way expected for his academic project.

Nevertheless, given the problems he had in selecting the appropriate data on cross-cultural differences in management, he arrived at his first tutorial with a range of material for his literature review. This included photocopied extracts from textbooks on management theories and practices and copies of the articles from a variety of journals. He realised that there was a lot more data on Britain and France compared to Nigeria. However, he perceived that his managerial experience in Britain and France as well as his three years working in Nigeria for a large multinational company would give him insights that were valuable for his project.

Petro emailed his project tutor his written work so far on his literature review. He was careful to make what he thought were interesting and meaningful comparisons between the three countries and assembled them in chronological order of publication. He felt pleased that he had already written 3000 words towards the 10 000 words he needed for his project report.

Petro then went to see his project tutor who gave him some feedback on the information he had gathered. The tutor felt much of the information gathered was up to date and based partly on material from the company he had worked for. However, he now had to look critically at the academic literature. He suggested that Petro begin by reading recent books on the topic such as Mead (2004) and Schneider and Barsoux (2003) as well as an article by McSweeney (2002) that he felt would be useful when thinking about Hofstede’s work. He also emphasised that Petro should focus his search on academic databases of peer-reviewed business and management journals. Petro had led a busy life in which he liked to solve practical problems as a manager. He now realised that searching academic literature would be extremely time consuming. His tutor gave him some advice on learning to skim...
texts to speed up the process and to summarise the main issues in his own words as well as keeping careful notes of sources.

Petro searched for the textbooks and the refereed journal article. As he read and began to make notes on national cultures and their impact on management, he noticed that what he was reading was thematically organised with a clear framework. This helped him begin to define the parameters for his study. He began to make links between his practical experiences of the other cultures he was studying and concepts discussed in the books and article.

Over the next few weeks he focused more on peer-reviewed academic journals. The more he read on the topic the more references he gathered by other researchers. He noticed that in the journal articles the authors not only applied the ideas on values associated with national cultures to different countries but that the ideas were explored in a critical way. The ideas were also justified by referring to named researchers in the field, many of whose names he recognised. However, the style of the writing made his task of reading for his literature review seem impossible and he began to worry about this. He even questioned his own ability. Discussing these difficulties with other students on his course made him realise that he was not alone. They were also having problems, not only understanding the material, but also attempting to select what was appropriate and relevant for their particular project.

Gradually Petro began to order his notes around certain issues that kept recurring in the peer-reviewed articles and textbooks he was reading. Over the same period, he began to better understand the practical problems he confronted during his time as a manager in Britain, France and Nigeria. The academic literature appeared to be providing a theoretical framework and possible explanations for his managerial experiences.

References

QUESTIONS
1 How do you think Petro’s understanding of the literature review changed?
2 What particular skills did Petro develop in the preparation of the review?
3 Do you think Petro would have benefited from the use of mind-maps in researching his topic? Give reasons for your answer.
4 What problems do you think he would have anticipated in conducting research into national cultures that his literature review may not have highlighted?

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:
■ The development of discount warehouse clubs
■ The problems of valuing intellectual capital.

SELF-CHECK ANSWERS

3.1 There are numerous problems with the content and structure of this extract. Some of the more obvious include:
 a The content consists of predominantly trade magazines, in particular Post Magazine, and there are no references of academic substance. Some of the references to individual authors have discrepancies: for example, was the article by Lindisfarne (or is it Lindesfarne?) published in 1994 or 1995?
 b The items referenced are from 1994 and 1995. It is likely that more recent items are available.
 c There is no real structure or argument in the extract. The extract is a list of what people have written, with no attempt to critically evaluate or juxtapose the ideas.
CHAPTER 3 · CRITICALLY REVIEWING THE LITERATURE

3.2 This is a difficult one without knowing her research question! However, you could still advise her on the general principles. Your advice will probably include:

a Define the parameters of the research, considering language, subject area, business sector, geographical area, publication period and literature type. Generate key words and search terms using one or a variety of techniques such as reading, brainstorming or relevance trees. Discuss her ideas as widely as possible, including with her tutor, librarians and you.

b Start the search using tertiary sources to identify relevant secondary literature. She should commence with those tertiary sources that abstract and index academic journal articles and books. At the same time she should obtain relevant literature that has been referenced in articles that she has already read.

3.3 There are no incorrect answers with brainstorming! However, you might like to check your key words for suitability prior to using them to search an appropriate database. We suggest that you follow the approach outlined in Section 3.5 under ‘searching using the tertiary literature’.

3.4 There are a variety of possible reasons, including:

- One or more of the parameters of your search are defined too narrowly.
- The key words you have chosen do not appear in the controlled index language.
- Your spelling of the key word is incorrect.
- The terminology you are using is incorrect.
- The acronyms you have chosen are not used by databases.
- You are using jargon rather than accepted terminology.

3.5 There are two parts to this answer: rewriting the text and using the Harvard system of referencing. Your text will inevitably differ from the answer given below owing to your personal writing style. Don’t worry about this too much as it is discussed in far more detail in Section 14.5. The references should follow the same format.

Writing in the trade literature, Francis (2003:26) emphasizes that the English Language Teaching (ELT) market remains attractive for publishers. He states: ‘Overall, the ELT materials market has continued to show growth, because, globally, the demand for English learning persists, albeit on a lower growth track than in the 1980s’. This assertion is supported by published statistics (Gasson, 1999), which indicate that there are 1,300 million ELT learners worldwide. Alongside this, the need for good ELT authors is growing, Francis (1999:93) asserting: ‘the name of the author remains a critical success factor, and an important sub-brand in many cases’.

Get ahead using resources on the Companion Website at:
www.pearsoned.co.uk/saunders

- Improve your SPSS and NVivo research analysis with practice tutorials.
- Save time researching on the Internet with the Smarter Online Searching Guide.
- Test your progress using self-assessment questions.
- Follow live links to useful websites.
LEARNING OUTCOMES

By the end of this chapter you should be able to:

➔ define the key terms epistemology, ontology and axiology and explain their relevance to business research;
➔ explain the relevance for business research of philosophical perspectives such as positivism, realism, pragmatism, interpretivism, objectivism and constructionism;
➔ understand the main research paradigms which are significant for business research;
➔ distinguish between main research approaches: deductive and inductive;
➔ state your own epistemological, ontological and axiological positions.

4.1 Introduction

Much of this book is concerned with the way in which you collect data to answer your research question. You are not unusual if you begin thinking about your research by considering whether you should, for example, administer a questionnaire or conduct interviews. However, thoughts on this question belong in the centre of the research ‘onion’, by which means we have chosen to depict the issues underlying the choice of data collection techniques and analysis procedures in Figure 4.1. Before coming to this central point we argue that there are important layers of the onion that need to be peeled away.

Indeed, some writers, such as Guba and Lincoln (1994:105), argue that questions of research methods are of secondary importance to questions of which paradigm is applicable to your research (we deal with paradigms later in this chapter). They note:

both qualitative and quantitative methods may be used appropriately with any research paradigm. Questions of method are secondary to questions of paradigm, which we define as the basic belief system or world view that guides the investigation, not only in choices of method but in ontologically and epistemologically fundamental ways.
This chapter is concerned principally with the first two of the onion’s layers: research philosophy and research approach. In the next chapter we examine what we call research strategy, choices and time horizons. The sixth layer, data collection techniques and analysis procedures, is dealt with in Chapters 7–13.

4.2 Understanding your research philosophy

In this first part of the chapter we examine research philosophy (Figure 4.1). This overarching term relates to the development of knowledge and the nature of that knowledge. At first reading this sounds rather profound. But the point is that this is precisely what you are doing when embarking on research – developing knowledge in a particular field. The knowledge development you are embarking upon may not be as dramatic as a new theory of motivation. But even if the purpose has the relatively modest ambition of answering a specific problem in a particular organisation it is, nonetheless, developing new knowledge.

The research philosophy you adopt contains important assumptions about the way in which you view the world. These assumptions will underpin your research strategy and the methods you choose as part of that strategy. In part, the philosophy you adopt will be influenced by practical considerations. However, the main influence is likely to be

Our values can have an important impact on the research we decide to pursue and the way in which we pursue it. This may not lead to any form of discord, but it may mean that some observers accuse us of untoward bias. In 2003 the British Medical Journal reported that the leading independent medical journal The Lancet had taken the unprecedented step of accusing a major European pharmaceutical company of sponsoring biased research into its new anti-cholesterol drug.

In his editorial in The Lancet, Richard Horton, the journal’s editor, said the company’s tactics ‘raise disturbing questions about how drugs enter clinical practice and what measures exist to protect patients from inadequately investigated medicines’. He accused the clinical trials, which investigated the efficacy of the new drug, of including ‘weak data’, ‘adventurous statistics’, and ‘marketing dressed up as research’. The editorial argued ‘physicians must tell their patients the truth about the drug, that, compared with competitors, it has an inferior evidence base supporting its safe use’.

In the same edition of The Lancet the company issued a furious response. ‘Regulators, doctors, and patients as well as my company have been poorly served by your flawed and incorrect editorial’, wrote the CEO. He said that he deplored the fact that a respected scientific journal should make such an outrageous critique of a serious, well studied, and important medicine.’

your particular view of the relationship between knowledge and the process by which it is developed. The researcher who is concerned with facts, such as the resources needed in a manufacturing process, is likely to have a very different view on the way research should be conducted from the researcher concerned with the feelings and attitudes of the workers towards their managers in that same manufacturing process. Not only will their strategies and methods probably differ considerably, but so will their views on what is important and, perhaps more significantly, what is useful.

In this discussion we examine three major ways of thinking about research philosophy: epistemology, ontology and axiology. Each contains important differences which will influence the way in which you think about the research process. This is the purpose of this chapter. It is not to offer a shopping list from which you may wish to choose that philosophy or approach that suits you best. It is to enhance your understanding of the way in which we approach the study of our particular field of activity.

Epistemology

Epistemology concerns what constitutes acceptable knowledge in a field of study. The most important distinction is one hinted at above in our example of two researchers’ views of what they consider important in the study of the manufacturing process. The researcher (the ‘resources’ researcher) who considers data on resources needed is likely to be more akin to the position of the natural scientist. This may be the position of the operations management specialist who is comfortable with the collection and analysis of ‘facts’. For that researcher,
reality is represented by objects that are considered to be ‘real’, such as computers, trucks and machines. These objects have a separate existence to that of the researcher and for that reason, this researcher would argue that the data collected are far less open to bias and therefore more ‘objective’. The ‘resources’ researcher would place much less authority on the data collected by the ‘feelings’ researcher, who is concerned with the feelings and attitudes of the workers towards their managers in that same manufacturing process. The ‘resources’ researcher would view the objects studied by the ‘feelings’ researcher – feelings and attitudes – as social phenomena which have no external reality. They cannot be seen, measured and modified like computers, trucks and machines. You may argue, of course, that human feelings can be, and frequently are, measured. Indeed the ‘resources’ researcher may place more authority on such data were it to be presented in the form of a table of statistical data. This would lend the data more objectivity in the view of the ‘resources’ researcher. But this raises the question of whether those data presented in statistical form are any more deserving of authority than those presented in a narrative, which may be the choice of the ‘feelings’ researcher.

The ‘resources’ researcher is embracing what is called the positivist position to the development of knowledge whereas the ‘feelings’ researcher is adopting the interpretivist perspective. We deal with both in the next section on epistemology, as well as the stance of the researcher taking the position of the realist and the pragmatist.

Positivism

If your research philosophy reflects the principles of **positivism** then you will probably adopt the philosophical stance of the natural scientist. You will prefer ‘working with an observable social reality and that the end product of such research can be law-like generalisations similar to those produced by the physical and natural scientists’ (Remenyi *et al.*, 1998:32).

Like the ‘resources’ researcher earlier, only phenomena that you can observe will lead to the production of credible data. To generate a research strategy to collect these data you are likely to use existing theory to develop hypotheses. These hypotheses will be tested and confirmed, in whole or part, or refuted, leading to the further development of theory which then may be tested by further research.

The hypotheses developed, as in Box 4.1, lead to the gathering of facts that provide the basis for subsequent hypothesis testing. Both the examples we have cited so far, that of the ‘resources’ researcher and Brett in Box 4.1, will be concerned with facts rather than impressions. Such facts are consistent with the notion of ‘observable social reality’ similar to that employed by the physical and natural scientists to which we referred in Remenyi *et al.*’s (1998) definition earlier.

Another important component of the positivist approach to research is that the research is undertaken, as far as possible, in a value-free way. At first sight this is a plausible position, particularly when one contrasts the perspective of the ‘resources’ researcher with the ‘feelings’ researcher in our earlier example. The ‘resources’ researcher would claim to be external to the process of data collection in the sense that there is little that can be done to alter the substance of the data collected. The assumption is that ‘the researcher is independent of and neither affects nor is affected by the subject of the research’ (Remenyi *et al.*, 1998:33). After all, the ‘resources’ researcher cannot change the fact that there are five trucks and ten computers. In Box 4.1 Brett would collect data that would facilitate the estimation of quantitative cost estimates and allow the hypotheses to be tested. The ‘resources’ researcher's claim to be value free is, on the face of it, rather stronger than that of the ‘feelings’ researcher. It may be argued that the ‘feelings’ researcher is part of the data collection process. It would be normal for at least part of the process of data collection on the feelings and attitudes of the workers towards their managers to include the personal involvement of the ‘feelings’ researcher with those workers.
A personal interview, for example, will involve the ‘feelings’ researcher framing the questions to ask and interpreting the respondent’s examples. It is hard to imagine that the ‘feelings’ researcher would ask every respondent exactly the same question in exactly the same way and interpret every response with computer-like consistency. The ‘feelings’ researcher is a human, not an automaton.

You may argue, of course, that complete freedom from the inclusion of our own values as researchers is impossible. Even the researcher seeking to adopt a decided positivist stance exercises choice in the issue to study, the research objectives to pursue and the data to collect. Indeed, it could be argued that the decision to adopt a seemingly value-free perspective suggests the existence of a certain value position.

It is frequently advocated that the positivist researcher will be likely to use a highly structured methodology in order to facilitate replication (Gill and Johnson, 2002). Furthermore, the emphasis will be on quantifiable observations that lend themselves to statistical analysis. However, as you read through this chapter and the next you will note that this may not necessarily be the case since it is perfectly possible to adopt some of the characteristics of positivism in your research, for example hypothesis testing, and use largely qualitative methods.

Realism

Realism is another epistemological position which relates to scientific enquiry. The essence of realism is that what the senses show us as reality is the truth: that objects have an existence independent of the human mind. The theory of realism is that there is a reality quite independent of the mind. In this sense, realism is opposed to idealism, the

BOX 4.1 WORKED EXAMPLE

The development of hypotheses

Brett was conducting a piece of research for his dissertation on the economic benefits of working from home for software developers. He studied the literature on home working in general and read in detail two past dissertations in his university library that dealt with the same phenomenon, albeit that they did not relate specifically to software developers. As a result of his reading Brett developed a number of theoretical propositions, each of which contained specific hypotheses. Listed below is that which Brett developed in relation to potential increased costs, which may negate the economic gains of home working.

THEORETICAL PROPOSITION: Increased costs may negate the productivity gains from home working.

Specific hypotheses:

1. Increased costs for computer hardware, software and telecommunications equipment will negate the productivity gains from home working.
2. Home workers will require additional support from on-site employees, e.g. technicians, which will negate the productivity gains from home working.
3. Work displaced to other employees and/or increased supervisory requirements will negate the productivity gains from home working.
4. Reduced face-to-face access by home workers to colleagues will result in lost opportunities to increase efficiencies, which will negate the productivity gains from home working.

Source: Developed from Westfall (1997).
theory that only the mind and its contents exist. Realism is a branch of epistemology which is similar to positivism in that it assumes a scientific approach to the development of knowledge. This assumption underpins the collection of data and the understanding of those data. This meaning (and in particular the relevance of realism for business and management research) becomes clearer when two forms of realism are contrasted.

The first type of realism is direct realism. Direct realism says that what you see is what you get: what we experience through our senses portrays the world accurately. The second kind of realism is called critical realism. Critical realists argue that what we experience are sensations, the images of the things in the real world, not the things directly. Critical realists point out how often our senses deceive us. For example, when you next watch an international rugby or cricket match on television you are likely to see an advertisement for the sponsor in a prominent position on the actual playing surface. This looks like it is standing upright on the field. However, this is an illusion. It is in fact painted on the grass. So what we really see are sensations, which are representations of what is real.

The direct realist would respond to the critical realist that what we call illusions are actually due to the fact that we have insufficient information. We don’t perceive the world in television images. We move around, move our eyes and ears, use all our senses. In the case of the television advertisement, the complete experience of it would include seeing it from all directions and angles.

A simple way to think about the difference between direct and critical realism is as follows. Critical realism claims that there are two steps to experiencing the world. First, there is the thing itself and the sensations it conveys. Second, there is the mental processing that goes on sometime after that sensation meets our senses. Direct realism says that the first step is enough. To pursue our cricket (or rugby) example, the umpire who is the critical realist would say about his umpiring decisions: ‘I give them as I see them!’ The umpire who is a direct realist would say ‘I give them as they are!’

Business and management research is concerned with the social world in which we live. So you may agree with writers such as Bhaskar (1989) who identify with the critical realist epistemology. Their argument is that as researchers we will only be able to understand what is going on in the social world if we understand the social structures that have given rise to the phenomena that we are trying to understand. In other words, what we see is only part of the bigger picture. Bhaskar (1989) argues that we can identify what we don’t see through the practical and theoretical processes of the social sciences.

Thus the critical realist’s position is that our knowledge of reality is a result of social conditioning (e.g. we know that if the rugby player runs into the advertisement that is standing up he will fall over!) and cannot be understood independently of the social actors involved in the knowledge derivation process (Dobson, 2002).

A further important point needs to be made about the distinction between direct and critical realism, both of which are important in relation to the pursuit of business and management research. The first relates the capacity of research to change the world which it studies. The direct realist perspective would suggest the world is relatively unchanging: that it operates, in the business context, at one level (the individual, the group or the organisation). The critical realist, on the other hand, would recognize the importance of multi-level study (for example, at the level of the individual, the group and the organisation). Each of these levels has the capacity to change the researcher’s understanding of that which is being studied. This would be the consequence of the existence of a greater variety of structures, procedures and processes and the capacity that these structures, procedures and processes have to interact with one another. We would therefore argue that the critical realist’s position that the social world is constantly changing...
is much more in line with the purpose of business and management research which is too often to understand the reason for phenomena as a precursor to recommending change.

BOX 4.2 RESEARCH IN THE NEWS

Ageing is not all bowls, bingo and ballroom dancing

Look at television news stories about pensions and pensioners and you are likely to see images of people playing bowls, bingo and ballroom dancing. It seems that we have been conditioned socially to associate older people with activities such as these.

However, in January 2006 research results will be published in the UK which define segments or niches within the older age group. These are not about age but about different life events, such as becoming a grandparent, finding new love, retirement, getting a new job, or coping with bereavement. The difference is that in the 1950s, today’s 50- and 60-year-olds were the ‘first’ teenagers, and as such are not carbon copies of their own ageing parents.

Research from international design consultancy Ideo into this age group backs these findings up. It found that targeting older people alienates older people. It recommended talking to their interests and aspirations, not their age. Age, the agency concluded, is increasingly an irrelevance. So advertising and marketing that instead highlights these life events is becoming more popular. Saatchi and Saatchi’s campaign for Ameriprise Financial in the US focuses on the idea that the baby boomer generation will approach retirement very differently from previous generations. Instead of using actors, Saatchi and Saatchi featured true stories of people from that generation, in an attempt to demonstrate their individuality.

Older celebrities, too, are not living up to the ageing stereotypes, and that makes them ideal spokespersons for this generation. US-based Fidelity Investments, for example, has appointed Paul McCartney as spokesperson. This may strike some consumers as a bizarre move for the ex-Beatle, but with his second wife and new baby, McCartney is seen as a realistic example of a 20th century man in his 60s.

But not all the blame for older people being ignored and patronised can be laid at the feet of the advertising and marketing industries. They may have a lot of money – they represent 50 per cent of total consumer spending in the US – but they are not always in a rush to spend it.

The biggest change for the ad industry to embrace is that the so-called ‘grey market’ is no minority group. By 2041, more than 20m people in the UK will be over 60 – or 37 per cent of the population.

It seems that the grey market was the niche market. But as one researcher pointed out, ‘it’s now more mainstream, and the upshot is that youth has become the niche’.

Source: Article by Claire Dowdy, Financial Times, 7 November 2005. Copyright © 2005 Financial Times Ltd.

Interpretivism

You may be critical of the positivist tradition and argue that the social world of business and management is far too complex to lend itself to theorising by definite ‘laws’ in the same way as the physical sciences. Those researchers critical of positivism argue that rich insights into this complex world are lost if such complexity is reduced entirely to a series of law-like generalisations. If you sympathise with such a view your research philosophy is likely to be nearer to that of the interpretivist.

Interpretivism is an epistemology that advocates that it is necessary for the researcher to understand differences between humans in our role as social actors. This emphasises the difference between conducting research among people rather than objects such as trucks and computers. The term ‘social actors’ is quite significant here. The metaphor of the theatre suggests that as humans we play a part on the stage of human life. In theatrical productions, actors play a part which they interpret in a particular way (which may be their own or that of the director) and act out their part in accordance with this interpretation. In the same way we interpret our everyday social roles in accordance with
the meaning we give to these roles. In addition, we interpret the social roles of others in accordance with our own set of meanings.

The heritage of this strand of interpretivism comes from two intellectual traditions: **phenomenology** and **symbolic interactionism** (Chapter 9). Phenomenology refers to the way in which we as humans make sense of the world around us. In symbolic interactionism we are in a continual process of interpreting the social world around us (Box 4.3) in that we interpret the actions of others with whom we interact and this interpretation leads to adjustment of our own meanings and actions.

Crucial to the interpretivist epistemology is that the researcher has to adopt an empathetic stance. The challenge here is to enter the social world of our research subjects and understand their world from their point of view.

Some would argue that an interpretivist perspective is highly appropriate in the case of business and management research, particularly in such fields as organisational behaviour, marketing and human resource management. Not only are business situations complex, they are also unique. They are a function of a particular set of circumstances and individuals. This immediately raises questions about the generalisability of research that aims to capture the rich complexity of social situations. However, the interpretivist would argue that generalisability is not of crucial importance. We are constantly being told of the ever-changing world of business organisations. If we accept that the circumstances of today may not apply in three months’ time then some of the value of generalisation is lost. Similarly, if we accept that all organisations are unique, that too renders generalisation less valuable.

BOX 4.3 FOCUS ON MANAGEMENT RESEARCH

The motivation of knowledge workers in the Japanese financial services industry

In their 2002 *Journal of Knowledge Management* study Kubo and Saka use an interpretive epistemology to study the motivation of knowledge workers in the Japanese financial services industry. This, they felt, was a particularly interesting study in view of the fact that businesses in Japan are being prompted to change their structure and management style with the rapid liberalisation and the worldwide development of information technology. The traditional Japanese management model, based on lifetime employment and seniority-based salary systems, is under threat from ‘westernisation’ of the financial industry.

Kubo and Saka’s research is based on two data sources:

1. structured one-and-a-half and two-hour telephone interviews;
2. the primary researcher’s own on-site observations during her five-year employment as a company analyst in a securities company.

Kubo and Saka’s research shows that there are three major factors that have an impact on Japanese knowledge workers’ motivation to be committed to working at the same financial firm for a long span of time. These are monetary incentives, human resource development or personal growth, and job autonomy or task achievement. Kubo and Saka conclude that these findings raise considerable concerns about the ability of the traditional Japanese management model to meet the expectations of their knowledge workers.

Source: Kubo and Saka (2002).
Ontology

We noted earlier that epistemology concerns what constitutes acceptable knowledge in a field of study. The key epistemological question is ‘can the approach to the study of the social world, including that of management and business, be the same as the approach to studying the natural sciences?’ The answer to that question points the way to the acceptability of the knowledge developed from the research process.

Ontology, on the other hand, is concerned with nature of reality. To a greater extent than epistemological considerations, this raises questions of the assumptions researchers have about the way the world operates and the commitment held to particular views. The two aspects of ontology we describe here will both have their devotees among business and management researchers. In addition, both are likely to be accepted as producing valid knowledge by many researchers.

The first aspect of ontology we discuss is **objectivism**. This portrays the position that social entities exist in reality external to social actors concerned with their existence. The second aspect, **subjectivism**, holds that social phenomena are created from the perceptions and consequent actions of those social actors concerned with their existence.

Objectivism

This portrays the position that social entities exist in reality external to social actors. An example of this may be management itself (Box 4.4). You may argue that management is an objective entity and decide to adopt an objectivist stance to the study of particular aspects of management in a specific organisation. In order to substantiate your view you would say that the managers in your organisation have job descriptions which prescribe their duties, there are operating procedures to which they are supposed to adhere, they are part of a formal structure which locates them in a hierarchy with people reporting to them and they in turn report to more senior managers. You may argue that managers in an organisation you are studying are different from managers in another organisation. For example, their duties may differ, and this points to the notion of management in your organisation being the creation of those social actors concerned with its creation, that is, the managers themselves. But this is to miss the point that management in your organisation has a reality that is separate from the managers that inhabit that reality.

Subjectivism

The subjectivist view is that social phenomena are created from the perceptions and consequent actions of social actors. What is more, this is a continual process in that through the process of social interaction these social phenomena are in a constant state of revision.

Remenyi et al. (1998:35) stress the necessity to study ‘the details of the situation to understand the reality or perhaps a reality working behind them’. This is often associated with the term constructionism, or social constructionism. This follows from the interpretivist position that it is necessary to explore the subjective meanings motivating the actions of social actors in order for the researcher to be able to understand these actions. Social constructionism views reality as being socially constructed. Social actors, such as the customers you may plan to study in your organisation, may place many different interpretations on the situations in which they find themselves. So individual customers will perceive different situations in varying ways as a consequence of their own view of the world. These different interpretations are likely to affect their actions and the nature of their social interaction with others. In this sense, the customers you are studying not only interact with their environment, they also seek to make sense of it through their...
interpretation of events and the meanings that they draw from these events. In turn their own actions may be seen by others as being meaningful in the context of these socially constructed interpretations and meanings. Therefore, in the case of the customers you are studying, it is your role as the researcher to seek to understand the subjective reality of the customers in order to be able to make sense of and understand their motives, actions and intentions in a way that is meaningful.

All this is some way from the position that customer service in an organisation has a reality that is separate from the customers that perceive that reality. The subjectivist view is that customer service is produced through the social interaction between service providers and customers and is continually being revised as a result of this. In other words, at no time is there a definitive entity called ‘customer service’. It is constantly changing.

This objectivist–subjectivist debate is somewhat similar to the different ways in which the theoretical and practical approaches to organisational culture have developed in recent years. Smircich (1983) noted that objectivists would tend to view the culture of an organisation as something that the organisation ‘has’. On the other hand the subjectivist’s view would be that culture is something that the organisation ‘is’ as a result as a process of continuing social enactment. Management theory and practice has leaned towards treating organisation culture as a variable, something that the organisation ‘has’: something that can be manipulated, changed in order to produce the sort of state desired by managers. The subjectivist viewpoint would be to reject this as too simplistic and argue that culture is something that is created and re-created through a complex array of phenomena which include social interactions and physical factors such as office layout to which individuals attach certain meanings, rituals and myths. It is the meanings that are attached to these phenomena by social actors within the organisation that need to be understood in order for the culture to be understood. Furthermore, because of the continual creation and re-creation of an organisation’s culture it is difficult for it to be isolated, understood and then manipulated.

BOX 4.4 WORKED EXAMPLE

A management exodus at On Tology

As part of a major organisational change all the managers in the marketing department of the chemical manufacturer On Tology left the organisation. They were replaced by new managers who were thought to be more in tune with the more commercially aggressive new culture that the organisation was trying to create. The new managers entering the organisation filled the roles of the managers who had left and had essentially the same job duties and procedures as their predecessors.

John wanted to study the role of management in On Tology and in particular the way in which managers liaised with external stakeholders. He decided to use the new managers in the marketing department as his research subjects.

In his research proposal he decided to write a little about his research philosophy. He defined his ontological position as that of the objectivist. His reasoning was that management in On Tology had a reality that was separate from the managers that inhabit that reality. He pointed to the fact that the formal management structure at On Tology was largely unchanged from that which was practised by the managers that had left the organisation. The process of management would continue in largely the same way in spite of the change in personnel.
Pragmatism

It is unavoidable that the debates on both epistemology and ontology have had a competitive ring to them. The debate is often framed in terms of a choice between either the positivist or the interpretivist research philosophy. Even if you accept the Guba and Lincoln (1994) argument we noted earlier, that questions of method are secondary to questions of epistemology and ontology, you would still be excused for thinking that choosing between one position and the other is somewhat unrealistic in practice. If this is your view then you would be adopting the position of the pragmatist. Pragmatism argues that the most important determinant of the research philosophy adopted is the research question – one approach may be ‘better’ than the other for answering particular questions. Moreover, if the research question does not suggest unambiguously that either a positivist or interpretivist philosophy is adopted, this confirms the pragmatist’s view that it is perfectly possible to work with both philosophies. This mirrors a theme which recurs in this book. This is that mixed methods, both qualitative and quantitative, are possible, and possibly highly appropriate, within one study (see Section 5.4). Tashakkori and Teddlie (1998) suggest that it is more appropriate for the researcher in a particular study to think of the philosophy adopted as a continuum rather than opposite positions. They note that ‘at some points the knower and the known must be interactive, while at others, one may more easily stand apart from what one is studying’ (Tashakkori and Teddlie, 1998:26).

Tashakkori and Teddlie (1998) contend that pragmatism is intuitively appealing, largely because it avoids the researcher engaging in what they see as rather pointless debates about such concepts as truth and reality. In their view you should ‘study what interests you and is of value to you, study in the different ways in which you deem appropriate, and use the results in ways that can bring about positive consequences within your value system’ (Tashakkori and Teddlie, 1998:30).

Axiology

Axiology is a branch of philosophy that studies judgements about value. Although this may include values we possess in the fields of aesthetics and ethics, it is the process of social enquiry with which we are concerned here. The role that your own values play in all stages of the research process is of great importance if you wish your research results to be credible. This is why we think it is worth noting this important topic here, particularly through the example in Box 4.5.

Heron (1996) argues that our values are the guiding reason of all human action. He further argues that researchers demonstrate axiological skill by being able to articulate their values as a basis for making judgements about what research they are conducting and how they go about doing it. After all, at all stages in the research process you will be demonstrating your values. The example in Box 4.5 illustrates the relevance of values in research topic selection. Choosing one topic rather than another suggests that you think one of the topics is more important. Your choice of philosophical approach is a reflection of your values, as is your choice of data collection techniques. For example, to conduct a study where you place great importance on data collected through interview work suggests that you value personal interaction with your respondents more highly than their anonymous views expressed through a questionnaire.

An interesting idea which comes from Heron’s (1996) discussion of axiology is the possibility of writing your own statement of personal values in relation to the topic you are studying. This may be more evidently applicable to some research topics than others.
Those topics concerned with personal career development, for example, may be obvious candidates for this process. For example, it would be an issue of personal value that it is the responsibility of the individual to take charge of her own career development. In areas of finance it may be a strongly held value of the researcher that as much information as possible should be available to as many stakeholders as possible.

A statement of values may be of use both to you as the researcher and those parties with whom you have contact in your research. The use to you would be a result of your ‘being honest with yourself’ about quite what your values are. This would, for example, heighten your awareness of value judgements you are making in drawing conclusions from your data. These value judgements may lead to the drawing of conclusions which may be different from those drawn by researchers with other values. Other relevant parties connected with your research may include any fellow researchers, your supervisor and the university research ethics committee. This latter body may be of particular relevance to thoughts about the role of values in research topic choice and ways of pursuing research. Being clear about your own value position may help you in deciding what is appropriate ethically and arguing your position in the event of queries about decisions you have made. Chapter 6 goes into more detail about research ethics.

BOX 4.5 RESEARCH IN THE NEWS

It’s good to talk: but to drive at the same time?

There are some research topics which, by their very nature, are certain to arouse strong emotions. Therefore it is difficult to see how the research can be approached in a value-free way. For example, who would argue that endangering life while using a mobile phone when driving is something that we do not have an opinion about?

Recent research by researchers at the University of Western Australia suggests that drivers are four times more likely to crash when using mobile phones, even if they use hands-free kits.

They reached their estimates by looking at the phone bill records of 456 drivers needing hospital treatment after road crashes in Perth, Australia.

For each driver, the researchers assessed phone use immediately before a crash and on trips at the same time of day 24 hours, three days, and seven days before the crash for comparison. Mobile phone use in the 10 minutes before a crash was associated with a four-fold increased likelihood of crashing. This finding was irrespective of whether the driver was using a hand-held or hands-free phone. Similar results were found for the interval up to five minutes before a crash.

Author Suzanne McEvoy and colleagues from the University of Western Australia said: ‘More and more new vehicles are being equipped with hands-free phone technology.’

‘Although this may lead to fewer hand-held phones used while driving in the future, our research indicates that this may not eliminate the risk. Indeed, if this new technology increases mobile phone use in cars, it could contribute to even more crashes.’

A spokesman from the UK Royal Society for the Prevention of Accidents said: ‘This is exactly what we have said and have known for some time. We hope that the people who callously think that their phone call is more important than somebody’s life will get the message eventually when they see more and more research like this.’ He said the current ban on using hand-held mobiles while driving in the UK, which can carry the penalty of a fine and in the future possibly also penalty points on the driver’s licence, should be extended to hands-free phones. They said a possible solution might be to change mobile phones so that they cannot be used when vehicles are in motion, but added that industry was unlikely to embrace this.

Research paradigms

To draw this section on research philosophies together we explore research philosophy further through the concept of research paradigms. Paradigm is a term frequently used in the social sciences, but one which can lead to confusion because it tends to have multiple meanings. The definition we use here is that a paradigm is a way of examining social phenomena from which particular understandings of these phenomena can be gained and explanations attempted.

In our view the work of Burrell and Morgan (1979) is particularly helpful in summarising and clarifying the epistemologies and ontologies we have covered above. In addition, these writers have offered a categorisation of social science paradigms which can be used in management and business research to generate fresh insights into real-life issues and problems.

In Figure 4.2 we illustrate the four paradigms: functionalist; interpretive; radical humanist; and radical structuralist.

Figure 4.2 shows that the four paradigms are arranged to correspond to four conceptual dimensions: radical change and regulation and subjectivist and objectivist. The latter two terms are familiar to you from our discussion of ontology in the previous section. In relation to business and management, radical change relates to a judgement about the way organisational affairs should be conducted and suggests ways in which these affairs may be conducted in order to make fundamental changes to the normal order of things. In short, the radical change dimension adopts a critical perspective on organisational life. The regulatory perspective is less judgemental and critical. Regulation seeks to explain the way in which organisational affairs are regulated and offer suggestions as to how they may be improved within the framework of the way things are done at present. In other words, the radical change dimension approaches organisational problems from the viewpoint of overturning the existing state of affairs; the regulatory dimension seeks to work within the existing state of affairs.

Burrell and Morgan (1979) note that the purposes of the four paradigms are:

- to help researchers clarify their assumptions about their view of the nature of science and society;
to offer a useful way of understanding the way in which other researchers approach their work;

- to help researchers plot their own route through their research; to understand where it is possible to go and where they are going.

In the bottom right corner of the quadrant is the **functionalist paradigm**. This is located on the objectivist and regulatory dimensions. Objectivism is the ontological position you are likely to adopt if you are operating with this paradigm. It is regulatory in that you will probably be more concerned with a rational explanation of why a particular organisational problem is occurring and developing a set of recommendations set within the current structure of the organisation's current management. This is the paradigm within which most business and management research operates. As Burrell and Morgan (1979:26) note: 'it is often problem-oriented in approach, concerned to provide practical solutions to practical problems'. Perhaps the key assumption you would be making here is that organisations are rational entities, in which rational explanations offer solutions to rational problems. A typical example of a management research project operating within the functionalist paradigm would be an evaluation study of a communication strategy to assess its effectiveness and make recommendations as to the way in which it may be made more effective.

Contained in the bottom left corner of the quadrant is the **interpretive paradigm**. As has been noted, the philosophical position to which this refers is the way we as humans attempt to make sense of the world around us. The concern you would have working within this paradigm would be to understand the fundamental meanings attached to organisational life. Far from emphasizing rationality, it may be that the principal concern you have here is discovering irrationalities. Concern with studying an organisation’s communication strategy may soon turn to understanding the ways in which the intentions of management become derailed for completely unseen reasons, maybe reasons which are not apparent even to those involved with the strategy. This is likely to take you into the realm of organisation politics and the way in which power is used. In Burrell and Morgan’s (1979:31) words, ‘everyday life is accorded the status of a miraculous achievement’. Your concern here would not be to achieve change in the order of things, it would be to understand and explain what is going on.

In the top left corner the **radical humanist paradigm** is located within the subjectivist and radical change dimensions. As we said earlier, the radical change dimension adopts a critical perspective on organisational life. As such, working within this paradigm you would be concerned with changing the status quo, or in Burrell and Morgan’s (1979:32) words ‘to articulate ways in which humans can transcend the spiritual bonds and fetters which tie them into existing social patterns and thus realise their full potential’. The ontological perspective you would adopt here, as in the interpretivist paradigm, would be subjectivist.

Finally, in the top right corner of the quadrant is the **radical structuralist paradigm**. Here your concern would be to approach your research with a view to achieving fundamental change based upon an analysis of such organisational phenomena as power relationships and patterns of conflict. The radical structuralist paradigm is involved with structural patterns within work organisations such as hierarchies and reporting relationships and the extent to which these may produce dysfunctionalities. It adopts an objectivist perspective because it is concerned with objective entities, unlike the radical humanist paradigm which attempts to understand the meanings of social phenomena from the subjective perspective of participating social actors.

To illustrate the difference between the radical humanist and radical structuralist paradigms we use issue of discrimination in the workplace in Box 4.6.
Employment discrimination against African American males

Discrimination in employment presents a particularly good example of the radical humanist and radical structuralist paradigms in business and management research. Assuming the existence of discrimination, the explanation may be due to the structures that exist in organisations such as the procedures used for advertising posts or conducting selection interviews. On the other hand, the explanation may be embedded in the processes used for managing particular groups of employees. These are likely to focus on the informal way in which these procedures are conducted by managers, and other employees. So the radical structuralist approach will concentrate rather more on formal procedures (what should be done) than the radical humanist paradigm, where attention will be on what is done.

Slonaker and Wendt (2003) portray the difference between structure and process in an interesting way. They make the distinction between structural hiring activities (the front door) and the treatment that employees receive in the ‘firing’ process (the back door).

As a result of studying over 8000 discrimination claims to the legal authority in Ohio, Slonaker and Wendt’s contention is that American organisations pay far more attention to front-door issues than those which focus on employment termination. To illustrate their point they note that the US HRM Certification Institute devote nineteen pages to hiring issues in their learning manual. Only four pages are devoted to involuntary terminations, including one paragraph on discrimination.

Slonaker and Wendt’s findings show that only 7 per cent of the discrimination claims filed between 1985 and 2001 related to discrimination in hiring. But 57 per cent of all claims derived from discrimination in termination. Moreover, African American males filed more than eight times the number of claims relating to termination as those that they filed which related to hiring.

The findings also showed that complainant African American males were in lower-graded positions relative to non-African American males, had shorter employment duration, were more likely to be dismissed by their immediate supervisor (rather than HR professionals) and more likely to be dismissed due to ‘disruptive behaviour’. This latter finding, the authors suggest, may be due to stereotyping on the part of organisational supervisors.

The authors conclude that these results indicate discrimination against African American males. In addition, this discrimination occurs in the disciplinary processes adopted by supervisors despite the procedures drawn up by the organisations’ HR professionals.

An outline research proposal on corporate social responsibility using integrated paradigms

The purpose of Krista’s research is to understand how corporations implement corporate social responsibility (CSR) codes of conduct. Inherent in this exploration is an understanding of the following:

- what role corporations believe they have in society;
- how this impacts the types of CSR commitments they make in their codes of conduct;
- how these commitments are operationalised;
- how these actions are communicated to those who are asked or required to conduct them;
how these individuals feel about their new responsibilities;
how the actions were in fact carried out;
what the targeted groups feel about the actions carried out;
the successes and failures experienced during these processes.

Integrated research paradigm
Krista anticipates using both qualitative and quantitative techniques to collect data. However, she points out that the approach will not be from a positivist perspective, as she believes there is no truth or absolute reality to be discovered. She argues that codes of conduct are a human construct and the success or failure of implementing the code is dependent upon the perspective of the individuals or groups affected. Krista contends that this suggests a likely approach of interpretivist/social constructivism/interactionism (Mertens, 1998; Denzin, 2001; Aram and Salipante Jr., 2003). She notes that the individuals or groups affected by the codes of conduct are also situated in historical and cultural contexts, which impact on how they perceive the actions of the corporation and its value to them.

The focus of Krista’s research will be on the corporation and what it has learned and has yet to learn about successful implementation of its code as defined by all affected groups, including the marginalised, oppressed and least powerful.

Krista’s research is likely to be approached from primarily an interpretivist or social constructionist perspective in that there are multiple realities to be understood and all impact the overall success or failure of the code implementation efforts. Identifying and understanding the relationships between multiple realities of code implementation will start to reveal the ‘underlying patterns and order of the social world’ (Morgan, 1980:609) with regard to this phenomenon. She argues that the patterns and order themselves can provide insight into more successful or unsuccessful code implementation techniques and considerations. The end goals of Krista’s research are twofold. The first goal is to help the corporation with its efforts to improve its social responsibilities to society as are appropriate to its unique context. The second goal is to empower stakeholder representatives to better communicate with the corporation in consensus-building activities regarding needs and wants for both parties. Krista notes that the quantitative element of this research will be used solely to determine the generalisability of this information for other corporations around the world and will not impact on the overall perspective taken.

Owing to the exploratory and descriptive nature of this research (Robson, 2002), data collection, organization and analysis will be guided primarily by a grounded theory, or inductive perspective, whereby the collection, examination and process of continual re-examination of data will determine the research findings.

As the social constructivist perspective is considered to be an integrated perspective, Krista contends that it is appropriate also to use mixed methods. She will use qualitative methods in the form of case studies to create an in-depth, rich account (Yin, 2003; Scholz and Tietje, 2002; Rubin and Rubin, 1995) of how corporations implement their codes of conduct and what stakeholders think about their efforts. The second phase of research will be used to determine whether the code implementation practices identified in the case studies can be used to describe successful or unsuccessful implementation of CSR codes within a more general group of corporations. A survey will be conducted to determine whether the information found is more generalisable or specific to certain unique corporations.

Bridging the relevance gap
Krista argues in her outline proposal that her research will attempt to help bridge the ‘relevance gap’ between researchers and practitioners on CSR code implementation (Aram and Salipante, 2003; Tranfield and Starkey, 1998), by ensuring the research strategies (decided on in advance...
Which research philosophy is ‘better’?

It would be easy to fall into the trap of thinking that one research approach is ‘better’ than another. This would miss the point. They are ‘better’ at doing different things. As always, which is ‘better’ depends on the research question(s) you are seeking to answer.

Of course, the practical reality is that research rarely falls neatly into only one philosophical domain as suggested in the ‘onion’ (Figure 4.1). Business and management research is often a mixture between positivist and interpretivist, perhaps reflecting the stance of realism. Indeed, later in this chapter we shall also be encouraging you to think in a more flexible way about the research approach and methods you adopt.

You may ask what practical use is an understanding of your philosophical position? Is it as much use as the outer layer on a real onion, which is cast aside, with only the inner layers retained? We think that it is of practical benefit to understand the taken-for-granted assumptions that we all have about the way the world works. Only if we have such an understanding can we examine these assumptions, challenge them if we think it appropriate, and behave in a different way.
4.3 Research approaches

Chapter 2 notes that your research project will involve the use of theory. That theory may or may not be made explicit in the design of the research (Chapter 5), although it will usually be made explicit in your presentation of the findings and conclusions. The extent to which you are clear about the theory at the beginning of your research raises an important question concerning the design of your research project. This is whether your research should use the deductive approach, in which you develop a theory and hypothesis (or hypotheses) and design a research strategy to test the hypothesis, or the inductive approach, in which you would collect data and develop theory as a result of your data analysis. Insofar as it is useful to attach these research approaches to the different research philosophies, deduction owes more to positivism and induction to interpretivism, although we believe that such labelling is potentially misleading and of no real practical value.

The next two sections of this chapter explain the differences between these two approaches and the implications of these differences.

Deduction: testing theory

As noted earlier, deduction owes much to what we would think of as scientific research. It involves the development of a theory that is subjected to a rigorous test. As such, it is the dominant research approach in the natural sciences, where laws present the basis of explanation, allow the anticipation of phenomena, predict their occurrence and therefore permit them to be controlled (Collis and Hussey, 2003).

Robson (2002) lists five sequential stages through which deductive research will progress:

1. deducing a hypothesis (a testable proposition about the relationship between two or more concepts or variables) from the theory;
2. expressing the hypothesis in operational terms (that is, indicating exactly how the concepts or variables are to be measured), which propose a relationship between two specific concepts or variables;
3. testing this operational hypothesis (this will involve one or more of the strategies detailed in Chapter 5);
4. examining the specific outcome of the inquiry (it will either tend to confirm the theory or indicate the need for its modification);
5. if necessary, modifying the theory in the light of the findings.

An attempt is then made to verify the revised theory by going back to the first step and repeating the whole cycle.

Deduction possesses several important characteristics. First, there is the search to explain causal relationships between variables. It may be that you wish to establish the reasons for high employee absenteeism in a retail store. After studying absence patterns it occurs to you that there seems to be a relationship between absence, the age of workers and length of service. Consequently you develop a hypothesis that states that absenteeism is more likely to be prevalent among younger workers who have worked for the organisation for a relatively short period of time. To test this hypothesis you utilise another characteristic, the collection of quantitative data. (This is not to say that a deductive
approach may not use qualitative data.) It may be that there are important differences in
the way work is arranged in different stores: therefore you would need to employ a further
important characteristic of deduction approach, controls to allow the testing of
hypotheses. These controls would help to ensure that any change in absenteeism was a
function of worker age and length of service rather than any other aspect of the store, for
example the way in which people were managed. Your research would use a highly structured methodology to facilitate replication (Gill and Johnson, 2002), an important issue
to ensure reliability, as we shall emphasise in Section 5.6.

In order to pursue the principle of scientific rigour, deduction dictates that the
researcher should be independent of what is being observed. This is easy in our example
because it involves only the collection of absence data. It is also unproblematic if a postal
questionnaire is being administered, although the high level of objectivity this suggests
appears less convincing when one considers the element of subjectivity in the choice of
questions and the way these are phrased (Section 11.3).

An additional important characteristic of deduction is that concepts need to be
operationalised in a way that enables facts to be measured quantitatively. In our example
above, the obvious one is absenteeism. Just what constitutes absenteeism would have to
be strictly defined: an absence for a complete day would probably count, but what about
absence for two hours? In addition, what would constitute a ‘short period of employment’ and ‘younger’ employees? What is happening here is that the principle of
reductionism is being followed. This holds that problems as a whole are better understood if they are reduced to the simplest possible elements.

The final characteristic of deduction is generalisation. In order to be able to generalise
statistically about regularities in human social behaviour it is necessary to select samples
of sufficient numerical size. In our example above, research at a particular store would
allow us only to make inferences about that store; it would be dangerous to predict that
worker youth and short length of service lead to absenteeism in all cases. This is discussed
in more detail in Section 5.6.

Induction: building theory

An alternative approach to conducting research on DIY store employee absenteeism
would be to go on to the shopfloor and interview a sample of the employees and their
supervisors about the experience of working at the store. The purpose here would be to
get a feel of what was going on, so as to understand better the nature of the problem.
Your task then would be to make sense of the interview data you had collected by
analysing those data. The result of this analysis would be the formulation of a theory.
This may be that there is a relationship between absence and relatively short periods of
employment. Alternatively, you may discover that there are other competing reasons for
absence that may or may not be related to worker age or length of service. You may end
up with the same theory, but you would have gone about the production of that theory
using an inductive approach: theory would follow data rather than vice versa as with
deduction.

We noted earlier that deduction has its origins in research in the natural sciences.
However, the emergence of the social sciences in the 20th century led social science
researchers to be wary of deduction. They were critical of an approach that enabled a
cause-effect link to be made between particular variables without an understanding of
the way in which humans interpreted their social world. Developing such an understandings is, of course, the strength of an inductive approach. In our absenteeism example
we would argue that it is more realistic to treat workers as humans whose attendance
behaviour is a consequence of the way in which they perceive their work experience, rather than as if they were unthinking research objects who respond in a mechanistic way to certain circumstances.

Followers of induction would also criticise deduction because of its tendency to construct a rigid methodology that does not permit alternative explanations of what is going on. In that sense, there is an air of finality about the choice of theory and definition of the hypothesis. Alternative theories may be suggested by deduction. However, these would be within the limits set by the highly structured research design. In this respect, a significant characteristic of the absenteeism research design noted above is that of the operationalisation of concepts. As we saw in the absenteeism example, age was precisely defined. However, a less structured approach might reveal alternative explanations of the absenteeism–age relationship denied by a stricter definition of age.

Research using an inductive approach is likely to be particularly concerned with the context in which such events were taking place. Therefore the study of a small sample of subjects might be more appropriate than a large number as with the deductive approach. As can be seen in Chapter 10, researchers in this tradition are more likely to work with qualitative data and to use a variety of methods to collect these data in order to establish different views of phenomena (Easterby-Smith et al., 2002).

At this stage you may be asking yourself: So what? Why is the choice that I make about my research approach important? Easterby-Smith et al. (2002) suggest three reasons. First, it enables you to take a more informed decision about your research design (Chapter 5), which is more than just the techniques by which data are collected and procedures by which they are analysed. It is the overall configuration of a piece of research involving questions about what kind of evidence is gathered and from where, and how such evidence is interpreted in order to provide good answers to your initial research question.

Second, it will help you to think about those research strategies and choices that will work for you and, crucially, those that will not. For example, if you are particularly interested in understanding why something is happening, rather than being able to describe what is happening, it may be more appropriate to undertake your research inductively rather than deductively.

Third, Easterby-Smith et al. (2002) argue that knowledge of the different research traditions enables you to adapt your research design to cater for constraints. These may be practical, involving, say, limited access to data, or they may arise from a lack of prior knowledge of the subject. You simply may not be in a position to frame a hypothesis because you have insufficient understanding of the topic to do this.

Combining research approaches

So far we have conveyed the impression that there are rigid divisions between deduction and induction. This would be misleading. Not only is it perfectly possible to combine deduction and induction within the same piece of research, but also in our experience it is often advantageous to do so.

We return to the topic of using multiple methods in Section 5.6. Table 4.1 summarises some of the major differences between deduction and induction.

At this point you may be wondering whether your research will be deductive or inductive. Creswell (1994) suggests a number of practical criteria. Perhaps the most important of these is the nature of the research topic. A topic on which there is a wealth of literature from which you can define a theoretical framework and a hypothesis lends itself more readily to deduction. With research into a topic that is new, is exciting much debate, and on which there is little existing literature, it may be more appropriate to work
Sadie decided to conduct a research project on violence at work and its effects on the stress levels of staff. She considered the different ways she would approach the work were she to adopt:

- the deductive approach;
- the inductive approach.

If she decided to adopt a deductive approach to her work she would have to:

1. start with the hypothesis that staff working with the public are more likely to experience the threat or reality of violence and resultant stress;
2. decide to research a population in which she would have expected to find evidence of violence, for example a sizeable social security office;
3. administer a questionnaire to a large sample of staff in order to establish the extent of violence (either actually experienced or threatened) and the levels of stress experienced by them;
4. be particularly careful about how she defined violence;
5. standardise the stress responses of the staff, for example days off sick or sessions with a counsellor.

On the other hand, if she decided to adopt an inductive approach she might have decided to interview some staff who had been subjected to violence at work. She might have been interested in their feelings about the events that they had experienced, how they coped with the problems they experienced, and their views about the possible causes of the violence.

Either approach would have yielded valuable data about this problem (indeed, both may be used in this project, at different stages). Neither approach should be thought of as better than the other. They are better at different things. It depends where her research emphasis lies.

Table 4.1 Major differences between deductive and inductive approaches to research

<table>
<thead>
<tr>
<th>Deduction emphasises</th>
<th>Induction emphasises</th>
</tr>
</thead>
<tbody>
<tr>
<td>scientific principles</td>
<td>gaining an understanding of the meanings humans attach to events</td>
</tr>
<tr>
<td>moving from theory to data</td>
<td>a close understanding of the research context</td>
</tr>
<tr>
<td>the need to explain causal relationships between variables</td>
<td>the collection of qualitative data</td>
</tr>
<tr>
<td>the collection of quantitative data</td>
<td>a more flexible structure to permit changes of research emphasis as the research progresses</td>
</tr>
<tr>
<td>the application of controls to ensure validity of data</td>
<td>a realisation that the researcher is part of the research process</td>
</tr>
<tr>
<td>the operationalisation of concepts to ensure clarity of definition</td>
<td>less concern with the need to generalise</td>
</tr>
<tr>
<td>a highly structured approach</td>
<td></td>
</tr>
<tr>
<td>researcher independence of what is being researched</td>
<td></td>
</tr>
<tr>
<td>the necessity to select samples of sufficient size in order to generalise conclusions</td>
<td></td>
</tr>
</tbody>
</table>
inductively by generating data and analysing and reflecting upon what theoretical themes the data are suggesting.

The time you have available will be an issue. Deductive research can be quicker to complete, albeit that time must be devoted to setting up the study prior to data collection and analysis. Data collection is often based on ‘one take’. It is normally possible to predict the time schedules accurately. On the other hand, inductive research can be much more protracted. Often the ideas, based on a much longer period of data collection and analysis, have to emerge gradually. This leads to another important consideration, the extent to which you are prepared to indulge in risk. Deduction can be a lower-risk strategy, albeit that there are risks, such as the non-return of questionnaires. With induction you have constantly to live with the fear that no useful data patterns and theory will emerge. Finally, there is the question of audience. In our experience, most managers are familiar with deduction and much more likely to put faith in the conclusions emanating from this approach. You may also wish to consider the preferences of the person marking your research report. We all have our preferences about the approach to adopt. You may be wise to establish these before nailing your colours too firmly to one mast.

This last point suggests that not all the decisions about the research approach that you make should always be so practical. Hakim (2000) uses an architectural metaphor to illustrate the choice of approach. She introduces the notion of the researcher’s preferred style, which, rather like the architect’s, may reflect ‘. . . the architect’s own preferences and ideas . . . and the stylistic preferences of those who pay for the work and have to live with the final result’ (Hakim, 2000:1). This echoes the feelings of Buchanan et al. (1988:59), who argue that ‘needs, interests and preferences (of the researcher) . . . are typically overlooked but are central to the progress of fieldwork’. However, a note of caution: it is important that your preferences do not lead to your changing the essence of the research question.

4.4 Summary

- The term research philosophy relates to the development of knowledge and the nature of that knowledge.
- Your research philosophy contains important assumptions about the way in which you view the world.
- There are three major ways of thinking about research philosophy: epistemology, ontology and axiology. Each contains important differences which will influence the way in which you think about the research process.
- Epistemology concerns what constitutes acceptable knowledge in a field of study.
- Positivism relates to the philosophical stance of the natural scientist. This entails working with an observable social reality and the end product can be law-like generalisations similar to those in the physical and natural sciences.
- The essence of realism is that what the senses show us is reality, is the truth: that objects have an existence independent of the human mind.
- Interpretivism is an epistemology that advocates that it is necessary for the researcher to understand the differences between humans in our role as social actors.
- Ontology is a branch of philosophy which is concerned with the nature of social phenomena as entities.
Objectivism is the ontological position which holds that social entities exist in reality external to social actors whereas the subjectivist view is that social phenomena are created from the perceptions and consequent actions of social actors.

Pragmatism holds that the most important determinant of the research philosophy adopted is the research question.

Axiology is a branch of philosophy that studies judgements about value.

Social science paradigms can be used in management and business research to generate fresh insights into real-life issues and problems. The four paradigms explained in the chapter are: functionalist; interpretive; radical humanist; and radical structuralist.

There are two main research approaches: deduction and induction. With deduction a theory and hypothesis (or hypotheses) are developed and a research strategy designed to test the hypothesis. With induction, data are collected and a theory developed as a result of the data analysis.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

4.1 You have decided to undertake a project and have defined the main research question as "What are the opinions of consumers to a 10% reduction in weight, with the price remaining the same, of "Snackers" chocolate bars?" Write a hypothesis that you could test in your project.

4.2 Why may it be argued that the concept of the manager is socially constructed rather than 'real'?

4.3 Why are the radical paradigms relevant in business and management research given that most managers would say that the purpose of organisational investigation is to develop recommendations for action to solve problems without radical change?

4.4 If you were to follow up the Slonaker and Wendt (2003) study on discrimination against African American males, what philosophical stance may underpin your research choice?

4.5 You have chosen to undertake your research project following a the deductive approach. What factors may cause you to work inductively, although working deductively is your preferred choice?

4.6 Visit an online database or your university library and obtain a copy of a research-based refereed journal article that you think will be of use to an assignment you are currently working on. Read this article carefully. What research philosophy do you think the author has adopted? Use Section 4.2 to help you develop a clear justification for your answer.

4.7 Think about the last assignment you undertook for your course. In undertaking this assignment, were you predominantly inductive or deductive? Discuss your thoughts with a friend who also undertook this assignment.

4.8 Agree with a friend to watch the same television documentary.
 a To what extent is the documentary inductive or deductive in its use of data?
 b Have the documentary makers adopted a positivist, realist, interpretivist or pragmatist philosophy?

Do not forget to make notes regarding your reasons for your answers to each of these questions and to discuss your answers with your friend.
Diagnosing your research philosophy

Indicate your agreement or disagreement with each of these statements. There are no right or wrong answers.

1. For the topic being researched there is one single reality; the task of the researcher is to discover it

2. Business and management research is value laden

3. A researcher cannot be separated from what is being researched and so will inevitably be subjective

4. A variety of data collection techniques should be used, both quantitative and qualitative

5. The reality of what is being researched exists independently of people’s thoughts, beliefs and knowledge of their existence

6. Researchers must remain objective and independent from the phenomena they are studying, ensuring that their own values do not impact on data interpretation

7. Business and management research should be practical and applied, integrating different perspectives to help interpret the data

8. Business and management researchers need to employ methods that allow in-depth exploration of the details behind a phenomenon

Now discuss your answers with your colleagues. To guide your discussion you need to think about:

What do you consider to be the nature of reality? Why?

To what extent do your own values influence your research? Why?

What do you consider to be acceptable knowledge in relation to your research? Why?

How might knowledge of this impact upon your own research?

Source: These questions were developed with the help of Judith Thomas.
References

Further reading

Burrell, G. and Morgan, G. (1979) *Sociological Paradigms and Organisational Analysis*, London, Heinemann. This is an excellent book on paradigms which goes into far more detail than space has allowed in this chapter.

Esmée had been working in the music industry as a marketing director for a small and successful independent record label for over fifteen years before deciding to study at university. She had witnessed many changes in the music industry over her career, the most significant of which was the transition from selling cassettes, vinyl records and CDs at retail to selling digital music online. She had observed that the music industry had not taken much notice of the potential for marketing and distributing digital music online until Shawn Fanning developed his peer-to-peer (P2P) file trading application, Napster, in 1999. While the music industry focused on shutting the service down, Napster became even more popular with music fans and consumers who were interested in discovering and sharing new music and creating custom compilations or playlists without having to buy entire albums. Early on, Esmée had decided that she needed to understand why Napster was so popular and consumers so enthusiastic about sharing music online. She decided to download the Napster application and was surprised to find older songs that were no longer available at retail, previously unreleased recordings, alternative studio versions and bootleg recordings made at live concerts. While searching for and downloading music, Esmée also began to interact with communities focused around their file trading activities. While the music industry viewed Napster and other P2P file trading applications with deep suspicion and focused on the issues of piracy and loss of royalties to shut them down, her interactions with P2P file traders provided her with significant insights into how the consumer’s relationship to music was changing. P2P file trading applications and other digital music technologies represented new ‘meanings’ for music fans and distinct new channels for music marketing and distribution. As online music sharing became even more popular, Esmée observed that both major and independent record labels continued to struggle with and resist the very technologies that were fundamentally redefining their industry. She was puzzled by this and wanted to develop a more consolidated understanding of the current state of the music industry and to gain in-depth knowledge of the potential that new technologies had for transforming the entire industry.

Nearing the end of her studies, Esmée spent many weeks struggling with identifying the focus of her final research project and thinking about how her own value systems and beliefs were likely to impact on her research. She reflected that in the programme’s Innovation and Technology Management module, she had learned about the technical and strategic issues of digital music distribution involving content creators, artists, record companies and retailers. After reading Premkumar’s (2003) article ‘Alternate distribution strategies for digital music’, Esmée realised that success in digital music distribution hinged on the music industry’s ability to identify and address the new marketing and sociological issues associated with the consumer’s switch to new forms of music consumption and that record labels would need to re-evaluate their current practices in the context of these new technologies and channels for music marketing and distribution. Additionally, while reading for the Leadership and Organisational Management module, she had come across Lawrence and Phillips’ (2002) article on the cultural industries in which they observed that despite the social, economic and political significance of the cultural industries, management research had neglected to focus their efforts on cultural production. They argued that there was a need for empirical research into the organisational and managerial dynamics of cultural production and had found that even where it had been studied, many management researchers had failed to appreciate the particular nuances and dynamics that characterise these industries.

Esmée arranged a meeting with her supervisor and outlined her realisation that ‘managing’ in the
cultural industries related less to producing products and more to creating, managing and maintaining the meaning or ‘symbolic aspect’ of the product. She explained to him that this was especially relevant to the music industry’s transition to digital music technologies and that her final project would focus on how traditional marketing departments in record labels could approach redefining their notions of ‘music products’ while adapting to emerging digital music distribution channels. This would entail understanding how the process of symbol creation and the management of meaning by record labels would need to be managed in order to adapt to the emergence of new symbols and potential meanings enabled by the development of new digital music technologies. She added that her experiences as a marketing director provided her with unique insights that would inform and guide her research. Her tutor responded by commenting that her research project sounded interesting and relevant and that, in his opinion, the best way forward would be to adopt a positivist research philosophy using a survey strategy and administering a questionnaire to marketing personnel across major and independent record labels in order to produce data suitable for statistical analysis. After the meeting, Esmée reflected on her tutor’s comments. She was surprised that he proposed adopting a positivist philosophy. Based on her previous experiences with peer-to-peer communities, she believed that adopting an interpretivist philosophical stance and using unstructured interviews would be more suitable for her research project. Esmée contemplated how she should communicate this to her tutor and how she would be able to convince him that approaching her research project as an interpretivist and using unstructured interviews would be preferable and just as rigorous an undertaking.

References

QUESTIONS

1. Why is it important to consider epistemology and ontology when undertaking research?

2. What will Esmée need to do in order to respond or challenge her tutor’s assertion that she adopt a quantitative methodology?

3. How does Esmée understand the role that her values play with regard to her research project?

SELF-CHECK ANSWERS

4.1 Probably the most realistic hypothesis here would be ‘consumers of “Snackers” chocolate bars did not notice the difference between the current bar and its reduced weight successor’. Doubtless that is what the Snackers’ manufacturers would want confirmed!

4.2 Although you can see and touch a manager, you are only seeing and touching another human being. The point is that the role of the manager is a socially constructed concept. What a manager is will differ between different national and organisational cultures and will differ over time. Indeed, the concept of the manager as we generally understand it is a relatively recent human invention, arriving at the same time as the formal organisation in the past couple of hundred years.

4.3 The researcher working in the radical humanist or structuralist paradigms may argue that it is predictable that managers would say that the purpose of organisational investigation is to develop recommendations for action to solve problems without radical change because radical change may involve changing managers! Radicalism implies root and branch investigation and possible change and most of us prefer ‘fine tuning’ within the framework of what exists already, particularly if change threatens our vested interests.
4.4 The study does seem to have thrown up some very useful data which indicated the likelihood of discrimination against African American males. However, the conclusions that the authors draw are tentative, given that they are largely based on survey evidence. This seems like a piece of research that would benefit from a study rooted in the radical humanist paradigm. Slonaker and Wendt may be perfectly justified in drawing the conclusions they draw. But what they do not do is explain what it is that the supervisors actually do to generate the data which is evident. Neither do they explain what may motivate the supervisors’ actions.

4.5 The question implies an either/or choice. But as you work through this chapter and, in particular, the next on deciding your research design, you will see that life is rarely so clear cut! Perhaps the main factor that would cause you to review the appropriateness of the deductive approach would be that the data you collected might suggest an important hypothesis, which you did not envisage when you framed your research objectives and hypotheses. This may entail going further with the data collection, perhaps by engaging in some qualitative work, which would yield further data to answer the new hypothesis.

Get ahead using resources on the Companion Website at:
www.pearsoned.co.uk/saunders
- Improve your SPSS and NVivo research analysis with practice tutorials.
- Save time researching on the Internet with the Smarter Online Searching Guide.
- Test your progress using self-assessment questions.
- Follow live links to useful websites.
5 Formulating the research design

LEARNING OUTCOMES

By the end of this chapter you should be able to:

➔ understand the importance of having thought carefully about your research design;
➔ identify the main research strategies and explain why these should not be thought of as mutually exclusive;
➔ explain the differences between quantitative and qualitative data collection techniques and analysis procedures;
➔ explain the benefits of adopting multiple methods to the conduct of research;
➔ consider the implications of adopting different time horizons for your research design;
➔ explain the concepts of validity and reliability and identify the main threats to validity and reliability;
➔ understand some of the main ethical issues implied by the choice of research strategy.

5.1 Introduction

In Chapter 4 we introduced the research onion as a way of depicting the issues underlying your choice of data collection method or methods and peeled away the outer two layers – research philosophies and research choices. In this chapter we uncover the next three layers: research strategies, research choices and time horizons. These three layers can be thought of as focusing on the process of research design, that is, turning your research question into a research project (Robson, 2002). As we saw, the way you choose to answer your research question will be influenced by your research philosophy and approach. Your research question will subsequently inform your choice of research strategy, your choices of collection techniques and analysis procedures, and the time horizon over which you undertake your research project.
Your *research design* will be the general plan of how you will go about answering your research question(s) (the importance of clearly defining the research question cannot be overemphasised). It will contain clear objectives, derived from your research question(s), specify the sources from which you intend to collect data, and consider the constraints that you will inevitably have (for example, access to data, time, location and money) as well as discussing ethical issues. Crucially, it should reflect the fact that you have thought carefully about why you are employing your particular research design. It would be perfectly legitimate for your assessor to ask you why you chose to conduct your research in a particular organisation, why you chose the particular department, why you chose to talk to one group of staff rather than another. You must have valid reasons for all your research design decisions. The justification should always be based on your research question(s) and objectives as well as being consistent with your research philosophy.

At this point we should make a clear distinction between design and *tactics*. The former is concerned with the overall plan for your research; the latter is about the finer detail of data collection and analysis. Decisions about tactics will involve your being clear about the different quantitative and qualitative data collection techniques (for example, questionnaires, interviews, focus groups, published data) and subsequent quantitative analysis.
and qualitative data analysis procedures, which will be dealt with in detail in subsequent chapters.

In this chapter we commence with a brief review of the purpose of research (Section 5.2). This has clear links with our earlier discussion of research questions in Section 2.4. Subsequently we consider possible research strategies (Section 5.3). After defining quantitative and qualitative data, different research choices combining one or more data collection techniques and analysis procedures are outlined (Section 5.4). We then examine the time horizons you might apply to your research (Section 5.5) and issues of research credibility (Section 5.6) and the ethics of research design (Section 5.7), the data collection and analysis layer of the research process onion (Figure 5.1) being dealt with in Chapters 7–11 and 12–13 respectively.

5.2 The purpose of your research

In Chapter 2 we encouraged you to think about your research project in terms of the question you wished to answer and your research objectives. Within this we highlighted how the way in which you asked your research question would result in either descriptive, descriptive and explanatory, or explanatory answers. In thinking about your
research question, you inevitably have begun to think about the purpose of your research. The classification of research purpose most often used in the research methods' literature is the threefold one of exploratory, descriptive and explanatory. However, in the same way as your research question can be both descriptive and explanatory, so your research project may have more than one purpose. Indeed, as Robson (2002) points out, the purpose of your enquiry may change over time.

Exploratory studies

An exploratory study is a valuable means of finding out ‘what is happening; to seek new insights; to ask questions and to assess phenomena in a new light’ (Robson, 2002:59). It is particularly useful if you wish to clarify your understanding of a problem, such as if you are unsure of the precise nature of the problem (Box 5.1). It may well be that time is well spent on exploratory research, as it may show that the research is not worth pursuing further!

There are three principal ways of conducting exploratory research:

■ a search of the literature;
■ interviewing ‘experts’ in the subject;
■ conducting focus group interviews.

Exploratory research on marketing orientation and marketing practice

A study by Ellis (2005) published in the European Journal of Marketing explores the relative merits of pursuing the marketing concept in a developing economy as external orientation towards markets rather than internal marketing practice. In this journal article Ellis begins by offering two definitions of market orientation (MO). The first defines a market-orientated response as that resulting from the generation and dissemination of market intelligence throughout an organisation. The second defines MO as the combination of customer orientation, competitor orientation and the inter-functional coordination of marketing activities. Reviewing previous research he suggests that, whilst MO is a good predictor of firm performance in developed economies, this is not so for firms in developing economies.

Ellis then examines research which considers the link between marketing practice (MP), that is, the effectiveness of a firm’s marketing activities rather than external orientation, and a firm’s performance. This, he argues, shows that the practice of marketing is just as important in developing economies as in mature economies. Based upon this, Ellis (2005:634) develops three research hypotheses, the first of which states: ‘In a developing economy, MP will be a better predictor of business performance than MO.’

Using data collected by an interviewer-administered questionnaire from 57 firms in the Chinese city of Xi’an in Shaanxi Province, Ellis found that MP generally had a greater impact on business performance than MO. He suggests this was due, at least in part, to marketing managers in developing economies encountering a number of institutional and environmental barriers to gathering market intelligence. In subsequent discussion Ellis argues that his exploratory research has taken the first steps towards integrating the MO and MP research within the context of developing economies. He also highlights that further research in this area is needed, offering suggestions regarding how this might be undertaken.
Exploratory research can be likened to the activities of the traveller or explorer (Adams and Schvaneveldt, 1991). Its great advantage is that it is flexible and adaptable to change. If you are conducting exploratory research you must be willing to change your direction as a result of new data that appear and new insights that occur to you. A quotation from the travel writer V.S. Naipaul (1989:222) illustrates this point beautifully:

I had been concerned, at the start of my own journey, to establish some lines of enquiry, to define a theme. The approach had its difficulties. At the back of my mind was always a worry that I would come to a place and all contacts would break down . . . If you travel on a theme the theme has to develop with the travel. At the beginning your interests can be broad and scattered. But then they must be more focused; the different stages of a journey cannot simply be versions of one another. And . . . this kind of travel depended on luck. It depended on the people you met, the little illuminations you had. As with the next day’s issue of fast-moving daily newspapers, the shape of the character in hand was continually being changed by accidents along the way.

Adams and Schvaneveldt (1991) reinforce this point by arguing that the flexibility inherent in exploratory research does not mean absence of direction to the enquiry. What it does mean is that the focus is initially broad and becomes progressively narrower as the research progresses.

Descriptive studies

The object of descriptive research is ‘to portray an accurate profile of persons, events or situations’ (Robson, 2002:59). This may be an extension of, or a forerunner to, a piece of exploratory research or a piece of explanatory research. It is necessary to have a clear picture of the phenomena on which you wish to collect data prior to the collection of the data. One of the earliest well-known examples of a descriptive survey is the Domesday Book, which described the population of England in 1085.

Often project tutors are rather wary of work that is too descriptive. There is a danger of their saying ‘That’s very interesting . . . but so what?’ They will want you to go further and draw conclusions from the data you are describing. They will encourage you to develop the skills of evaluating data and synthesising ideas. These are higher-order skills than those of accurate description. Description in management and business research has a very clear place. However, it should be thought of as a means to an end rather than an end in itself.

Explanatory studies

Studies that establish causal relationships between variables may be termed explanatory studies. The emphasis here is on studying a situation or a problem in order to explain the relationships between variables (Box 5.2). You may find, for example, that a cursory analysis of quantitative data on manufacturing scrap rates shows a relationship between scrap rates and the age of the machine being operated. You could go ahead and subject the data to statistical tests such as correlation (discussed in Section 12.5) in order to get a clearer view of the relationship. Alternatively you might collect qualitative data to explain the reasons why customers of your company rarely pay their bills according to the prescribed payment terms.
The need for a clear research strategy

The different research strategies

In this section we turn our attention to the research strategies you may employ. Each strategy can be used for exploratory, descriptive and explanatory research (Yin, 2003). Some of these clearly belong to the deductive approach, others to the inductive approach. However, often allocating strategies to one approach or the other is unduly simplistic. In addition, we must emphasise that no research strategy is inherently superior or inferior to any other. Consequently, what is most important is not the label that is attached to a particular strategy, but whether it will enable you to answer your particular research question(s) and meet your objectives. Your choice of research strategy will be guided by your research question(s) and objectives, the extent of existing knowledge, the amount of time and other resources you have available, as well as your own philosophical underpinnings. Finally, it must be remembered that these strategies should not be thought of as being mutually exclusive. For example, it is quite possible to use the survey strategy as part of a case study.

In our discussion of research strategies we start with the experiment strategy. This is because, although in their purest form experiments are infrequently used in management research, their roots in natural science laboratory-based research and the precision required mean that the ‘experiment’ is often the ‘gold standard’ against which the rigour of other strategies is assessed. The strategies that we consider subsequently in this section are:

- experiment;
- survey;
- case study;
- action research;
- grounded theory;
- ethnography;
- archival research.

BOX 5.2 WORKED EXAMPLE

An explanatory study

Jason’s research was about individual performance-related pay systems for managers. He was interested in explaining the relationship between success (a concept that he needed to define using the academic literature) of such systems and the factors that seemed to lead to such success. His research adopted a case study strategy in examining three organisations in some detail. The data collected were mainly qualitative (non-numerical), although some secondary quantitative (numerical) data were used. What emerged was that the way in which implementing managers conducted the processes of assessing the performance of their managers and translating these assessments into rewards was more important to the success of the performance-related pay system than its actual design.
This is followed by a brief discussion of the role of practitioner–researcher. This is particularly important if you are a part-time student, or intend to undertake the research for your project using an organisation for whom you are working.

Experiment

Experiment is a classical form of research that owes much to the natural sciences, although it features strongly in much social science research, particularly psychology. The purpose of an experiment is to study causal links; whether a change in one independent variable produces a change in another dependent variable (Hakim, 2000). The simplest experiments are concerned with whether there is a link between two variables. More complex experiments also consider the size of the change and the relative importance of two or more independent variables. Experiments therefore tend to be used in exploratory and explanatory research to answer ‘how’ and ‘why’ questions. In a classic experiment (Figure 5.2), two groups are established and members assigned at random to each. This means the two groups will be exactly similar in all aspects relevant to the research other than whether or not they are exposed to the planned intervention or manipulation. In the first of these groups, the **experimental group**, some form of planned intervention or manipulation, such as a ‘buy two, get one free’ promotion, is made subsequently. In the other group, the **control group**, no such intervention is made. The dependent variable, in this example purchasing behaviour, is measured before and after the manipulation of the independent variable (the use of the ‘buy two, get one free’ promotion) for both the experimental group and the control group. This means that a before and after comparison can be undertaken. On the basis of this comparison, any difference between the experimental and control groups for the dependent variable (purchasing behaviour) is attributed to the intervention, in our example the ‘buy two, get one free’ promotion.

In assigning the members to the control and experimental groups at random and using a control group, you try to control (that is, remove) the possible effects of an alternative explanation to the planned intervention (manipulation) and eliminate threats to internal validity. This is because the control group is subject to exactly the same external influences as the experimental group other than the planned intervention and, consequently, this intervention is the only explanation for any changes to the dependent variable. By assigning the members of each group at random, changes cannot be attributed to differences in the composition of the two groups. Therefore, in minimising threats to internal validity, you are minimising the extent to which the findings can be attributed to any flaws in your research design rather than the planned interventions.

![Figure 5.2 A classic experiment strategy](image-url)
Often experiments, including those in disciplines closely associated with business and management such as organisational psychology, are conducted in laboratories rather than in the field. This means that you have greater control over aspects of the research process such as sample selection and the context within which the experiment occurs. However, whilst this improves the internal validity of the experiment, that is, the extent to which the findings can be attributed to the interventions rather than any flaws in your research design, external validity is likely to be more difficult to establish (we discuss issues of validity in Section 5.6). Laboratory settings, by their very nature, are unlikely to be related to the real world of organisations. As a consequence, the extent to which the findings from a laboratory experiment are able to be generalised to all organisations is likely to be lower than for an organisation (field)-based experiment (Box 5.3).

In summary, an experiment will involve typically:

- definition of a theoretical hypothesis (in our discussion: the introduction of a promotion will result in a change in the number of sales);
- selection of samples of individuals from known populations;
- random allocation of samples to different experimental conditions, the experimental group and the control group;
- introduction of planned intervention or manipulation to one or more of the variables (in our discussion, the introduction of the promotion);
- measurement on a small number of dependent variables (in our discussion, purchasing behaviour);
- control of all other variables.

Box 5.3 Focus on Management Research

Using an experimental strategy

Deci (1972) studied the effect of external rewards and controls on the intrinsic motivation of individuals. He set up a laboratory study in which each subject participated in three one-hour sessions of puzzle solving. It had been established by an earlier experiment that the puzzles were intrinsically interesting. There were two participant groups: the experimental group and the control group. Both groups were asked to solve four puzzles during each of the three sessions. The only difference between the two groups was that the experimental group was paid one dollar per puzzle solved during the second session.

During each of the three sessions each group was left alone for an eight-minute ‘free-choice period’. Deci reasoned that if the subjects continued puzzle solving in the ‘free-choice period’ (there were other activities to pursue, such as reading magazines) then they must be intrinsically motivated to do so. In the event, the experimental group that had been given the external incentive spent less of their ‘free’ time puzzle solving. The result of this led to Deci theorising that the introduction of external incentives to intrinsically interesting tasks will lead to a decrease in intrinsic motivation, a theory that has interesting implications for those introducing pay incentive schemes for employees who do jobs that they find intrinsically interesting!

Inevitably, an experimental strategy will not be feasible for many business and management research questions. For example, you could not, for ethical reasons, assign employees to experience redundancy or small and medium-sized enterprises owners to experience their banks foreclosing on business loans. Similarly, it may be considered unfair to carry out experiments in relation to beneficial interventions such as providing
additional support to research project students only on the basis of them being selected for the experimental group! Some people are not willing to participate in experiments and so those who volunteer may not be representative. Because of this, the experiment strategy is often used only on captive populations such as university students, employees of a particular organisation and the like. As discussed earlier, the design requirements of an experiment often mean that samples selected are both small and atypical, leading to problems of external validity. Whilst you may be able to overcome this with a large and representative sample (Section 7.2), Hakim (2000) advises that this is likely to be both costly and complex.

Survey

The survey strategy is usually associated with the deductive approach. It is a popular and common strategy in business and management research and is most frequently used to answer who, what, where, how much and how many questions. It therefore tends to be used for exploratory and descriptive research. Surveys are popular as they allow the collection of a large amount of data from a sizeable population in a highly economical way. Often obtained by using a questionnaire administered to a sample, these data are standardised, allowing easy comparison. In addition, the survey strategy is perceived as authoritative by people in general and is both comparatively easy to explain and to understand. Every day a news bulletin or a newspaper reports the results of a new survey that indicates, for example, that a certain percentage of the population thinks or behaves in a particular way (Box 5.4).

BOX 5.4 RESEARCH IN THE NEWS

Survey probes shift to airline e-ticketing

According to a new survey, fewer than 20 per cent of European airlines have replaced magnetic strip boarding passes with bar-coded versions, which can be printed out by passengers at home. This compares with 67 per cent of North American carriers. The study, commissioned by Sita, the communications company, and Airline Business magazine suggests that by 2007 common-use self-service kiosks, at which passengers can check in regardless of the airline they are flying with, will have become widely deployed at airports.

Meanwhile, more than one-quarter of European airlines have still not moved to electronic ticketing. The International Air Transport Association aims to convert the entire airline industry to e-tickets by the end of 2007.

The survey shows 63 per cent of North American tickets are booked online, while in Europe and the Asia-Pacific region, the respective figures are 24 and 10 per cent. It forecasts that by the end of 2007, 44 per cent of carriers will offer some form of communication between air and ground, whether short messaging, e-mail, full internet access or the ability to make mobile phone calls.

The survey strategy allows you to collect quantitative data which you can analyse quantitatively using descriptive and inferential statistics (Sections 12.4 and 12.5). In addition, the data collected using a survey strategy can be used to suggest possible reasons for particular relationships between variables and to produce models of these relationships. Using a survey strategy should give you more control over the research process and, when sampling is used, it is possible to generate findings that are representative of the whole population at a lower cost than collecting the data for the whole population (Section 7.2). You will need to spend time ensuring that your sample is rep-
resentative, designing and piloting your data collection instrument and trying to ensure a good response rate. Analysing the results, even with readily available analysis software, will also be time consuming. However, it will be your time and, once you have collected your data, you will be independent. Many researchers complain that their progress is delayed by their dependence on others for information.

The data collected by the survey strategy is unlikely to be as wide-ranging as those collected by other research strategies. For example, there is a limit to the number of questions that any questionnaire can contain if the goodwill of the respondent is not to be presumed on too much. Despite this, perhaps the biggest drawback with using a questionnaire as part of a survey strategy is, as emphasised in Section 11.2, the capacity to do it badly!

The questionnaire, however, is not the only data collection technique that belongs to the survey strategy. Structured observation, of the type most frequently associated with organisation and methods (O&M) research, and structured interviews, where standardised questions are asked of all interviewees, also often fall into this strategy. Observation techniques are discussed in detail in Section 9.4.6 and structured interviews in Section 11.5.

Case study

Robson (2002:178) defines case study as ‘a strategy for doing research which involves an empirical investigation of a particular contemporary phenomenon within its real life context using multiple sources of evidence’. Yin (2003) also highlights the importance of context, adding that, within a case study, the boundaries between the phenomenon being studied and the context within which it is being studied are not clearly evident. This is the complete opposite of the experimental strategy we outlined earlier, where the research is undertaken within a highly controlled context. It also differs from the survey strategy where, although the research is undertaken in context, the ability to explore and understand this context is limited by the number of variables for which data can be collected.

The case study strategy will be of particular interest to you if you wish to gain a rich understanding of the context of the research and the processes being enacted (Morris and Wood, 1991). The case study strategy also has considerable ability to generate answers to the question ‘why?’ as well as the ‘what?’ and ‘how?’ questions, although ‘what?’ and ‘how?’ questions tend to be more the concern of the survey strategy. For this reason the case study strategy is most often used in explanatory and exploratory research. The data collection techniques employed may be various and are likely to be used in combination. They may include, for example, interviews, observation, documentary analysis and (as if to emphasise the dangers of constructing neat boxes in which to categorise approaches, strategies and techniques) questionnaires. Consequently, if you are using a case study strategy you are likely to need to use and triangulate multiple sources of data. Triangulation refers to the use of different data collection techniques within one study in order to ensure that the data are telling you what you think they are telling you. For example, qualitative data collected using semi-structured group interviews may be a valuable way of triangulating quantitative data collected by other means such as a questionnaire.

Yin (2003) distinguishes between four case study strategies based upon two discrete dimensions:

- single case v. multiple case;
- holistic case v. embedded case.

THE NEED FOR A CLEAR RESEARCH STRATEGY
A single case is often used where it represents a critical case or, alternatively, an extreme or unique case. Conversely, a single case may be selected because it is typical or because it provides you with an opportunity to observe and analyse a phenomenon that few have considered before (Section 7.3). Inevitably, an important aspect of using a single case is defining the actual case. For many part-time students this is the organisation for which they work. A case study strategy can also incorporate multiple cases, that is, more than one case. The rationale for using multiple cases focuses upon the need to establish whether the findings of the first case occur in other cases and, as a consequence, the need to generalise from these findings. For this reason Yin (2003) argues that multiple case studies may be preferable to a single case study and that, where you choose to use a single case study, you will need to have a strong justification for this choice.

Yin’s second dimension, holistic v. embedded, refers to the unit of analysis. For example, you may well have chosen to use an organisation by which you have been employed or are currently employed as your case. If your research is concerned only with the organisation as a whole then you are treating the organisation as a holistic case study. Conversely, even though you are researching and are concerned with a single organisation as a whole, if you wish to examine also a number of logical sub-units within the organisation, perhaps departments or work groups, then your case will inevitably involve more than one unit of analysis. Whatever way you select these units, this would be called an embedded case study (Box 5.5).

You may be suspicious of using a case study strategy because of the ‘unscientific’ feel it has. We would argue that a case study strategy can be a very worthwhile way of exploring existing theory. In addition, a well-constructed case study strategy can enable you to challenge an existing theory and also provide a source of new research questions.

Using a single organisation as a case study

Simon was interested in discovering how colleagues within his organisation were using a recently introduced financial costing model in their day-to-day work. In discussion with his project tutor he highlighted how he was interested in finding out how it was actually being used in his organisation as a whole, as well as seeing if the use of the financial costing model differed between senior managers, departmental managers and front-line operatives. Simon’s project tutor suggested that he adopt a case study strategy, using his organisation as a single case within which the senior managers’, departmental managers’ and front-line operatives’ groups were embedded cases. He also highlighted that, given the different numbers of people in each of the embedded cases, Simon would be likely to need to use different data collection techniques with each.

Action research

Lewin first used the term ‘action research’ in 1946. It has been interpreted subsequently by management researchers in a variety of ways, but there are four common themes within the literature. The first focuses upon and emphasises the purpose of the research: research in action rather than research about action (Coghlan and Brannick, 2005) so that, for example, the research is concerned with the resolution of organisational issues such as the implications of change together with those who experience the issues directly. The second relates to the involvement of practitioners in the research and, in particular, a collaborative democratic partnership between practitioners and researchers,
be they academics, other practitioners or internal or external consultants. Eden and Huxham (1996:75) argue that the findings of action research result from ‘involvement with members of an organization over a matter which is of genuine concern to them’. Therefore the researcher is part of the organisation within which the research and the change process are taking place (Coghlan and Brannick, 2005) rather than more typical research or consultancy where, for example, employees are subjects or objects of study.

The third theme emphasises the iterative nature of the process of diagnosing, planning, taking action and evaluating (Figure 5.3). The action research spiral commences within a specific context and with a clear purpose. This is likely to be expressed as an objective (Robson, 2002). Diagnosis, sometimes referred to as fact finding and analysis, is undertaken to enable action planning and a decision about the actions to be taken. These are then taken and the actions evaluated (cycle 1). Subsequent cycles involve further diagnosis, taking into account previous evaluations, planning further actions, taking these actions and evaluating. The final theme suggests that action research should have implications beyond the immediate project; in other words, it must be clear that the results could inform other contexts. For academics undertaking action research, Eden and Huxham (1996) link this to an explicit concern for the development of theory. However, they emphasise that for consultants this is more likely to focus on the subsequent transfer of knowledge gained from one specific context to another. Such use of knowledge to inform other contexts, we believe, also applies to others undertaking action research, such as students undertaking research in their own organisations. Thus action research differs from other research strategies because of its explicit focus on action, in particular promoting change within the organisation. It is therefore particularly useful for ‘how’ questions. In addition, the person undertaking the research is involved in this action for change and subsequently application of the knowledge gained elsewhere. The strengths of an action research strategy are a focus on change, the recognition that time needs to be devoted to diagnosing, planning, taking action and evaluating and the involving of employees (practitioners) throughout the process.

![Figure 5.3 The action research spiral](image)
Schein (1999) emphasises the importance of employee involvement throughout the research process, as employees are more likely to implement change they have helped to create. Once employees have identified a need for change and have widely shared this need, it becomes difficult to ignore, and the pressure for change comes from within the organisation. An action research strategy therefore combines both data gathering and facilitation of change.

Action research can have two distinct foci (Schein, 1999). The first of these aims to fulfil the agenda of those undertaking the research rather than that of the sponsor. This does not, however, preclude the sponsor from also benefiting from the changes brought about by the research process. The second focus starts with the needs of the sponsor and involves those undertaking the research in the sponsor’s issues, rather than the sponsor in their issues. These consultant activities are termed ‘process consultation’ by Schein (1999). The consultant, he argues, assists the client to perceive, understand and act upon the process events that occur within their environment in order to improve the situation as the client sees it. (Within this definition the term ‘client’ refers to the persons or person, often senior managers, who sponsor the research.) Using Schein’s analogy of a clinician and clinical enquiry, the consultant (researcher) is involved by the sponsor in the diagnosis (action research), which is driven by the sponsor’s needs. It therefore follows that subsequent interventions are jointly owned by the consultant and the sponsor, who is involved at all stages. The process consultant therefore helps the sponsor to gain the skills of diagnosis and fixing organisational problems so that she or he can develop autonomy in improving the organisation.

Grounded theory

Grounded theory (Glaser and Strauss, 1967) is often thought of as the best example of the inductive approach, although this conclusion would be too simplistic. It is better to think of it as ‘theory building’ through a combination of induction and deduction. A grounded theory strategy is, according to Goulding (2002), particularly helpful for research to predict and explain behaviour, the emphasis being upon developing and building theory. As much of business and management is about people’s behaviours, for example consumers’ or employees’, a grounded theory strategy can be used to explore a wide range of business and management issues. Section 13.7 provides more detail about grounded theory in relation to analysing data. Here all we shall do is outline briefly what this strategy involves.

In grounded theory, data collection starts without the formation of an initial theoretical framework. Theory is developed from data generated by a series of observations. These data lead to the generation of predictions which are then tested in further observations that may confirm, or otherwise, the predictions. Constant reference to the data to develop and test theory leads Collis and Hussey (2003) to call grounded theory an inductive/deductive approach, theory being grounded in such continual reference to the data.

Ethnography

Ethnography is rooted firmly in the inductive approach. It emanates from the field of anthropology. The purpose is to describe and explain the social world the research subjects inhabit in the way in which they would describe and explain it. This is obviously a research strategy that is very time consuming and takes place over an extended time period as the researcher needs to immerse herself or himself in the social world being
researched as completely as possible. The research process needs to be flexible and responsive to change since the researcher will constantly be developing new patterns of thought about what is being observed.

Most books you read on ethnography emphasise that an ethnographic strategy is naturalistic. This means that in adopting an ethnographic strategy, you will be researching the phenomenon within the context in which it occurs and, in addition, not using data collection techniques that oversimplify the complexities of everyday life. Given this, it is not surprising that most ethnographic strategies involve extended participant observation (Section 9.2). However, you need to be mindful that the term naturalism also has a contradictory meaning that is often associated with positivism. Within this context it refers to the use of the principles of scientific method and the use of a scientific model within research.

Although not a dominant research strategy in business, ethnography may be very appropriate if you wish to gain insights about a particular context and better understand and interpret it from the perspective(s) of those involved. However, there are a number of issues that you need to consider. Prior to commencing research using this strategy, you will need to find a setting or group that will enable you to answer your research question and meet your research objectives and then negotiate full access (Sections 6.2 and 6.3). Subsequently you will need to build a high degree of trust with your research participants and, finally, develop strategies to cope with being both a full-time member of the social context in which your research is set as well as undertaking the research.

Archival research

The final strategy we wish to consider, **archival research**, makes use of administrative records and documents as the principal source of data. Although the term archival has historical connotations, it can refer to recent as well as historical documents (Bryman, 1989). Whilst the availability of these data is outlined in Section 8.2, it is important that an archival research strategy is not conflated with secondary data analysis discussed in Chapter 8. As we will discuss in Chapter 8, all research that makes use of data contained in administrative records is inevitably secondary data analysis. This is because these data were originally collected for a different purpose, the administration of the organisation. However, when these data are used in an archival research strategy they are analysed because they are a product of day-to-day activities (Hakim, 2000). They are therefore part of the reality being studied rather than being having been collected originally as data for research purposes.

An archival research strategy allows research questions which focus upon the past and changes over time to be answered, be they exploratory, descriptive or explanatory. However, your ability to answer such questions will inevitably be constrained by the nature of the administrative records and documents. Even where these records exist, they may not contain the precise information needed to answer your research question(s) or meet your objectives. Alternatively, data may be missing or you may be refused access or your data censored for confidentiality reasons. Using an archival research strategy therefore necessitates you establishing what data are available and designing your research to make the most of it. (See Box 5.6, page 144.)

Practitioner–researcher

If you are currently working in an organisation, you may choose to undertake your research project within that organisation, thus adopting the role of the
practitioner–researcher. As a part-time student, you will be surrounded by exciting opportunities to pursue business and management research. You are unlikely to encounter one of the most difficult hurdles that a researcher has to overcome: that of negotiating research access (Sections 6.2 and 6.3). Indeed, like many people in such a position, you may be asked to research a particular problem by your employer. Another advantage is your knowledge of the organisation and all this implies about understanding the complexity of what goes on in that organisation. It just is not necessary to spend a good deal of valuable time in ‘learning the context’ in the same way as the outsider does. However, that advantage carries with it a significant disadvantage. You must be very conscious of the assumptions and preconceptions that you carry around with you. This is an inevitable consequence of knowing the organisation well. It can prevent you from exploring issues that would enrich the research.

Familiarity has other problems. When we were doing case study work in a manufacturing company, we found it very useful to ask ‘basic’ questions revealing our ignorance about the industry and the organisation. These ‘basic’ questions are ones that as the practitioner–researcher you would be less likely to ask because you, and your respondents, would feel that you should know the answers already.

There is also the problem of status. If you are a junior employee you may feel that working with more senior colleagues inhibits your interactions as researcher–practitioner. The same may be true if you are more senior than your colleagues.

A more practical problem is that of time. Combining two roles at work is obviously very demanding, particularly as it may involve you in much data recording ‘after hours’. This activity is hidden from those who determine your workload. They may not appreciate the demands that your researcher role is making on you. For this reason, Robson (2002) makes much of practitioner–researchers negotiating a proportion of their ‘work time’ to devote to their research. There are no easy answers to these problems. All
MULTIPLE METHODS CHOICES – COMBINING QUANTITATIVE AND QUALITATIVE TECHNIQUES AND PROCEDURES

you can do is be aware of the threats to the quality of your data by being too close to your research setting.

5.4 Multiple methods choices – combining quantitative and qualitative techniques and procedures

In our earlier discussion we have already referred to quantitative and qualitative data. The terms quantitative and qualitative are used widely in business and management research to differentiate both data collection techniques and data analysis procedures. One way of distinguishing between the two is the focus on numeric (numbers) or non-numeric (words) data. Quantitative is predominantly used as a synonym for any data collection technique (such as a questionnaire) or data analysis procedure (such as graphs or statistics) that generates or uses numerical data. In contrast, qualitative is used predominantly as a synonym for any data collection technique (such as an interview) or data analysis procedure (such as categorising data) that generates or use non-numerical data. Qualitative therefore can refer to data other than words, such as pictures and video clips.

Within this book we refer to the way in which you choose to combine quantitative and qualitative techniques and procedures as your research choice. However, it is worth noting that some authors, for example Tashakkori and Teddlie (2003), use the more generic term research design when referring to multiple methods. Individual quantitative and qualitative techniques and procedures do not exist in isolation. In choosing your research methods you will therefore either use a single data collection technique and corresponding analysis procedures (mono method) or use more than one data collection technique and analysis procedures to answer your research question (multiple methods). This choice is increasingly advocated within business and management research (Curran and Blackburn, 2001), where a single research study may use quantitative and qualitative techniques and procedures in combination as well as use primary and secondary data.

If you choose to use a mono method you will combine either a single quantitative data collection technique, such as questionnaires, with quantitative data analysis procedures; or a single qualitative data collection technique, such as in-depth interviews, with qualitative data analysis procedures (Figure 5.4). In contrast, if you choose to combine data collection techniques and procedures using some form of multiple methods design, there are four different possibilities. The term multi-method refers to those combinations where more than one data collection technique is used with associated analysis techniques, but this is restricted within either a quantitative or qualitative world view (Tashakkori and Teddlie, 2003). Thus you might choose to collect quantitative data using, for example, both questionnaires and structured observation analysing these data using statistical (quantitative) procedures, a multi-method quantitative study. Alternatively you might choose to collect qualitative data using, for example, in-depth interviews and diary accounts and analyse these data using non-numerical (qualitative) procedures, a multi-method qualitative study (Box 5.7). Therefore, if you adopted multi-methods you would not mix quantitative and qualitative techniques and procedures.

Mixed methods is the general term for when both quantitative and qualitative data collection techniques and analysis procedures are used in a research design (Figure 5.4). It is subdivided into two types. Mixed method research uses quantitative and qualitative data collection techniques and analysis procedures either at the same time (parallel) or
one after the other (sequential) but does not combine them (Box 5.8). This means that, although mixed method research uses both quantitative and qualitative world views at the research methods stage, quantitative data are analysed quantitatively and qualitative data are analysed qualitatively. In addition, often either quantitative or qualitative techniques and procedures predominate. In contrast, mixed model research combines quantitative and qualitative data collection techniques and analysis procedures as well as combining quantitative and qualitative approaches at other phases of the research such as research question generation. This means that you may take quantitative data and qualitise it, that is, convert it into narrative that can be analysed qualitatively. Alternatively you may quantitise your qualitative data, converting it into numerical codes so that it can be analysed statistically.

Tashakkori and Teddlie (2003) argue that multiple methods are useful if they provide better opportunities for you to answer your research questions and where they allow you to better evaluate the extent to which your research findings can be trusted and inferences made from them. There are two major advantages to choosing to use multiple methods in the same research project. First, different methods can be used for different

BOX 5.7 WORKED EXAMPLE

Multi-method qualitative study

Darren wanted to establish how new supervisors learned to do the job. In order to do this he thought it essential that he should have the clearest possible grasp of what the supervisor’s job entailed.

This involved him in:

- shadowing a new supervisor for a week (qualitative data);
- interviewing a day and a night shift supervisor to establish any differences in approach (qualitative data);
- interviewing the managers to whom these two supervisors reported (qualitative data).

This gave Darren a much better grasp of the content of the supervisor’s job. It also did much to enhance his credibility in the eyes of the supervisors. He was then able to draw on the valuable data he had collected to complete his main research task: interviewing new supervisors to discover how they learned to do the job. This provided further qualitative data.

Figure 5.4 Research choices
purposes in a study. You may wish to employ, for example, interviews at an exploratory stage, in order to get a feel for the key issues before using a questionnaire to collect descriptive or explanatory data. This would give you confidence that you were addressing the most important issues.

BOX 5.8 WORKED EXAMPLE

Mixed-method research

Phil conducted an employee attitude survey in a small insurance company, using mixed method research. Two of his choices were qualitative and one was quantitative. The research consisted of four stages:

1. In-depth interviews with senior managers analysed qualitatively in order to get a picture of the important issues he was likely to encounter in the research. These were essential contextual data.

2. Discussion groups with six to ten employees representing different grades and occupations in the company, again analysed qualitatively. This was to establish the types of issues that were important to staff. This would inform the content of the questionnaire.

3. A questionnaire that was administered to 100 of the 200 head office employees. This provided quantitative data which when analysed statistically allowed the attitudes of different employee groups to be compared for differences by age, gender, length of service, occupation and grade groupings. This was particularly important to the company.

4. Semi-structured group interviews with further representative employee groups analysed qualitatively to clarify the content of some of the questionnaire results. This was essential to get at the meaning behind some of the data.

The second advantage of using mixed methods is that it enables **triangulation** to take place. For example, semi-structured group interviews may be a valuable way of triangulating data collected by other means such as a questionnaire.

Quantitative and qualitative data collection techniques and analysis procedures each have their own strengths and weaknesses (Smith, 1975). There is inevitably a relationship between the data collection technique you choose and the results you obtain. In short, your results will be affected by the techniques and procedures used. The problem here is that it is impossible to ascertain the nature of that effect. Since all different techniques and procedures will have different effects, it makes sense to use different methods to cancel out the ‘method effect’. That will lead to greater confidence being placed in your conclusions.

The question that may occur to you at this stage is: ‘How do I know which data collection techniques and analysis procedures to use in which situation?’ There is no simple answer. We encourage you to use your imagination and to think of research as a highly creative process. However, above all, it is vital to have clear a clear research question and objectives for your study and ensure that the methods you use will enable you to meet them. It is a great temptation to think about data collection techniques and analysis procedures to be employed before the objectives are clarified.
5.5 Time horizons

An important question to be asked in planning your research is ‘Do I want my research to be a “snapshot” taken at a particular time or do I want it to be more akin to a “diary” and be a representation of events over a given period?’ (As always, of course, the answer should be ‘It depends on the research question.’) The ‘snapshot’ time horizon is what we call cross-sectional while the ‘diary’ perspective we call longitudinal.

We should emphasise here that these time horizons to research design are independent of which research strategy you are pursuing or your choice of method. So, for example, you may be studying the change in manufacturing processes in one company over a period of a year. This would be a longitudinal case study.

Cross-sectional studies

It is probable that your research will be cross-sectional, the study of a particular phenomenon (or phenomena) at a particular time. We say this because we recognise that most research projects undertaken for academic courses are necessarily time constrained. However, the time horizons on many courses do allow sufficient time for a longitudinal study, provided, of course, that you start it in plenty of time!

Cross-sectional studies often employ the survey strategy (Easterby-Smith et al., 2002; Robson, 2002). They may be seeking to describe the incidence of a phenomenon (for example, a survey of the IT skills possessed by managers in one organisation at a given point in time) or to explain how factors are related in different organisations (for example, the relationship between expenditure on customer care training for sales assistants and sales revenue). However, they may also use qualitative methods. Many case studies are based on interviews conducted over a short period of time.

Longitudinal studies

The main strength of longitudinal research is the capacity that it has to study change and development. Adams and Schvaneveldt (1991) point out that in observing people or events over time the researcher is able to exercise a measure of control over variables being studied, provided that they are not affected by the research process itself. One of the best-known examples of this type of research comes from outside the world of business. It is the long-running television series Seven Up. This has charted the progress of a cohort of people every seven years of their life. Not only is this fascinating television, it has also provided the social scientist with a rich source of data on which to test and develop theories of human development.

Even with time constraints it is possible to introduce a longitudinal element to your research. As Section 8.2 indicates, there is a massive amount of published data collected over time just waiting to be re-analysed! An example is the Workplace Employee Relations Survey, which was conducted in 1980, 1984, 1990 (Millward et al., 1992), 1998 (Cully et al., 1999) and 2004 (Kersley et al., 2005). From these surveys you would be able to gain valuable data, which would give you a powerful insight into developments in personnel management and employee relations over a period of wide-ranging change. In longitudinal studies the basic question is ‘Has there been any change over a period of time?’ (Bouma and Atkinson, 1995:114).
5.6 The credibility of research findings

Underpinning our earlier discussion on research design has been the issue of the credibility of research findings. This is neatly expressed by Raimond (1993:55) when he subjects findings to the ‘how do I know?’ test: ‘... will the evidence and my conclusions stand up to the closest scrutiny?’ How do you know that the advertising campaign for a new product has resulted in enhanced sales? How do you know that manual employees in an electronics factory have more negative feelings towards their employer than their clerical counterparts? The answer, of course, is that, in the literal sense of the question, you cannot know. All you can do is reduce the possibility of getting the answer wrong. This is why good research design is important. This is aptly summarised by Rogers (1961, cited by Raimond 1993:55): ‘scientific methodology needs to be seen for what it truly is, a way of preventing me from deceiving myself in regard to my creatively formed subjective hunches which have developed out of the relationship between me and my material’.

Reducing the possibility of getting the answer wrong means that attention has to be paid to two particular emphases on research design: reliability and validity.

Reliability

Reliability refers to the extent to which your data collection techniques or analysis procedures will yield consistent findings. It can be assessed by posing the following three questions (Easterby-Smith et al., 2002:53):

1. Will the measures yield the same results on other occasions?
2. Will similar observations be reached by other observers?
3. Is there transparency in how sense was made from the raw data?

Threats to reliability

Robson (2002) asserts that there may be four threats to reliability. The first of these is subject or participant error. If you are studying the degree of enthusiasm employees have for their work and their employer it may be that you will find that a questionnaire completed at different times of the week may generate different results. Friday afternoons may show a different picture from Monday mornings! This should be easy to control. You should choose a more ‘neutral’ time when employees may be expected to be neither on a ‘high’, looking forward to the weekend, nor on a ‘low’ with the working week in front of them.

Similarly, there may be subject or participant bias. Interviewees may have been saying what they thought their bosses wanted them to say. This is a particular problem in organisations that are characterised by an authoritarian management style or when there is a threat of employment insecurity. Researchers should be aware of this potential problem when designing research. For example, elaborate steps can be taken to ensure the anonymity of respondents to questionnaires, as Section 11.4 indicates. Care should also be taken when analysing the data to ensure that your data are telling you what you think they are telling you.

Third, there may have been observer error. In one piece of research we undertook, there were three of us conducting interviews with potential for at least three different
ways of asking questions to elicit answers. Introducing a high degree of structure to the interview schedule (Section 10.2) will lessen this threat to reliability.

Finally, there may have been observer bias. Here, of course, there may have been three different ways of interpreting the replies!

There is more detail on how these threats to reliability may be reduced later in the book in the chapters dealing with specific data collection techniques and analysis procedures.

Validity

Validity is concerned with whether the findings are really about what they appear to be about. Is the relationship between two variables a causal relationship? For example, in a study of an electronics factory we found that employees’ failure to look at new product displays was caused not by employee apathy but by lack of opportunity (the displays were located in a part of the factory that employees rarely visited). This potential lack of validity in the conclusions was minimised by a research design that built in the opportunity for focus groups after the questionnaire results had been analysed.

Robson (2002) has also charted the threats to validity, which provides a useful way of thinking about this important topic.

Threats to validity

History

You may decide to study the opinions that customers have about the quality of a particular product manufactured by a particular organisation. However, if the research is conducted shortly after a major product recall this may well have a dramatic, and quite misleading, effect on the findings (unless, of course, the specific objective of the research was to find out about post-product recall opinions).

Testing

Your research may include measuring how long it takes telesales operators to deal with customer enquiries. If the operators believe that the results of the research may disadvantage them in some way, then this is likely to affect the results.

Instrumentation

In the above example, the telesales operators may have received an instruction that they are to take every opportunity to sell new policies between the times you tested the first and second batches of operators. Consequently, the calls are likely to last longer.

Mortality

This refers to participants dropping out of studies. This was a major problem for one of our students, who was studying the effects on the management styles of managers exposed to a year-long management development programme.

Maturation

In the earlier management development example above, it could be that other events happening during the year have an effect on their management style.
Ambiguity about causal direction

This is a particularly difficult issue. One of our part-time students was studying the effectiveness of performance appraisal in her organisation. One of her findings was that poor performance ratings of employees were associated with a negative attitude about appraisal among those same employees. What she was not clear about was whether the poor performance ratings were causing the negative attitude to appraisal or whether the negative attitude to appraisal was causing the poor performance ratings.

Generalisability

This is sometimes referred to as external validity. A concern you may have in the design of your research is the extent to which your research results are generalisable: that is, whether your findings may be equally applicable to other research settings, such as other organisations. This may be a particular worry if you are conducting case study research in one organisation, or a small number of organisations. It may also be important if the organisation is markedly ‘different’ in some way.

In such cases the purpose of your research will not be to produce a theory that is generalisable to all populations. Your task will be simply to try to explain what is going on in your particular research setting. It may be that you want to test the robustness of your conclusions by exposing them to other research settings in a follow-up study. In short, as long as you do not claim that your results, conclusions or theory can be generalised, there is no problem.

Logic leaps and false assumptions

So far in this chapter we have shown that there is a host of research design decisions that need to be made in order that your research project can yield sufficient data of the sort that will result in valid conclusions being drawn. Those decisions necessitate careful thought from you. However, more than just the quantity of thought is involved. It is vital that your thought processes are of high quality. Your research design will be based on a flow of logic and a number of assumptions, all of which must stand up to the closest scrutiny.

These points have been illustrated skilfully by Raimond (1993). Raimond takes the research of Peters and Waterman on ‘excellent’ US companies and subjects it to just such scrutiny. The ideas of Peters and Waterman (1982) have been enormously influential in the past two decades. Their book is a management ‘cookbook’ that gives managers eight principles to which they must adhere if their organisations are to be successful. As such, it is fairly typical of a prescriptive type of writing in management books and journals that suggests that ‘this is the way it should be done’.

Raimond’s (1993) analysis of Peters and Waterman can be categorised into four ‘logic steps’.

Identification of the research population

This is similar to the point made about generalisability above. If the intention is to be able to generalise the conclusions across the whole population (in the Peters and Waterman case, all organisations), is the choice of population logical? If your research project is in the National Health Service, for example, it would be fanciful to assume that the findings were valid for software houses or advertising agencies.
Data collection
Is it logical to assume that the way you are collecting your data is going to yield valid data? If you interview top bosses you are likely to encounter the ‘good news’ syndrome. If you collect press cuttings from newspapers, how can you assume there has been no political bias put on them?

Data interpretation
It is here that there is probably the greatest danger of logic leaps and false assumptions. You will need to move from a position where you have a mountain of data to one where you write a set of conclusions that are presented coherently. This is at the same time an intellectually challenging and highly creative and exciting process.

You are likely to be using a theoretical framework against which you will analyse your data. If you are working deductively (from theory to data), this framework may have given rise to the hypothesis that you are testing in your research. One of our students studied the introduction of pay bonuses assessed by performance appraisal in the police service. Her hypothesis was based on the Meyer et al. (1965) hypothesis that the non-pay benefits of appraisal (such as improvement of job performance) will be prejudiced by the introduction of pay considerations to the process, rendering the appraisal interview little more than a salary discussion.

It is less likely that you will be working completely inductively where you collect your data and then analyse it to see what theory emerges.

You may employ a hybrid approach. This could involve using an established theoretical construct to help you to make sense of your findings. For example, you may be studying the way in which different companies within the group in which you work formulate their business strategies. In order to structure your analysis you could use the categorisation of different types of organisational strategy suggested by Mintzberg and Waters (1989). This may lead you to conclude that the dominant strategy employed is a mixture of those suggested by Mintzberg and Waters.

The important point here is that in both the deductive and the hybrid cases you are making assumptions about the appropriateness of the theory that you are using. In both cases it is clear that the theory with which you are working will shape your conclusions. Therefore it is essential that you choose an appropriate theoretical framework. It is essential that you ask yourself ‘Why am I using this theory and not another which may be equally, or more, appropriate?’

We are making the assumption here that you will use a theory to analyse your data. For most undergraduate and postgraduate courses this is likely to be an assessment requirement. Some professional courses may be more concerned with practical management reports that emphasise the importance of the report making viable recommendations, which are the result of clear conclusions based on a set of findings. It is important that you clarify this point with the project tutor prior to commencing the research.

Development of conclusions
The question to ask yourself here is ‘Do my conclusions (or does my theory) stand up to the closest scrutiny?’ If the declared theory in the police appraisal study is that the introduction of pay to appraisal will lead to the appraisal process being useful for pay purposes only, does this apply to all police appraisals? Will it be true for younger as well as older police and for all grades and locations? In other words, are you asking your readers to make logic leaps?
Section 6.5 deals in more detail with the subject of research ethics. This has important implications for the negotiation of access to people and organisations and the collection of data. Here we shall address only the ethical issues that you should consider when designing your research.

Your choice of topic will be governed by ethical considerations. You may be particularly interested to study the consumer decision to buy flower bouquets. Although this may provide some interesting data collection challenges (who buys, for whom and why?), there are not the same ethical difficulties as will be involved in studying, say, the funeral purchasing decision. Your research design in this case may have to concentrate on data collection from the undertaker and, possibly, the purchaser at a time as distant from the death as delicacy permits. The ideal population, of course, may be the purchaser at a time as near as possible to the death. It is a matter of judgement as to whether the strategy and data collection method(s) suggested by ethical considerations will yield data that are valid. The general ethical issue here is that the research design should not subject those you are researching (the research population) to embarrassment or any other material disadvantage.

Your research design may need to consider the extent to which you should collect data from a research population that is unaware of the fact they are the subject of research and so have not consented. There was a dispute between solicitors and the Consumers’ Association (CA). Telephone enquiries were conducted by the CA with a sample of solicitors for the purpose of assessing the accuracy of legal advice given and the cost of specified work. The calls were, allegedly, made without the CA’s identity, or the purpose of the research, being disclosed (Gibb, 1995). Although it is for you to decide whether a similar research design adopted in your project would be ethical, it is worth noting that many University Research Ethics procedures preclude the use of covert research such as this.

It may be quite a different matter if you are collecting data from individuals, rather than from organisations as in the above example. This may be the case if you are conducting your research while working as an employee in an organisation. It may also be so if you are working on a student placement. In this case you would be researching as a participant observer. If the topic you were researching was one where it might be beneficial for your research that the fact that you were collecting data on individuals was not disclosed, then this would pose a similar ethical dilemma. This will be discussed in more detail when we deal with observation as a data collection method in Chapter 9.

5.8 Summary

- Research projects are undertaken for different purposes. These can be categorised as exploratory, descriptive and explanatory.
- Research design focuses upon turning a research question and objectives into a research project. It considers research strategies, choices and time horizons.
- The main research strategies are experiment, survey, case study, action research, grounded theory, ethnography and archival research. You should not think of these as discrete entities. They may be used in combination in the same research project.
CHAPTER 5 · FORMULATING THE RESEARCH DESIGN

- Using multiple methods can provide better opportunities to answer a research question and to evaluate the extent to which findings may be trusted and inferences made.
- Research projects may be cross-sectional or longitudinal.
- You should take care to ensure that your results are valid and reliable.
- You should always think carefully about the access and ethical issues implied by your research design.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

5.1 You are about to embark on a year-long study of customer service training for sales assistants in two supermarket companies. The purpose of the research is to compare the way in which the training develops and its effectiveness. What measures would you need to take in the research design stage to ensure that the results were valid?

5.2 You are working in an organisation that has branches throughout the UK. The managing director is mindful of the fact that managers of the branches need to talk over common problems on a regular basis. That is why there have always been monthly meetings. However, she is becoming increasingly concerned that these meetings are not cost-effective. Too many managers see them as an unwelcome intrusion. They feel that their time would be better spent pursuing their principal job objectives. Other managers see it as a ‘day off’: an opportunity to recharge the batteries.

She has asked you to carry out some research on the cost-effectiveness of the monthly meetings. You have defined the research question you are seeking to answer as ‘What are the managers’ opinions of the value of their monthly meetings?’

Your principal data collection method will be a questionnaire to all managers who attend the monthly meetings. However, you are keen to triangulate your findings. How might you do this?

5.3 You have started conducting interviews in a university with the university’s hourly paid staff (such as porters, gardeners and caterers). The research objective is to establish the extent to which those employees feel a sense of ‘belonging’ to the university. You have negotiated access to your interviewees through the head of each of the appropriate departments. In each case you have been presented with a list of interviewees.

It soon becomes apparent to you that you are getting a rather rosier picture than you expected. The interviewees are all very positive about their jobs, their managers and the university. This makes you suspicious. Are all the hourly paid staff as positive as this? Are you being given only the employees who can be relied on to tell the ‘good news’? Have they been ‘got at’ by their manager?

There is a great risk that your results will not be valid. What can you do?

5.4 You wish to study the reasons why car owners join manufacturer-sponsored owners’ clubs. Your chosen research design is to have unstructured discussions with some members of these owners’ clubs. You are asked by small group of marketing managers to explain why your chosen research design is as valid as a questionnaire-based survey. What would be your answer?
REVIEW AND DISCUSSION QUESTIONS

5.5 Use the search facilities of an online database to search for scholarly (peer reviewed) articles which have used firstly a case study, secondly action research and thirdly experiment research strategy in an area of interest to you. Download a copy of each article. What reasons do the articles’ authors give for the choice of strategy?

5.6 Agree with a friend to watch the same television documentary.
 a To what extent is the purpose of the documentary exploratory, descriptive or explanatory?
 b Does the documentary use a mono method, a multiple method or mixed methods?

Do not forget to make notes regarding your reasons for your answers to each of these questions and to discuss your answers with your friend.

5.7 Visit the online gateway to the European Union (http://europa.eu.int/) and click on the website in your own language. Discuss with a friend how you might you use the data available via links from this web page in archival research. In particular, you should concentrate on the research questions you might be able to answer using these data to represent part of the reality you would be researching.

PROGRESSING YOUR RESEARCH PROJECT

Deciding on your research design

- Revisit your research question and objectives. Make notes on the main purpose of your research.
- Decide which of the research strategies is most appropriate for your research question(s) and objectives. Look at studies in the literature that are similar to your own. Which strategies have been used? What explanations do the researchers give for their choice of strategy?
- How may you combine different research methods in your study? Make notes regarding the advantages and disadvantages of using multi-methods.
- Prepare notes on the constraints under which your research is being conducted. Do they, for example, preclude the pursuit of longitudinal research?
- List all the threats to reliability and validity contained in your research design.

References

CHAPTER 5 · FORMULATING THE RESEARCH DESIGN

Further reading

Robson, C. (2002) *Real World Research* (2nd edn), Oxford, Blackwell. Chapters 4–7 give an excellent readable account of all the topics covered in this chapter. The examples are not drawn principally from management and business. However, do not let that put you off.

Elin was in the final year of her studies in Marketing Management and had been considering options for her project for some time. She was particularly interested in researching more about issues in International Marketing as she had gained her best mark in a module on Global Marketing Management. She therefore thought it best to play to her strengths when choosing her project topic. Whilst she was sure of the discipline focus of her project she had struggled with thinking of any ideas as to how she could apply international marketing concepts, and to what, and using what research method? She talked through these issues with her Personal Tutor, who also happened to be a very well-known marketing scholar. They talked about her interests, which were varied, although most of them were sports related. Elin waxed lyrical about her love of skiing; in particular, about the time she spent working in a French ski resort as a ‘chalet girl’ during most of her gap year before coming to university. She was now hoping to work for one of the main ski tour operators¹ on graduating. Her Tutor pointed out the obvious solution: why did Elin not combine her interests in skiing, and ski operators, with the topic of international marketing? Elin left the meeting very happy; she could envisage now spending her final year researching something that she was very interested in, had prior knowledge of and a topic that would be helpful in her career pursuits.

Of course, she still had to find a suitable topic within the International Marketing area. On reading through her module notes and completed assignments she came across one of the main academic and practitioner debates in the area, that of whether to standardise or adapt international marketing practices. Levitt (1983) was the first main proponent of the expanded debate about standardised global marketing planning. His underlying message was that well-managed international companies should move their emphasis from customising items to offering globally standardised products that are advanced, functional, reliable and low priced. Meanwhile, authors such as Wind (1986) argued the case for the adaptation of marketing in the realisation that there are strong obstacles to standardisation. The debate is still very much a contemporary one: on searching the online databases, Elin found up-to-date refereed academic journal articles about marketing standardisation; however, with the exception of a few studies, there were very few on the international marketing experiences of service providers. Things were looking up; she had now found a gap in previous research which her project could potentially fill. In thinking back to her time as a chalet girl, she remembered that the tour operator she worked for not only offered skiing packages in a number of countries worldwide, but that they had operations in other European countries. She had met, for example, their customers from the UK, Spain, Italy, Portugal and Russia. These tour operators were obviously becoming major multinationals. Large numbers of people in a number of markets were buying and experiencing their products and services annually, and many businesses in ski destinations relied on them for their livelihood. In reviewing the literature in the tourism field, Elin could find little about the international marketing management activities of ski tour operators. Once again, she had established an identifiable gap in previous research. The aim of her project was: ‘To investigate the international marketing management decisions of UK ski tour operators’. The issue was now to design and implement an appropriate research strategy, in consultation with her project tutor. Elin decided to use a case study strategy for her project, because on reading a few research methods

¹ Holloway (1998) defines tour operators as companies that purchase separate elements of transport, accommodation and other services and combine them into a package, which they then sell directly or indirectly to consumers.
textbooks (inherited from her older brother who had completed a masters degree) she thought that her research questions were most suited to be answered via this strategy. For example, she wanted to know ‘how’ ski tour operators made decisions about marketing in the countries they operated in and ‘why’ these decisions and not others. She was directed by her tutor to read Yin’s (2003) book Case Study Research. This text seemed to be one of the definitive sources on using case studies in research. She was particularly struck by his definition of case study research, which she summarised as:

An empirical enquiry that:
■ investigates a phenomenon within its real-life context,
■ copes with a technically distinctive situation with many variables of interest, where the researcher has little control over events, and
■ utilises multiple rather than one single source of evidence.

Whilst she had first thought that she could research a sample of operators from the ‘outside’ using secondary data such as company information, industry reports, financial and marketing press, and marketing literature (such as brochures, advertising campaigns, etc.), she realised that she would need to go inside these organisations in order to really find out how and why decisions were made. In wanting to know how and why managers and organisations actually do things she realised she would need to rely on interviews with relevant managers and employees. Elin was excited by the prospect of going into these companies and talking to people; this fitted her personality and when previously reading about research philosophy she had very much identified herself as being more comfortable with the interpretivist philosophy. In addition, she also realised that she could make some good contacts in these organisations which might be helpful to her when applying later for graduate training positions. She had become terribly focused towards the end of her degree; this was scary really!

In reviewing industry reports on the tour operating industry, Elin found out that of the six main companies offering ski packages, only four of these were UK-owned. One of these was quite small and specialised in selling ski packages to school groups to the UK; she therefore eliminated this from her population as it was not involved in international marketing activities. This gave her three UK-owned companies to investigate (one of which was the tour operator she had worked for in her gap year). Luckily Elin had recently read, for another module, an article which discussed the results of research into cruise ships and from this she gained some useful insight into using case studies. The researchers for this study had interviewed a range of managers at different levels in cruise ship companies and had also collected internal documents. She could use this example in her meeting with her project tutor that afternoon, where he was expecting her to outline how she was going to implement this research design. Elin hoped he would approve of her ideas as she was really looking forward to going out into the field.

References

QUESTIONS
1 How should Elin justify her choice of a case study research strategy to her project tutor?
2 Gaining and maintaining access to organisations is an important aspect of a case study research project. What obstacles may Elin encounter when trying to gain access to these organisations? How should she overcome them?
3 What skills will Elin need when carrying out case study research in these three companies?

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:
■ The effectiveness of computer-based training at Falcon Insurance Company
■ Embedded quality at Zarlink Semi-conductor.
CHAPTER 5 · FORMULATING THE RESEARCH DESIGN

5.1 This would be a longitudinal study. Therefore, the potential of some of the threats to validity explained in Section 5.6 is greater simply because they have longer to develop. You would need to make sure that most of these threats were controlled as much as possible. For example, you would need:

■ to account for the possibility of a major event during the period of the research (wide-scale redundancies, which might affect employee attitudes) in one of the companies but not the other;
■ to ensure that you used the same data collection devices in both companies;
■ to be aware of the ‘mortality’ problem. Some of the sales assistants will leave. You would be advised to replace them with assistants with similar characteristics, as far as possible.

5.2 The questionnaire will undoubtedly perform a valuable function in obtaining a comprehensive amount of data that can be compared easily, say by district or age and gender. However, you would add to the understanding of the problem if you observed managers’ meetings. Who does most of the talking? What are the non-verbal behaviour patterns displayed by managers? Who turns up late, or does not turn up at all? You could also consider talking to managers in groups or individually. Your decision here would be whether to talk to them before or after the questionnaire, or both. In addition, you could study the minutes of the meetings to discover who contributed the most. Who initiated the most discussions? What were the attendance patterns?

5.3 There is no easy answer to this question! You have to remember that access to organisations to research is an act of goodwill on the part of managers, and they do like to retain a certain amount of control. Selecting whom researchers may interview is a classic way of managers doing this. If this is the motive of the managers concerned then they are unlikely to let you have free access to their employees.

What you could do is ask to see all the employees in a particular department rather than a sample of employees. Alternatively, you could explain that your research was still uncovering new patterns of information and more interviews were necessary. This way you would penetrate deeper into the core of the employee group and might start seeing those who were rather less positive. All this assumes that you have the time to do this!

You could also be perfectly honest with the managers and confess your concern. If you did a sound job at the start of the research in convincing them that you are purely interested in academic research, and that all data will be anonymous, then you may have less of a problem.

Of course, there is always the possibility that the employees generally are positive and feel as if they really do ‘belong’!

5.4 You would need to stress here that your principal interest would be in getting a deep understanding why car owners join manufacturer-sponsored owners’ clubs. You would discover why the owners joined these clubs and what they thought of them. In other words, you would establish what you set out to establish and, no doubt, a good deal besides. You will remember from Section 5.6 that validity is concerned with whether the findings are really about what they appear to be about. There is no reason why your discussions with owners should not be as valid as a questionnaire survey. Your questioning should be skilful enough to elicit rich responses from your interviewees (see Chapter 10). You should be sensitive to the direction in which the discussion is moving. This will mean not being too directive, while still moving the interview in the direction you as the interviewer want. Of course, you may alleviate any fears about validity by administering a questionnaire and conducting interviews so that your findings may be triangulated!
6

Negotiating access and research ethics

LEARNING OUTCOMES
By the end of this chapter you should be:
➔ aware of issues related to gaining access and research ethics;
➔ able to evaluate a range of strategies to help you to gain access to organisations and to individual participants;
➔ able to anticipate ethical issues at each stage of your research process and be aware of a range of strategies to help you deal with these;
➔ able to evaluate the ethical issues associated with a range data collection techniques, so that you can consider these in relation to your proposed research methods.

6.1 Introduction
Many students want to start their research as soon as they have identified a topic area, forgetting that access and ethics are critical aspects for the success of any research project. Like the subcontractors used by Procter and Gamble (see vignette), you will need to think about how you are going to gain access to the data you need (hopefully not by sorting through an organisation’s rubbish bins!) and how you are going to explain to those from whom you are obtaining data why you need that data. Consequently, you need to think carefully about how you will gain access to undertake your research and about possible ethical concerns that could arise in relation to the conduct of your entire research project. Without paying careful attention to how you are going to gain access to the data you require and acting ethically, what seem like good ideas for research may flounder and prove impractical or problematic once you attempt to carry them out. In thinking about these aspects you need to be aware that an increasing number of organisations, particularly those involved in health care, now require researchers to obtain ethical approval for their proposed research, including their data collection techniques, prior to granting access.

In this chapter we start by considering the types and levels of access and the issues associated with these (Section 6.2). Within this we explore issues of feasibility and suffi-
ciency in relation to gaining access and the impact of these on the nature and content of your research question and objectives. In the following section (6.3) we offer a number of proven strategies to help you to gain access to organisations and to your intended participants within these organisations. Section 6.4 is devoted to a discussion of research ethics and the issues that are likely to occur at the various stages of your research project in relation to the use of particular data collection techniques.

6.2 Problems associated with access

Your ability to obtain both primary and secondary data will depend on you gaining access to an appropriate source, or sources where there is a choice. The appropriateness of a source will, of course, depend on your research question, related objectives and research design (Chapter 5). The first level of access is physical access or entry (Gummesson, 2000). Gaining physical access can be difficult for a number of reasons. First, organisations or individuals may not be prepared to engage in additional, voluntary activities because of the time and resources required. Many organisations receive frequent student requests for access and cooperation and would find it impossible to agree to all or even some of these. Second, the request for access and cooperation may

Throughout the world companies are involved in research, gathering information about their competitors. Often they subcontract this research to other organisations, who gather competitive intelligence providing them with a competitive analysis. In 1999 Procter and Gamble (P&G) hired subcontractors to obtain competitive intelligence about other manufacturers’ hair care products.

According to Fortune Magazine, at least one of these subcontractors, in an attempt to gain information, sorted through rubbish, trespassed at Unilever’s hair-care headquarters, and misrepresented himself to Unilever employees (Serwer, 2001). P&G confirm that sorting through rubbish took place but deny that misrepresentation took place. The Chief Executive of P&G was, according to Fortune Magazine, ‘shocked’ by the techniques used to obtain data on new product rollouts, selling prices, margins and the like. In what Fortune Magazine describe as ‘something almost unheard of in corporate America’, P&G informed Unilever of what had happened. Subsequently, P&G and Unilever have agreed a settlement that ensures that none of the information obtained will ever be used. Those managers responsible for hiring the subcontractors have been fired, a company spokeswoman stating that the activities undertaken had violated P&G’s strict guidelines regarding business policies.
fail to interest the person who receives it or to reach the gatekeeper or broker who controls research access and makes the final decision as to whether or not to allow the researcher to undertake the research. This may be for a number of reasons, related to:

- a lack of perceived value in relation to the work of the organisation or the individual;
- the nature of the topic because of its potential sensitivity, or because of concerns about the confidentiality of the information that would be required;
- perceptions about your credibility and doubts about your competence.

Finally, the organisation may find itself in a difficult situation owing to external events totally unrelated to any perceptions about the nature of the request or the person making it, so that they have no choice but to refuse access. Even where a particular organisational participant is prepared to offer access this may be overruled at a higher level in the organisation. This may result in a ‘false start’ and an associated feeling of disappointment (Johnson, 1975). Where you are unable to gain this type of access, you will need to find another organisation, or even to modify your research question and objectives.

However, even where you are able to negotiate entry into an organisation there are other levels of access that you will need to consider and plan for if your research strategy is to be realised. Many writers see access as a continuing process and not just an initial or single event (Gummesson, 2000; Marshall and Rossman, 1999). This may take two forms. First, access may be an iterative process, so that you gain entry to carry out part of your research and then seek further access in order to conduct another part. You may also seek to repeat your collection of data in different parts of the organisation and therefore engage in the negotiation of access in each part (Marshall and Rossman, 1999). Second, those from whom you wish to collect data may be a different set of people from the gatekeeper who considered and agreed to your request for access. Physical access to an organisation will be formally granted through its management. However, it will also be necessary for you to gain informal acceptance from intended participants within the organisation in order to gain access to the data that they are able to provide (Robson, 2002).

Access may impact upon your ability to select a representative sample of participants, or secondary data, in order to attempt to answer your research question and meet your objectives in an unbiased way and to produce reliable and valid data (Sections 7.2 and 5.6 respectively, Box 6.1). This broader meaning of access is referred to as cognitive access. Where you achieve this you will have gained access to the precise data that you need your intended participants to share with you in order to be able to address your research question and objectives. Simply obtaining physical access to an organisation is likely to be inadequate unless you are also able to negotiate yourself into a position where you can collect data that reveal the reality of what is occurring in relation to your research question and objectives.

This fundamental point requires you to have established precisely what data you wish to collect and the technique or techniques you intend to use to collect it. However, there are two specific questions that we shall consider now:

- Have you considered sufficiently, and therefore realised fully, the extent and nature of the access that you will require in order to be able to answer your research question and meet your objectives?
- Are you able to gain sufficient access in practice to answer your research question and meet your objectives?

These two questions may be linked in some instances. In particular, your clarity of thought, which should result from sufficiently considering the nature of the access that
you require, may be helpful in persuading organisations to grant entry since they are more likely to be convinced about your credibility and competence.

Access is therefore likely to be problematic in terms of gaining permission for physical access, maintaining that access, and being able to create sufficient scope to answer fully the research question and meet the objectives that guide your research. This suggests that the **feasibility** of your research will be important (Blumberg *et al.*, 2005; Marshall and Rossman, 1999; Sekaran, 2003). The issue of feasibility will determine the construction or refinement of your research question and objectives, and may sometimes lead to a clash with these hallmarks of good research. This has been recognised by Buchanan *et al.* (1988:53–4):

Fieldwork is permeated with the conflict between what is theoretically desirable on the one hand and what is practically possible on the other. It is desirable to ensure representativeness in the sample, uniformity of interview procedures, adequate data collection across the range of topics to be explored, and so on. But the members of organisations block access to information, constrain the time allowed for interviews, lose your questionnaires, go on holiday, and join other organisations in the middle of your unfinished study. In the conflict between the desirable and the possible, the possible always wins.

The extent to which feasibility will affect the nature of your research, or at least the approach that you adopt, is made clear by Johnson (1975). He recognises that the reality of undertaking a research project may be to consider where you are likely to be able to gain access and to develop a topic to fit the nature of that access.

Your request to undertake research may involve you seeking access to a range of participants based on an organisational sample of, for example, customers, clients or employees. In order to select such a sample you will require access to organisational data, either directly or indirectly through a request that outlines precisely how you require the sample to be selected (Chapter 7). Where you wish to undertake a longitudinal study using primary data, you will require access to the organisation and your research participants on more than one occasion. The difficulty of obtaining access in relation to these more **intrusive** methods and approaches has been recognised many times in the literature (for example: Buchanan *et al.*, 1988; Johnson, 1975; Raimond, 1993).

The nature of these problems of access will vary in relation to your status as either a full-time or a part-time student. As a full-time student, approaching an organisation where you have no prior contact, you will be seeking to operate in the role of an **external researcher**. You will need to negotiate access at each level discussed above (physical, continuing and cognitive). Operating as an external researcher is likely to pose problems,

BOX 6.1 WORKED EXAMPLE

Gaining access to a representative sample

Hans wished to discover how component suppliers viewed the just-in-time delivery requirements of large manufacturing organisations which they supplied. Two large manufacturing organisations agreed to introduce him to a sample of their component suppliers whom Hans could interview. Whilst undertaking the interviews, Hans noted that all of the interviewees’ responses were extremely positive about the just-in-time delivery requirements of both large manufacturing organisations. As both manufacturing organisations had selected who would be interviewed, Hans wondered whether these extremely positive responses were typical of all the component suppliers used by these organisations, or whether they were providing an unreliable and untypical picture.
although it may have some benefits. Your lack of status in relation to an organisation in which you wish to conduct research will mean not only that gaining physical access is a major issue to overcome but also that this concern will remain in relation to negotiating continued and cognitive access (Box 6.2). Goodwill on the part of the organisation and its participants is something that external researchers have to rely on at each level of access. In this role, you need to remain sensitive to the issue of goodwill and seek to foster it at each level. Your ability to demonstrate clearly your research competence and integrity and in particular your ability to explain your research project clearly and concisely will also be critical at each level of access. These are key issues of access faced by all external researchers. Where you are able to demonstrate competence (see Chapters 9 to 11) and integrity, your role as an external researcher may prove to be beneficial. This is because participants are willing to accept you as being objective and without a covert organisational agenda, where they see your questions as being worthwhile and meaningful. Many organisations are also well disposed to reasonable research approaches for a number of reasons, some of which are discussed in the following section.

BOX 6.2 WORKED EXAMPLE

The impact of the researcher’s organisational status

Dave recalls an amusing tale of being a research student several years ago. The project involved gaining access to several employers’ and trade union organisations. Having gained access to the regional office of one such organisation, Dave used various types of organisational documentation situated there over a period of a few days. During the first day Dave was located in a large, comfortable room and frequently brought refreshments by the janitor of the building. This appeared to Dave to be very kind treatment. However, Dave did not know that a rumour had spread among some staff that he was from ‘head office’ and was there to ‘monitor’ in some way the work of the office. On attending the second day, Dave was met by the janitor and taken to a small, plain room, and no more refreshments appeared for the duration of the research visit. The rumour had been corrected!

Of course, this example of the effect of the researcher’s (lack of) organisational status is most unfair on the very considerable proportion of participants who treat very well those who undertake research within their organisation in full knowledge of their status. However, it illustrates the way in which some participants may react to perceptions about status.

As a part-time student or an organisational employee operating in the role of an **internal researcher** or a **participant researcher**, perhaps adopting an action research strategy (Section 5.3), you are still likely to face problems of access to data, although these may vary in relation to those faced by external researchers. As an internal researcher you may still face the problem associated with negotiating physical or continuing access, and may still need to obtain approval to undertake research in your ‘own part’ of the organisation. In addition, your status in the organisation may pose particular problems in relation to cognitive access. This may be related to suspicions about why you are undertaking your research project and the use that will be made of the data, perceptions about the part of the organisation for which you work, and your grade status in relation to those whom you wish to be your research participants. Any such problems may be exacerbated if you are given a project to research, perhaps by your line manager or mentor, where others are aware that this is an issue about which management would like to implement change. This is particularly likely to be the case where resulting change is perceived as being harmful to those whom you would wish to be your research...
participants. This will not only provide a problem for you in terms of gaining cognitive access but may also suggest ethical concerns as well (which we discuss in Section 6.4). As an internal researcher, you will need to consider these issues and, where appropriate, discuss them with those who wish to provide you with a project to research.

6.3 Strategies to gain access

The preceding section has outlined problems associated with gaining access. It has stressed the need to identify a feasible research question and objectives, from the perspective of gaining access. This section will outline and discuss a number of strategies that may help you to obtain physical and cognitive access to appropriate data. The discussion in this section will be applicable to you where you wish to gain personal entry to an organisation. It will be less applicable where you send a self-administered, postal or Internet-mediated questionnaire, in situations where you do not need to gain physical access in order to identify participants or the organisation’s permission to administer a questionnaire. As Raimond (1993:67) recognises, ‘provided that people reply to the questionnaires, the problem of access to data is solved’. Even in this case, however, some of the points that follow will still apply to the way in which you construct the pre-survey contact and the written request to complete the questionnaire (Sections 11.4 and 11.5). The applicability of these strategies will also vary in relation to your status as either an internal or an external researcher. Self-check question 6.3 is specifically designed to allow you to explore this aspect, and Box 6.7 on page 177 offers suggestions about the use of these strategies in relation to the respective roles of internal and external researcher.

Strategies to help you to gain access, discussed in this section, are:

- allowing yourself sufficient time;
- using existing and developing new contacts;
- providing a clear account of purpose and type of access required;
- overcoming organisational concerns;
- highlighting possible benefits to the organisation;
- using suitable language;
- facilitating replies;
- developing access incrementally;
- establishing credibility.

Allowing yourself sufficient time

Physical access may take weeks or even months to arrange, and in many cases the time invested will not result in access being granted (Buchanan et al., 1988). An approach to an organisation will result in either a reply or no response at all. A politely worded but clearly reasoned refusal at least informs you that access will not be granted. The non-reply situation means that, if you wish to pursue the possibility of gaining access to a particular organisation, you will need to allow sufficient time before sending further correspondence or making a follow-up telephone call. Easterby-Smith et al. (1991) report the need to make up to four telephone calls in order to gain access. Great care must be taken in relation to this type of activity so that no grounds for offence are given. Seeking access
CHAPTER 6 · NEGOTIATING ACCESS AND RESEARCH ETHICS

into a large, complex organisation, where you do not have existing contacts, may also necessitate several telephone calls simply to establish who is the best person to ensure that your request for access will be considered by the organisational gatekeeper. In our experience this can take days or even a couple of weeks to achieve. You may also consider using email where you have access to this as a way of obtaining a reply.

If you are able to contact a participant directly, such as a manager, an exchange of correspondence may be sufficient to gain access. Here you should clearly set out what you require from this person and persuade him or her of the value of your work and your credibility. Even so, you will still need to allow time for your request to be received and considered and an interview meeting to be arranged at a convenient time for your research participant. This may take a number of weeks, and you may have to wait for longer to schedule the actual interview.

Where you are seeking access to a range of organisational participants to conduct a number of interviews, to undertake a questionnaire, to engage in observation or to use secondary data, your request may be passed 'up' the organisation for approval and is likely be considered by a number of people. Where you are able to use a known contact in the organisation this may help, especially where they are willing to act as a sponsor for your research. Even so, you will still need to allow for this process to take weeks rather than days. Where the organisation is prepared to consider granting access it is likely that you will be asked to attend a meeting to discuss your research. There may also be a period of delay after this stage while the case that you have made for access is evaluated in terms of its implications for the organisation, and it may be necessary to make a number of telephone calls to pursue your request politely.

In the situation where your intended participants are not the same people who grant you physical access, you will need to allow further time to gain their acceptance. This may involve you making pre-survey contact by telephoning these intended participants (Section 11.5), or engaging in correspondence or holding an explanatory meeting with them (discussed later). You may well need to allow a couple of weeks or more to establish contact with your intended participants and to secure their cooperation, especially given any operational constraints that restrict their availability.

Once you have gained physical access to the organisation and to your participants, you will be concerned with gaining cognitive access. Whichever method you are using to gather data will involve you in a time-consuming process, although some methods will require that more of your time be spent within the organisation to understand what is happening. The use of a questionnaire will mean less time spent in the organisation compared with the use of non-standardised interviews, whereas the use of observation techniques may result in even more time being spent to gather data (Bryman, 1988). Where you are involved in a situation of continuing access, as outlined in this section, there will also be an issue related to the time that is required to negotiate, or re-negotiate, access at each stage. You will need to consider how careful planning may help to minimise the possibility of any 'stop–go' approach to your research activity.

Using existing and developing new contacts

Most management and organisational researchers suggest that you are more likely to gain access where you are able to use existing contacts (Buchanan et al., 1988; Easterby-Smith et al., 2002; Johnson, 1975). Buchanan et al. (1988:56) say that ‘we have been most successful where we have a friend, relative or student working in the organisation’. We have also found this to be the case. In order to request access we have approached those whom we would consider to be professional colleagues, who may also be present or past stu-
dents, course advisers, external examiners, or otherwise known to us through local, regional or national networks. Their knowledge of us means that they should be able to trust our stated intentions and the assurances we give about the use that will be made of any data provided. It can also be useful to start a research project by utilising these existing contacts in order to establish a track record that you can refer to in approaches that you make to other organisations where you do not have such contacts. This should help your credibility with these new contacts.

The use of known contacts will depend largely on your choice of research strategy, approach to selecting a sample, research question and objectives. It is likely to be easier to use this approach where you are using a case-study, action research or ethnographic research strategy (Section 5.3). This will certainly be likely where you undertake an in-depth study that focuses on a small, purposively selected sample (Section 7.3). There will clearly be a high level of convenience in terms of gaining access through contacts who are familiar; however, these contacts may also be used as part of a quota sample, or in relation to purposive or snowball sampling (Section 7.3).

Jankowicz (2005) refers to the possibility of using your work placement organisation as a context for your research project, where this applies to your situation as a full-time undergraduate or postgraduate student. Where you have enjoyed a successful work placement, you will undoubtedly have made a number of contacts who may be able to be very helpful in terms of cooperating with you and granting access to data. You may have become interested in a particular topic because of the time that you spent in your placement organisation. Where this is so, you can spend time reading theoretical work that may be relevant to this topic, then identify a research question and objectives and plan a research project to pursue your interest within the context of your placement organisation. The combination of genuine interest in the topic and relatively easy access to organisational participants should help towards the production of a good-quality and useful piece of work.

Where you need to develop new contacts, consideration of the points discussed throughout this section will help you to cultivate these. In addition, you will need to be able to identify the most appropriate person to contact for help, either directly or indirectly (Box 6.3). There may be a number of ways to seek to do this, depending on your research topic. You may consider asking the local branch of an appropriate professional association of whom you are a member for the names and business addresses of key employees to contact in organisations where it would be suitable for you to conduct research. You could also contact your professional association at national level, where this is more appropriate to your research question and objectives. It might also be appropriate to contact either an employers’ association for a particular industry, or a trade union, at local or national level. Alternatively, it might be appropriate for you to contact one or more chambers of commerce, learning skills councils or other employers’ networks. However, you need to be mindful that such associations and organisations are likely to receive literally hundreds of requests from students every year and so may have insufficient time or resources to respond.

You may also consider making a direct approach to an organisation in an attempt to identify the appropriate person to contact in relation to a particular research project. This has the advantage of potentially providing access to organisations that you would like to include in your research project; however, great care needs to be exercised at each stage of this exercise.

Using the approach outlined in Box 6.3 may result in you obtaining the business email addresses of possible organisational ‘leads’. In this case you will need to use the Internet to send a written request to such a person. Where you consider this to be appropriate you
will, of course, still need to follow the standards of care that you should use in drafting and sending a letter. The ease of using email may tempt some to use a lower level of care about the way their written communication is constructed. It may also lead to a temptation to send repeated messages. The use of email is considered later in our discussion about ‘netiquette’; however, from a practical point of view it is also a possibility that using this means to make contact may result in a greater danger that the recipient of your request simply deletes the message! Those people who receive large numbers of email every day may cope with these by deleting any that aren’t essential. It is possible that sending a letter to a potential ‘lead’ may result in that person considering your request more carefully!

Making the type of contact outlined in Box 6.3 may result in identifying the person whom you wish to participate in your research. Alternatively, your reason for making contact with this person may be to ask them to grant you access to others in the organ-
isation whom you wish to be your participants, or to secondary data. This type of contact may be the functional manager or director of those staff to whom you would like access. Having identified an organisational gatekeeper you will have to persuade them about your credibility, overcome any issues they have about the sensitivity of your research project and demonstrate the potential value of this for them.

BOX 6.4 WORKED EXAMPLE

Email requesting access

Annette was undertaking her research project on the use of lean production systems. Having made telephone contact with the production controller’s personal assistant, she was asked to send an email requesting access:

![Email example](image)

Unfortunately, Annette relied on her email software’s spell check to proof read her email. This resulted in the production controller receiving an email containing three mistakes:

- the addition of the word ‘I’ at the end of the first paragraph;
- the phrase ‘between 30 minutes and half an hour’ instead of ‘between 30 minutes and an hour’ at the end of the second paragraph;
- two digits being transposed in the mobile telephone number at the end of the last paragraph.

Not surprisingly, Annette was denied access.

Providing a clear account of purpose and type of access required

Providing a clear account of your requirements will allow your intended participants to be aware of what will be required from them (Robson, 2002). Asking for access and cooperation without being specific about your requirements will probably lead to a cautious attitude on their part since the amount of time that could be required might prove to be disruptive. Even where the initial contact or request for access involves a telephone call, it is still probably advisable to send a letter or email that outlines your proposed
research and requirements (Box 6.4). Your introductory letter requesting access should outline in brief the purpose of your research, how the person being contacted might be able to help, and what would be required. The success of this letter will be helped by the use of short and clear sentences. Its tone should be polite, and it should seek to generate interest on the part of intended respondents.

Establishing your credibility will be vital in order to gain access. The use of known contacts will mean that you can seek to trade on your existing level of credibility. However, when you are making contact with a potential participant for the first time, the nature of your approach will be highly significant in terms of beginning to establish credibility – or not doing so! Any telephone call or introductory letter will need to demonstrate your clarity of thought and purpose. Any lack of preparation at this stage will be apparent and is likely to reduce the possibility of gaining access. These issues are discussed in more detail in Section 10.4.

The presentation of the introductory letter will also serve to establish credibility. Healey (1991:210) says ‘a well-designed and presented letter, typed on headed note paper, which is personally addressed with a hand-written signature, would seem to be a sensible way of trying to persuade . . . managers of businesses to cooperate’.

Overcoming organisational concerns

Organisational concerns may be placed into one of three categories. First, concerns about the amount of time or resources that will be involved in the request for access. Easterby-Smith et al. (2002) suggest that your request for access is more likely to be accepted if the amounts of time and resources you ask for are kept to a minimum. As a complementary point to this, Healey (1991) reports earlier work that found that introductory letters containing multiple requests are also less likely to be successful. However, while the achievement of access may be more likely to be realised where your demands are kept to a minimum, there is still a need to maintain honesty. For example, where you wish to conduct an interview you may be more likely to gain access if the time requested is kept within reason. However, falsely stating that it will last for only a short time and then deliberately exceeding this is very likely to upset your participant and may prevent your gaining further access.

The second area of concern is related to sensitivity about the topic. We have found that organisations are less likely to cooperate where the topic of the research has negative implications. Organisations do not normally wish to present themselves as not performing well in any aspect of their business. If this is likely to be the case you will need to consider carefully the way in which your proposed research topic may be perceived by those whom you ask to grant access. In such cases you may be able to highlight a positive approach to the issue by, for example, emphasising that your work will be designed to identify individual and organisational learning in relation to the topic (a positive inference). You should avoid sending any request that appears to concentrate on aspects associated with non-achievement or failure if you are to gain access. Your request for access is therefore more likely to be favourably considered where you are able to outline a research topic that does not appear to be sensitive to the organisation (Easterby-Smith et al., 2002).

The third area of concern is related to the confidentiality of the data that would have to be provided and the anonymity of the organisation or individual participants. To overcome this concern, you will need to provide clear assurances about these aspects (Box 6.4). One advantage of using an introductory letter is to give this guarantee in writing at the time of making the request for access, when this issue may be uppermost in the
minds of those who will consider your approach. Once initial access has been granted you will need to repeat any assurances about anonymity and confidentiality to those who act as your participants. You will also need to consider how to maintain this when you write up your work in situations where particular participants could be indirectly identified (Bell, 2005) (Section 14.5). Illustrations of how not to do this are provided in Box 6.16 (page 194)!

Possible benefits to the organisation

Apart from any general interest that is generated by the subject of your proposed research, you may find that it will have some level of *applicability* to the jobs of those whom you approach for access. Practitioners often wrestle with the same subject issues as researchers and may therefore welcome the opportunity to discuss their own analysis and course of action related to such an issue, in a non-threatening, non-judgemental environment. A discussion may allow them to think through an issue and to reflect on the action that they have adopted to manage it. In our own interviews with practitioners we are pleased when told that the discussion has been of value to the interviewee, because of this reason.

For those who work in organisations where they are perhaps the only subject practitioner, this may be the first time they have had this type of opportunity. You therefore need to consider whether your proposed research topic may provide some advantage to those from whom you wish to gain access, although this does not mean that you should attempt to ‘buy’ your way in based on some promise about the potential value of your work. Where it is unlikely that your proposed research will suggest any advantage to those whose cooperation you seek, you will need to consider what alternative course of action to take. This may involve redesigning your research question and objectives before seeking any access.

It may also help to offer a summary report of your findings to those who grant access. The intention would be to provide each of your participants with something of value and to fulfil any expectations about exchange between the provider and receiver of the research data, thereby prompting some of those whom you approach to grant access (Johnson, 1975). We believe it is essential that this summary report is designed specifically to be of use to those who participated rather than, say, a copy of the research report you need to submit to your university. It is also possible that feedback from the organisation about your report may help you further with your research.

Where access is granted in return for supplying a report of your findings it may be important to devise a simple ‘contract’ to make clear what has been agreed. This should make clear the broad form of the report and the nature and depth of the analysis that you agree to include in it. This may vary from a summary report of key findings to a much more in-depth analysis. For this reason it will be important to determine what will be realistic to supply to those who grant you access.

Using suitable language

Some researchers advise against referring to certain terms used in relation to research activity when making an approach to an organisation for access, because these may be perceived as threatening or not interesting to the potential participant (e.g. Buchanan *et al*., 1988; Easterby-Smith *et al*., 2002). Buchanan *et al*. (1988:57) suggest using ‘learn from your experience’ in place of research, ‘conversation’ instead of interview and ‘write an account’ rather than publish.
Use of language will depend largely on the nature of the people you are contacting. Your language should be appropriate to the type of person being contacted, without any hint of being patronising, threatening or just boring. Given the vital role of initial telephone conversations or introductory letters, we would suggest allowing adequate time to consider and draft these and using someone to check through your message. You may find Section 11.4, and in particular Box 11.14, helpful in this process. Do not forget that you are intending to engender interest in your research project, and the initial point of contact needs to convey this.

Facilitating replies

We have found that the inclusion of a simple pro forma for recipients of our written requests for access to use generally ensures a reply (Box 6.5). It may not be suitable in all cases, and should be designed to fit the data collection technique you intend to use. Nevertheless, its use is worth considering. Inclusion of a stamped or freepost addressed envelope, or a fax number or email address, may also facilitate a reply.

Developing access incrementally

We have already referred to the strategy of achieving access by stages, as a means of overcoming organisational concerns about time-consuming, multiple requests. Johnson (1975) provides an example of developing access on an incremental basis. He used a three-stage strategy to achieve his desired depth of access. The first stage involved a request to conduct interviews. This was the minimum requirement in order to commence his research. The next stage involved negotiating access to undertake observation. The final stage was in effect an extension to the second stage and involved gaining permission to tape-record the interactions being observed.

There are potentially a number of advantages related to the use of this strategy. As suggested above, a request to an organisation for multiple access may be sufficient to cause them to decline entry. Using an incremental strategy at least gains you access to a certain level of data. This strategy will also allow you the opportunity to develop a positive relationship with those who are prepared to grant initial access of a restricted nature. As you establish your credibility, you can develop the possibility of achieving a fuller level of access. A further advantage may follow from the opportunity that you have to design your request for further access specifically to the situation and in relation to opportunities that may become apparent from your initial level of access. On the other hand, this incremental process will be time consuming, and you need to consider the amount of time that you will have for your research project before embarking on such a strategy. In addition, it can be argued that it is unethical not to explain your access requirements fully.

Establishing your credibility

In Section 6.2 we differentiated between physical and cognitive access. Just because you have been granted entry into an organisation, you will not be able to assume that those whom you wish to interview, survey or observe will be prepared to provide their cooperation. Indeed, assuming that this is going to happen raises an ethical issue that is considered in the next section. Robson (2002) says that gaining cooperation from these intended participants is a matter of developing relationships. This will mean repeating much of the process that you will have used to gain entry into the organisation. You will
Using a pro forma to facilitate replies

Katie wished to gain access to organisations to discuss their marketing strategies. She used the following pro forma to facilitate replies from those marketing managers whom she had asked to participate in her research:

For the attention of Katie Thornhill
Dear Katie,

Implementing Marketing Strategies Research

☐ I am able to talk to you about how my organisation is implementing its marketing strategy and am available to meet you on the following dates:

Day: Time: Location:

☐ Please contact me to arrange an appointment.

☐ I also recommend that you speak with:

Name: Contact details:

☐ I am unable to talk to you about how my organisation is implementing its marketing strategy.

☐ I recommend you that you speak with:

Name: Contact details:

Yours sincerely
Name:
Position:
Organisation:
Telephone:
Fax:
Email:
need to share with them the purpose of your research project, state how you believe that they will be able to help your study, and provide assurances about confidentiality and anonymity. This may involve writing to your intended participants or talking to them individually or in a group. Which of these means you use will depend on the intended data collection technique, your opportunity to make contact with them, the numbers of participants involved, and the nature of the setting. However, your credibility and the probability of individuals’ participation is likely to be enhanced if the request for participation is made jointly with a senior person from the organisation (Box 6.6). Where your intended data collection technique may be considered intrusive, you may need to exercise even greater care and take longer to gain acceptance. This might be the case, for example, where you wish to undertake observation (Chapter 9). The extent to which you succeed in gaining cognitive access will depend on this effort.

BOX 6.6 WORKED EXAMPLE

Email request to participate in a focus group

Sara’s research project involved her in undertaking a communication audit for an organisation near her university. As part of her research design she had chosen to use mixed method research using focus groups followed by a questionnaire. Those selected to attend the focus groups were invited by individual emails sent jointly from herself and a senior manager within the organisation:

![Email example](image)

The strategies that we have outlined to help you to gain access to organisations and to those whom you wish to participate in your research project are summarised as a checklist in Box 6.7. Box 6.8 illustrates how they have been used in research on the use of codes of conduct in e-business.
To help to gain access

☑ Have you allowed yourself plenty of time for the entire process?
☑ Are you clear about the purpose of your research project?
☑ Are you clear about your requirements when requesting access (at least your initial requirements)?
☑ Can you use existing contacts, at least at the start of your research project, in order to gain access and gather data?
☑ (If you have been on a work placement) Is your work placement organisation an appropriate setting for your research project?
☑ Have you approached appropriate local and/or national employer, or employee, professional or trade bodies to see if they can suggest contacts through whom you might gain access?
☑ Have you considered making a direct approach to an organisation to identify the most appropriate person to contact for access?
☑ Have you identified the most appropriate person and been willing to keep on trying to make contact?
☑ Have you drafted a list of the points you wish to make, including your thanks to those to whom you speak?
☑ Have you considered and thought about how you will address likely organisational concerns such as:
 ■ the amount of time or resources that would be involved on the part of the organisation;
 ■ the sensitivity of your research topic;
 ■ the need for confidentiality and/or anonymity?
☑ Have you considered the possible benefits for the organisation should they grant access to you, and the offer of a report summarising your findings to enhance your chance of achieving access?
☑ Are you willing to attend a meeting to present and discuss your request for access?
☑ Where your initial request for access involves a telephone conversation, have you followed this with an introductory letter to confirm your requirements?
☑ Is the construction, tone and presentation of an introductory letter likely to support your gaining access?
☑ Have you ensured that your use of language is appropriate to the person who receives it without any hint of being patronising, threatening or boring?
☑ Have you considered including a simple pro forma for recipients to use to reply, as well as a stamped or freepost addressed envelope, email address, and fax number where possible?
☑ Are you prepared to work through organisational gatekeepers in order to gain access to intended participants?
☑ Have you allowed sufficient time to contact intended participants and gain their acceptance, once physical access has been granted?
☑ Have you allowed sufficient time within your data collection to gain ‘cognitive access’ to data?
6.4 Research ethics

Defining research ethics

Ethical concerns will emerge as you plan your research, seek access to organisations and to individuals, collect, analyse and report your data. In the context of research, ethics refers to the appropriateness of your behaviour in relation to the rights of those who become the subject of your work, or are affected by it. Blumberg et al. (2005:92) define ethics as the ‘moral principles, norms or standards of behaviour that guide moral choices about our behaviour and our relationships with others’. Research ethics therefore relates to questions about how we formulate and clarify our research topic, design our research and gain access, collect data, process and store our data, analyse data and write up our research findings in a moral and responsible way. This means that you will have to ensure that the way you design your research is both methodologically sound and morally defensible to all those who are involved. Inevitably, what is morally defensible behaviour as researchers will be affected by broader social norms of behaviour (Zikmund, 2000). A social norm indicates the type of behaviour that a person ought to adopt in a particular situation (Robson, 2002; Zikmund, 2000). However, as Blumberg et al. (2005) recognise, the norms of behaviour that guide moral choices can in reality allow for a range of ethical positions.

Within business and management research, there are two dominant philosophical standpoints: deontology and teleology. The deontological view argues that the ends served by the research can never justify the use of research which is unethical. Consequently, if you adopted this view you would never use, for example, deception to obtain your research data, even if deception was necessary to ensure the data were valid and reliable. In contrast, the teleological view argues that the ends served by your research justify the means. Consequently, the benefits of your research findings would be weighed against the costs of acting unethically. This approach has an added complication
as you also need to consider whether the benefits of the research are morally just. Unfortunately, it is unlikely that a simple comparison between costs to one group and benefits to another can provide you with a clear answer to such an ethical dilemma. Any deviation from ethical standards therefore needs to be thought through and justified extremely carefully. Not surprisingly, we recommend that you consider ethical issues throughout the period of your research and remain sensitive to the impact (both positive and negative) of your work on those whom you approach to help, those who provide access and cooperation, and those affected by your results.

The conduct of your research is likely to be guided by your university’s code of ethics or ethical guidelines. A code of ethics will provide you with a statement of principles and procedures for the conduct of your research. This will be helpful and, where followed, should ensure that you do not transgress the behavioural norms established by your university or professional association. As a member of a university (and where appropriate a professional association) you should seek out the existence of such ethical codes or ethical guidelines for research. The Internet can also provide direct links to a number of very useful codes of ethics and ethical guidelines. A selection of these is contained in Table 6.1.

You may also be required to submit your research proposal to a faculty or university research ethics committee. Research ethics committees fulfil a number of objectives. One of these may be a proactive or educational role, which would include constructing an ethical code and disseminating advice about the ethical implications of design aspects of research. An ethics committee may also adopt a reactive role in relation to the consideration of research proposals and calls for advice arising from dilemmas that confront researchers. A research ethics committee is likely to be composed of experienced researchers from a variety of backgrounds, who are able to draw on their range of experience and knowledge of different ethical perspectives to provide advice. A committee may also be used in particular cases to form a judgement about the undertaking of research that appears to contain ethical dilemmas. In some cases you may also have to satisfy the requirements of an ethics committee established in your host organisation as well as your university. This is likely to apply where your research is based in the health service. For example, many of our part-time students undertaking research within the UK’s National Health Service (NHS) have had to meet the requirements established by their local NHS Trust’s ethics committee. Such a requirement is often time consuming to meet.

Table 6.1 A selection of Internet locations for codes of ethics

<table>
<thead>
<tr>
<th>Name</th>
<th>Internet address</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Sociological Association’s Statement of Ethical Practice</td>
<td>http://www.britsoc.co.uk/new_site/index.php?area=equality&id=63</td>
</tr>
<tr>
<td>Social Research Association’s Ethical Guidelines</td>
<td>http://www.the-sra.org.uk/ethicals.htm</td>
</tr>
</tbody>
</table>
Even where you use a code of ethics in the design of your research and have submitted your proposal to a research ethics committee for approval, this is unlikely to indicate the end of your consideration of ethical issues. As we stated at the start of this section and can be seen from Figure 6.1, ethical issues are likely to be of importance throughout your research and require ethical integrity from you as researcher, your research sponsor (if any) and the organisation’s gatekeeper. In the initial stages of formulating and clarifying your research topic those upon whom you are researching have the right to expect quality research which takes account of existing knowledge. Where you are undertaking research for an organisation you will need to find the middle ground between the organisation’s right for useful research and your right not to be coerced into researching a topic in which you are not at all interested or that does not satisfy the assessment requirements of your university. As we have already discussed (Section 6.2), the nature of business and management research means that you are likely to be dependent on a gatekeeper for access. This will inevitably lead to a range of ethical issues associated with research design and access. The nature of power relationships in business and management research will raise ethical...
issues that also need to be considered. Organisational gatekeepers are in a very powerful position in relation to researchers who request organisational access. They will remain in a powerful position in terms of the nature and extent of the access that they allow in an organisational setting. However, you need to be sensitive to the way in which the granting of access affects this type of relationship. During data collection face-to-face interviews, even with managers, will place you in a position of some ‘power’, albeit for a short time, because you will be able to formulate questions, including probing ones, which may cause discomfort or even stress. As a researcher in an organisation you will need to remain sensitive to the fact that your presence is a temporary one, whereas the people from whom you collect data will need to work together after you depart. This will have an impact on the way in which you both analyse your data and report your research findings. In addition, the way in which you process and store data you collect about individuals is likely to be governed by data protection legislation. Such legislation provides protection for individuals in relation to the processing and storing of personal data. There are therefore more general ethical issues as well as those arising at specific stages. It is to these that we now turn, commencing with those issues that affect the process generally before looking at those issues that are specific to the stages outlined in Figure 6.1.

General ethical issues

A number of key ethical issues arise across the stages and duration of a research project. These relate to the:

- privacy of possible and actual participants;
- voluntary nature of participation and the right to withdraw partially or completely from the process;
- consent and possible deception of participants;
- maintenance of the confidentiality of data provided by individuals or identifiable participants and their anonymity;
- reactions of participants to the way in which you seek to collect data, including embarrassment, stress, discomfort, pain and harm;
- effects on participants of the way in which you use, analyse and report your data, in particular the avoidance of embarrassment, stress, discomfort, pain and harm;
- behaviour and objectivity of you as researcher.

The avoidance of harm (non-maleficence) can be seen as the cornerstone of the ethical issues that confront those who undertake research. For example, the way you obtain consent, preserve confidentiality, collect your data from participants and the way in which you use, analyse and report your data all have the capacity to cause harm to participants. Observation, interviews and questionnaires can all be potentially intrusive and provoke anxiety or stress. Box 6.9 provides a short checklist for helping reduce the likelihood of your research harming your participants. However, we would stress that in order to minimise the likelihood of causing harm, we believe you should use this checklist in conjunction with the others in this section.

You may also consider using the Internet in relation to your research project. This possibility will undoubtedly continue to generate a debate and evaluation about the ethical use of this particular means to collect data. The expression netiquette has been developed to provide a heading for a number of ‘rules’ or guidelines about how to act ethically when using the Internet. As such it allows us to identify a range of potential ethical issues that arise from using the Internet. The Internet may allow you to contact possible
participants more easily and even to do this repeatedly – a possibility that may be an invasion of their privacy in a number of ways. Forms of covert observation that impinge on the rights of ‘participants’ may also be possible (Blumberg et al., 2005), as may the monitoring of individuals’ use of different websites or collecting data on customers’ preferences. In general terms, you should apply the ethical principles that are discussed in this chapter and elsewhere in this book when considering using the Internet as a means to collect data. We return to other aspects of research netiquette later in this section and offer particular advice about Internet-mediated questionnaires in Section 11.5.

Ethical issues during design and gaining access

A number of management researchers state that ethical problems should be anticipated and dealt with during the design stage of any research project. This should be attempted by planning to conduct the research project in line with the ethical principle of not causing harm (discussed earlier) and by adapting your research strategy or choice of methods where this is appropriate. Evidence that ethical issues have been considered and evaluated at this stage is likely to be one of the criteria against which your research proposal is judged (Blumberg et al., 2005; Marshall and Rossman, 1999).

One of the key stages at which you need to consider the potential for ethical problems to arise is when you seek access (Box 6.10). As referred to earlier, you should not attempt to apply any pressure on intended participants to grant access (Robson, 2002; Sekaran, 2003). This is unlikely to be the case where you are approaching a member of an organisation’s management to request access. However, where you are undertaking a research project as an internal researcher within your employing organisation (Section 6.3), in relation to a part-time qualification, there may be a temptation to apply pressure to others (colleagues or subordinates) to cooperate. Individuals have a right to privacy and should not feel pressurised or coerced into participating. By not respecting this, you may well be causing harm. Consequently, you will have to accept any refusal to take part (Blumberg et al., 2005; Robson, 2002). Box 6.11 contains a short checklist to help you ensure you are not putting pressure on individuals to participate. You may also cause harm by the nature and timing of any approach that you make to intended participants – perhaps by telephoning at ‘unsociable’ times, or, if possible, by ‘confronting’ those from whom you intend to collect data. Access to secondary data may also raise ethical issues in relation to harm. Where you happen to obtain access to personal data about individuals who have not consented to let you have this (through personnel or client records), you will be obliged to treat this in the strictest confidence and not to use it in any way that might cause harm to these people.

Consent to participate in a research project is not a straightforward matter. In general terms, an approach to a potential participant is an attempt to gain consent. However, this
raises a question about the scope of any consent given. Where someone agrees to participate in a particular data collection method, this does not necessarily imply consent about the way in which the data provided are subsequently used. Clearly, any assurances that you provide about anonymity and confidentiality will help to develop an understanding of the nature of the consent being entered into, but even this may be inadequate in terms of clarifying the nature of that consent. This suggests a continuum that ranges across a lack of consent, involving some form of deception, a lack of clarity about the nature of consent so that the researcher implies consent from taking part, and consent that is fully informed as well as freely given (known as informed consent). This is shown in Figure 6.2.

BOX 6.10 FOCUS ON MANAGEMENT RESEARCH

Not obtaining consent

Horwood and Moon (2003) proposed to undertake a study into underlying public attitudes regarding future plans for mental health care facilities. Their review of the literature had highlighted the need for further research that, rather than asking respondents to recall their attitudes, collected data on actual attitudes over time. This meant that they needed advance, confidential knowledge of a proposed new facility prior to its becoming public knowledge. By having this they could ensure that public knowledge of a proposed new development had not impacted upon the initial underlying attitudes.

Access to undertake the research was requested from a UK National Health Service (NHS) Trust who initially supported the proposal, providing advanced warning of two proposed applications to build new facilities. As part of their discussions, the researchers agreed to be sensitive to any future negotiations between the NHS Trust and local residents and circulated a ‘research protocol’ outlining how this would be managed. The NHS Trust’s response to this protocol was unexpected, the letter concluding ‘I would therefore ask that you do not undertake the research of the nature described in this area’ (Horwood and Moon, 2003, p. 106). The letter also indicated that access to interview employees would no longer be possible. A subsequent meeting also revealed that, although the NHS Trust’s agreement was not necessary to collect data from the local residents, any interviews undertaken with the general public would jeopardise other research projects involving the University.

Horwood and Moon state that, although they could have continued their research covertly, they decided not to do so. This was partly because of the negative impact on their research design of not being able to interview employees but, more importantly, for moral and ethical reasons. Included in these was the likely impact of continuing their research on the work of other researchers.

BOX 6.11 CHECKLIST

Assessing your research in relation to not pressurising individuals to participate

- ✔ Have you made sure that no inducements (for example, financial payments), other than reimbursement for travel expenses or in some cases time, are offered?
- ✔ Have you checked that the risks involved in participation are likely to be acceptable to those participating?
- ✔ Are participants free to withdraw from your study at any time and have you informed them of this?
Three points are described in Figure 6.2, although in reality this is likely to operate as a continuum as a multitude of positions are possible around the points described. For example, research that is conducted with those who have agreed to participate can still involve an attempt to deceive them in some way. This may be related to deceit over the real purpose of the research (Sekaran, 2003), or in relation to some undeclared sponsorship (Zikmund, 2000), or related to an association with another organisation that will use any data gained for commercial advantage. Where this is the case, it could cause embarrassment or harm to those who promote your request for access within their employing organisation, as well as to yourself.

There are a number of aspects that need to be considered when obtaining consent. These are summarised in Box 6.12 as a checklist, the answers to these questions often being drawn together in a participant information sheet. The extent of the detail of informed consent that you will require will depend on the nature of your research project. The nature of establishing informed consent will also vary. If you are intending to collect data using a questionnaire, the return of a completed questionnaire by a respondent is taken to have implied consent. Alternatively, when interviewing a senior manager, correspondence may be exchanged, such as discussed in Section 6.3, to establish informed consent. When interviewing individuals, informed consent may be supplemented by a more detailed written agreement, such as a consent form (Box 6.13), signed by both parties. Informed consent may also be entered into through a verbal agreement. You will also need to operate on the basis that informed consent is a continuing requirement for your research. This, of course, will be particularly significant where you seek to gain access on an incremental basis (Section 6.3). Although you may have established informed consent through prior written correspondence, it is still worthwhile to reinforce this at the point of collecting data. An example of this is provided in Box 10.8, which contains a worked example about opening a semi-structured interview. You will also need to gain informed consent from those whom you wish to be your intended participants as well as those who act as organisational gatekeepers, granting you access.

In the preceding section we discussed possible strategies to help you to gain access. One of these was related to possible benefits to an organisation of granting you access. You should be realistic about this. Where you are anxious to gain access, you may be tempted to offer more than is feasible. Alternatively, you may offer to supply information arising from your work without intending to do this. Such behaviour would clearly be unethical, and to compound this the effect of such action (or inaction) may result in a refusal to grant access to others who come after you.

![Figure 6.2 The nature of participant consent](image-url)
Requirements for informed consent

Organisational ‘gatekeepers’ (discussed earlier in Section 6.3) and intended participants need to be informed about the following aspects of the research. This information can be drawn together in a participant information sheet.

About the nature of the research
- What is its purpose?
- Who is or will be undertaking it?
- Is it being funded or sponsored – if so, by whom and why?
- Who is being asked to participate – i.e. broad details about the sampling frame, sample determination and size?
- How far has the research project progressed?

About the requirements of taking part
- What type of data will be required from those who agree to take part?
- How will these data be collected (e.g. interview, observation or questionnaire)?
- How much time will be required, and on how many occasions?
- What are the target dates to undertake the research and for participation?

About the implications of taking part and participants’ rights
- Recognition that participation is voluntary.
- Recognition that participants have the right to decline to answer a question or set of questions, or to be observed in particular circumstances.
- Recognition that participants have control over the right to record any of their responses where a voice recorder is used.
- Recognition that participants may withdraw at any time.
- What are the consequences of participating – possible risks, depending on the nature of the approach and purpose, and expected benefits?
- What assurances will be provided about participant anonymity and data confidentiality?

About the use of the data collected and the way in which it will be reported
- Who will have access to the data collected?
- How will the results of the research project be disseminated?
- How will assurances about anonymity and confidentiality be observed at this stage?
- What will happen to the data collected after the project is completed?
- Where data are to be preserved, what safeguards will be ‘built in’ to safeguard the future anonymity and confidentiality of participants?

Whom to contact if there are any questions about the research
- Have you established how you will provide the participant with a person to contact about the research, including name, work address, email and contact telephone number?

BOX 6.12 CHECKLIST

Requirements for informed consent

Organisational ‘gatekeepers’ (discussed earlier in Section 6.3) and intended participants need to be informed about the following aspects of the research. This information can be drawn together in a participant information sheet.

About the nature of the research
- What is its purpose?
- Who is or will be undertaking it?
- Is it being funded or sponsored – if so, by whom and why?
- Who is being asked to participate – i.e. broad details about the sampling frame, sample determination and size?
- How far has the research project progressed?

About the requirements of taking part
- What type of data will be required from those who agree to take part?
- How will these data be collected (e.g. interview, observation or questionnaire)?
- How much time will be required, and on how many occasions?
- What are the target dates to undertake the research and for participation?

About the implications of taking part and participants’ rights
- Recognition that participation is voluntary.
- Recognition that participants have the right to decline to answer a question or set of questions, or to be observed in particular circumstances.
- Recognition that participants have control over the right to record any of their responses where a voice recorder is used.
- Recognition that participants may withdraw at any time.
- What are the consequences of participating – possible risks, depending on the nature of the approach and purpose, and expected benefits?
- What assurances will be provided about participant anonymity and data confidentiality?

About the use of the data collected and the way in which it will be reported
- Who will have access to the data collected?
- How will the results of the research project be disseminated?
- How will assurances about anonymity and confidentiality be observed at this stage?
- What will happen to the data collected after the project is completed?
- Where data are to be preserved, what safeguards will be ‘built in’ to safeguard the future anonymity and confidentiality of participants?

Whom to contact if there are any questions about the research
- Have you established how you will provide the participant with a person to contact about the research, including name, work address, email and contact telephone number?
Consent form

Mats’ research involved him in interviewing the employees of a large advertising agency. Prior to commencing each interview, Mats gave each participant an information sheet that summarised his research project, including the benefits and disadvantages of taking part. After carefully explaining his research and emphasising that the individual was not obliged to participate unless they wished, Mats asked them if they wished to participate. Those who did were asked to sign the following consent form:

CONSENT FORM

Title of research project:
The greening of automotive advertising

Name and position of researcher:
Mats Verhoeven, Final year student, Anytown Business School, University of Anytown

Please initial box

I confirm that I have read and understood the information sheet for the above study and have had the opportunity to ask questions.

I understand that my participation is voluntary and that I am free to withdraw at any time without giving reason.

I am aware that whilst every effort will be made to maintain confidentiality of the information I provide, this can only be offered within the limitations of the law.

I agree to take part in the above study.

Name of participant: Date: Signature:

Mats Verhoeven (researcher) Date: Signature:
As highlighted in Figure 6.1, the data collection stage is associated with a range of ethical issues. Some of these are general issues that will apply to whichever technique is being used to collect data. Other issues are more specifically related to a particular data collection technique. Finally, and of equal importance, there are issues associated with ensuring your own safety whilst collecting your data.

Irrespective of data collection technique, there are a number of ethical principles to which you need to adhere. In the previous subsection we referred to the importance of not causing harm or intruding on an intended participant's privacy. This was in relation to the participant's right not to take part. Once participants have consented to take part in your research, they still maintain their rights. This means that they have the right to withdraw as participants, and that they may decline to take part in a particular aspect of your research. You should not ask them to participate in anything that will cause harm or intrude on their privacy where this goes beyond the scope of the access agreed. We also referred to rights in relation to deceit in the previous subsection. Once access has been granted, you should remain within the aims of your research project that you shared and agreed with your intended participant(s) (Zikmund, 2000). To do otherwise, without raising this with your participant(s) and renegotiating access, would be, in effect, another type of deceit. This would be likely to cause upset, and could result in the premature termination of your data collection. There are perhaps some situations where deception may be accepted in relation to 'covert' research, and we shall discuss this later in this subsection.

Another general ethical principle is related to the maintenance of your **objectivity**. During the data collection stage this means making sure that you collect your data accurately and fully – that you avoid exercising subjective selectivity in what you record. The importance of this action also relates to the validity and reliability of your work, which is discussed in Chapters 5 and 7–11. Without objectively collected data, your ability to analyse and report your work accurately will also be impaired. We return to this as an ethical issue in the next subsection. Obviously, any invention of data is also a totally unacceptable and unethical course of action.

Confidentiality and **anonymity** have also been shown to be important in terms of gaining access to organisations and individuals (Section 6.3). Once promises about confidentiality and anonymity have been given, it is of great importance to make sure that these are maintained. Easterby-Smith et al. (2002) raise the important point that, in an interview-based approach to primary data collection, points of significance will emerge as the research progresses, and this will probably lead you to wish to explore these with other participants. However, Easterby-Smith et al. recognise that where you do this within an organisation it may lead to participants indirectly identifying which person was responsible for making the point that you wish to explore with them. This may result in harmful repercussions for the person whose openness allowed you to identify this point for exploration. Great care therefore needs to be exercised in maintaining each participant's right to anonymity. You will need to consider where the use of any data gained may have harmful consequences for the disclosing participant. Where you wish to get others to discuss such a potentially sensitive point you may attempt to steer the discussion to see if they will raise it without in any way making clear that one of the other participants has already referred to it.

Use of the Internet and email during data collection will lead to the possibility of serious ethical, or netiquette, issues related to confidentiality and anonymity. For example, it would be technically possible to forward the email (or interview notes) of one
research participant to another participant in order to ask this second person to comment on the issues being raised. Such an action would infringe the right to confidentiality and anonymity, perhaps causing harm. It should definitely be avoided. Moreover, it is also likely to lead to a data protection issue related to the use of personal data (discussed later). While the use of the Internet may allow you to correspond with participants in distant locations, this approach may also be seen as intrusive and demanding for any participant where they are expected to supply written answers via this medium. Alternatively, the use of this means to collect data may adversely affect the reliability of the data where participants are not able to devote the time required to supply extensive written answers via their computer. Any consideration of the use of Internet discussion forums or chat rooms to collect data is also likely to suggest ethical and data protection issues related to confidentiality and anonymity, as well as potential issues related to the reliability of any data (Section 10.8).

The ability to explore data or to seek explanations through interview-based techniques means that there will be greater scope for ethical and other issues to arise in relation to this approach to research (Easterby-Smith et al., 2002). The general ethical issues that we considered above (see also Zikmund, 2000) may arise in relation to the use of questionnaires. However, in research the resulting personal contact, scope to use non-standardised questions or to observe on a ‘face-to-face’ basis, and capacity to develop your knowledge on an incremental basis mean that you will be able to exercise a greater level of control (Chapter 10). This contrasts with the use of a quantitative approach based on structured interviews or self-administered questionnaires (Chapter 11).

The relatively greater level of control associated with interview-based techniques should be exercised with care so that your behaviour remains within appropriate and acceptable parameters. In face-to-face interviews, you should avoid over-zealous questioning and pressing your participant for a response. Doing so may make the situation stressful for your participant (Sekaran, 2003). You should also make clear to your interview participant that they have the right to decline to respond to any question (Blumberg et al., 2005). The nature of questions to be asked also requires consideration. Sekaran (2003) states that you should avoid asking questions that are in any way demeaning to your participant (Sections 10.4, 10.5, 10.7 and 10.8 provide a fuller consideration of related issues). In face-to-face interviews it will clearly be necessary to arrange a time that is convenient for your participant; however, where you seek to conduct an interview by telephone (Sections 10.8, 11.2 and 11.5) you should not attempt to do this at an unreasonable time of the day. In the interview situation, whether face to face or using a telephone, it would also be unethical to attempt to prolong the discussion when it is apparent that your participant needs to attend to the next part of their day’s schedule (Zikmund, 2000).

The use of observation techniques raises its own ethical concerns (Section 9.3). The boundaries of what is permissible to observe need to be clearly drawn. Without this type of agreement the principal participants may find that their actions are being constrained (Bryman, 1988). You should also avoid attempting to observe behaviour related to your participant’s private life, such as personal telephone calls and so forth. Without this, the relationship between observer and observed will break down, with the latter finding the process to be an intrusion on their right to privacy. There is, however, a second problem related to the use of this method. This is the issue of “reactivity” – the reaction on the part of those being investigated to the investigator and his or her research instruments’ (Bryman, 1988:112). This issue applies to a number of strategies and methods (Bryman, 1988) but is clearly a particular problem in observation.
A solution to this problem might be to undertake a covert study so that those being observed are not aware of this fact. In a situation of likely ‘reactivity’ to the presence of an observer you might use this approach in a deceitful yet benign way, since to declare your purpose at the outset of your work might lead to non-participation or to problems related to validity and reliability if those being observed altered their behaviour (Bryman, 1988; Gummesson, 2000; Wells, 1994). The rationale for this choice of approach would thus be related to a question of whether ‘the ends justify the means’, provided that other ethical aspects are considered (Wells, 1994; Blumberg et al., 2005). However, the ethical concern with deceiving those being observed may prevail over any pragmatic view (Bryman, 1988; Blumberg et al., 2005). Indeed, the problem of reactivity may be a diminishing one where those being observed adapt to your presence as declared observer (Bryman, 1988). This adaptation is known as habituation (Section 9.6).

Where access is denied after being requested you may decide you have no other choice but to carry out covert observation – where this is practical (Gummesson, 2000). However, this course of action may prove to be a considerable source of irritation when revealed, and you will need to evaluate this possibility very carefully. Indeed, many universities’ ethical codes prohibit any form of research being carried out if access has been denied. Irrespective of the reason why a deception occurred, it is widely accepted that after the observation has taken place you should inform those affected about what has occurred and why. This process is known as debriefing.

One group who may consider using a covert approach are those of you to whom we refer as internal or practitioner–researchers (see Sections 6.3 and 9.3). There are recognised advantages and disadvantages associated with being an internal researcher (Sections 6.3 and 9.3). One of the possible disadvantages is related to your relationship with those from whom you will need to gain cooperation in order to gain cognitive access to their data. This may be related to the fact that your status is relatively junior to these colleagues, or that you are more senior to them. Any status difference may impact negatively on your intended data collection. One solution would therefore be to adopt a covert approach in order to seek to gain data. Thus you may decide to interview subordinate colleagues, organise focus groups through your managerial status, or observe interactions during meetings without declaring your research interest. The key question to consider is: Will this approach be more likely to yield trustworthy data than declaring your real purpose and acting overtly? The answer will depend on a number of factors:

- the existing nature of your relationships with those whom you wish to be your participants;
- the prevailing managerial style within the organisation or that part of it where these people work;
- the time and opportunity that you have to attempt to develop the trust and confidence of these intended participants in order to gain their cooperation.

Absolute assurances about the use of the data collected may also be critical to gain trust, and the time you invest in achieving this may be very worthwhile.

In comparison with the issues discussed in the preceding paragraphs, Dale et al. (1988) believe that the ethical problems associated with questionnaires and other research using the survey strategy are fewer. This is due to the nature of structured questions that are clearly not designed to explore responses and the avoidance of the in-depth interview situation, where the ability to use probing questions leads to more revealing information (Dale et al., 1988). Zikmund (2000) believes that the ethical issues linked with a survey
strategy are those associated with more general issues discussed earlier: privacy, deception, openness, confidentiality and objectivity.

When thinking about avoiding harm, many researchers forget about themselves! The possibility of harm to you as the researcher is an important ethical issue which you should not ignore. This is important with regard to not divulging personal information about yourself such as your home address or telephone number as well as when you are collecting primary data which will involve you being alone with your participants. In discussing the latter with our students, we have found the guidance sheets provided by the Suzy Lamplugh Trust (2003) extremely helpful (Box 6.14). As the Trust's guidance sheets emphasise, you should never allow your working practices (research design) to put your own safety in danger.

BOX 6.14 CHECKLIST

Personal safety when collecting primary data

In their guidance sheet *Personal Safety when Alone in the Workplace* the Suzy Lamplugh Trust (2003) highlight how many people find themselves working alone in the workplace, emphasising the corresponding need to make adequate arrangements to ensure they are safe at all times, especially when clients visit. The advice offered by the Trust is also valid to you as a researcher if you are intending to collect primary data. In particular, the Trust advises that you should:

- let other people know whom you are meeting, when and where so that someone is looking after your welfare;
- set up a system where you contact someone every day with a full list of whom you are meeting, where and at what times;
- make a telephone call just after a visitor has arrived, telling someone at the other end of the line that you will contact them again at a certain time after the visitor has left;
- be careful not to tell anyone that you are alone in a workplace.

As part of this leaflet the Trust also offer the following general advice for anyone working alone:

- **P**lan your first meeting with a person in a busy public place if at all possible.
- **L**og your visits/meetings with someone and telephone them afterwards to let them know you are safe.
- **A**void situations that might be difficult or dangerous.
- **N**ever assume it will not happen to you.

However, as emphasised by the Trust, these are suggestions only and should not be regarded as comprehensive sources of advice.

Ethical issues associated with data processing and storage

Within the European Union, issues of data protection have assumed an even greater importance with the implementation of Directive 95/46/EC. This provides protection for individuals in relation to the processing, storing and movement of personal data. Data protection legislation is likely to exist in countries outside the European Union, and you will need to be familiar with legislative requirements where you undertake your research project.

Article 1 of Directive 95/46/EC requires Member States to protect individuals’ rights and freedoms, including their right to privacy, with regard to the processing of personal data. Article 2 provides a number of definitions related to the purpose of the Directive.
Personal data is defined as any information relating to identified or identifiable persons. Where you process and control this type of data your research will become subject to the provisions of the data protection legislation of the country in which you live. In the context of UK legislation, this refers to the provisions of the Data Protection Act 1998 (The Stationery Office, 1998). This Act, in following the Articles of the Directive, outlines the principles with which anyone processing personal data must comply. Although the following list provides a summary of these principles, you are strongly advised to familiarise yourself with the definitive legal version and to determine its implications for your research project and the nature of data collection.

Personal data must be:

1. processed fairly and lawfully;
2. obtained for specified, explicit and lawful purposes and not processed further in a manner incompatible with those purposes;
3. adequate, relevant and not excessive in relation to the purpose for which they are processed;
4. accurate and, where necessary, kept up to date;
5. kept (in a form that allows identification of data subjects) for no longer than is necessary;
6. processed in accordance with the rights granted to data subjects by the Act;
7. kept securely;
8. not transferred to a country outside the European Economic Area unless it ensures an adequate level of protection in relation to the rights of data subjects.

These principles have implications for all research projects that involve the processing of personal data. There are certain, limited exemptions to the second, fifth and seventh data principles (and to Section 7 of the 1998 Act) related to the processing and use of personal data for research purposes. These are contained in Section 33 of the Data Protection Act 1998. Where data are not processed to support measures or decisions with respect to particular individuals and are not processed in a way that will cause substantial damage or distress to a data subject:

- personal data may be processed further for a research purpose, although it may be necessary to inform data subjects about this new purpose and who controls these data;
- personal data, where processed only for research purposes, may be kept indefinitely;
- personal data that are processed only for research will be exempt from Section 7, which provides data subjects with rights to request information, where the results of the research including any statistics are not made available in a form that identifies any data subject.

However, this brief summary of the legislation should be treated as providing a general guidance only and not as providing advice. You should instead seek advice that is appropriate to the particular circumstances of your research project where this involves the collection and processing of personal data. In addition, there is a further category of personal data, known as sensitive personal data, which covers information held about a data subject’s racial or ethnic origin, political opinions, religious or other similar beliefs, trade union membership and the like. This type of data may be processed only if at least one of the conditions in Schedule 3 of the 1998 Act is met. The first of these conditions refers to the data subject providing his or her explicit consent to the processing of such data.
Effective explicit consent is likely to mean clear and unambiguous written consent in this context.

These legally based data protection concerns will be likely to focus all researchers’ minds on the question of keeping personal data and also on whether the use of their data allows any participant to be identified (Box 6.15). Unless there is a clear reason for processing these types of data, the best course of action is likely to be the adoption of a research approach that leads to data that are completely and genuinely anonymised and where any ‘key’ to identify data subjects is not retained by those who control these data.

Ethical issues related to analysis and reporting

The maintenance of your objectivity will be vital during the analysis stage to make sure that you do not misrepresent the data collected. This will include not being selective about which data to report or, where appropriate, misrepresenting its statistical accuracy (Zikmund, 2000). A great deal of trust is placed in each researcher’s integrity, and it would clearly be a major ethical issue were this to be open to question. This duty to represent your data honestly extends to the analysis and reporting stage of your research. Lack of objectivity at this stage will clearly distort your conclusions and any course of action that appears to stem from your work.

The ethical issues of confidentiality and anonymity also come to the fore during the reporting stage of your research. Wells (1994) recognises that it may be difficult to maintain the assurances that have been given. However, it is vital to attempt to ensure that these are maintained. Allowing a participating organisation to be identified by those who can ‘piece together’ the characteristics that you reveal may result in embarrassment and also in access being refused to those who seek this after you. Great care therefore needs to be exercised to avoid this situation. You also have the option of requesting permission from the organisation to use their name. To gain this permission you will almost certainly need to let them read your work to understand the context within which they will be named.

This level of care also needs to be exercised in making sure that the anonymity of individuals is maintained (Box 6.16). Embarrassment and even harm could result from reporting data that are clearly attributable to a particular individual (Blumberg et al., 2005; Robson, 2002). Care therefore needs to be taken to protect those who participated in your research.

A further ethical concern stems from the use made by others of the conclusions that you reach and any course of action that is explicitly referred to or implicitly suggested, based on your research data. How ethical will it be to use the data collected from a group of participants effectively to disadvantage them because of the decisions that are then made in the light of your research? On the other hand, there is a view that says that while the identity of your participants should not be revealed, they cannot be exempt from the way in which research conclusions are then used to make decisions (Dale et al., 1988). This is clearly a very complicated ethical issue!

Where you are aware that your findings may be used to make a decision that could adversely affect the collective interests of those who were your participants, it may be ethical to refer to this possibility even though it reduces the level of access that you achieve. An alternative position is to construct your research question and objectives to avoid this possibility, or so that decisions taken as a result of your research should have only positive consequences for the collective interests of those who participate. You may find that this alternative is not open to you, perhaps because you are a part-time student in employment and your employing organisation directs your choice of research topic.
Over-strict interpretation of data protection rules is stifling health research and may be causing tens of thousands of unnecessary deaths and injuries each year, medical academics have warned.

New legislation, and draft wording in the government’s planned information technology programme for the National Health Service, designed to protect privacy, are making it ever more difficult for researchers to gain access to medical records, says the Academy of Medicine in a report.

“Thousands and maybe tens of thousands of deaths are occurring each year through over-defensive interpretation of [the law],” said Rory Collins, professor of medicine and epidemiology at the University of Oxford. “There is not enough emphasis on the risks of not doing research. Much disability could be avoided.”

The academy recommended the creation of clear, simple guidelines on how to interpret the law so that researchers could gain access to patient data without jeopardising privacy.

Without reform, it warns that current practice risks jeopardising the UK’s strong international position as a centre for health research, underwritten by an unparalleled data base of patient information, which has permitted pioneering studies including the link between smoking and cancer.

The difficulties have come about through the introduction of new laws including the 1998 Data Protection Act, and the growth of a series of regulatory agencies and individual health trusts responsible for the release of patient information.

A new threat comes from the government’s proposed NHS national IT programme “connecting for health”, which will establish electronic records for all patients, but which includes a draft “care record guarantee”, which could prevent researchers from accessing the data.

“There is no question that researchers are finding it increasingly difficult to get past regulators, to the detriment of public health,” said Robert Souhami, emeritus professor of medicine at University College London, who chaired the academy’s working party. “It’s becoming a quagmire to get through the regulatory maze.”

He stressed that large scale research studies using patient data were essential as a way to give objective information both to doctors and to policymakers deciding health policy priorities.

It was necessary to use data that were not anonymous, in part because studies often had to be undertaken or repeated after several years, and personal information was required to track down patients previously investigated and avoid double counting.

In cases where patients were contacted, as well as patient groups for those with particular diseases, few objected when they understood that the research could help to improve their lives and those of others with similar problems.

The academy said the law did not need to be changed, but that it was often interpreted in widely differing ways and that there was little incentive for employees in health authorities to approve research when there were no obvious gains to them and they could be held responsible in the event of problems.

The working party recommended that greater emphasis should be placed on informing the public about medical research.

It said the clinical researchers also needed to adhere to strong ethical standards, and called for the development of “good practice guidelines” governing the use of patient data, to include assurances on confidentiality and consent. It called on the UK Clinical Research Collaboration, a partnership of the NHS with government departments and leading academics and company members, to co-ordinate policy changes.

If so, it will be more honest to concede to your participants that you are in effect acting as an internal consultant rather than in a (dispassionate) researcher’s role.

This discussion about the impact of research on the collective interests of those who participate brings us back to the reference made above to the particular ethical issues that arise in relation to the analysis of secondary data derived from questionnaires. Dale et al. (1988) point out that where questionnaire data are subsequently used as secondary data...
the original assurances provided to those who participated in the research may be set aside, with the result that the collective interests of participants may be disadvantaged through this use of data. The use of data for secondary purposes therefore also leads to ethical concerns of potentially significant proportions, and you will need to consider these in the way in which you make use of this type of data.

A final checklist to help you anticipate and deal with ethical issues is given in Box 6.17.

BOX 6.16 WORKED EXAMPLE

Inadvertently revealing participants’ identities

Over the years we have been fortunate to read a large number of student research projects. The following examples, drawn from some of these, highlight how easy it is to inadvertently reveal the identities of research participants when presenting your findings:

- reporting a comment made by a female accounts manager when in fact there is only one such person;
- referring to a comment made by a member of the sales team, when only one salesperson would have had access to the information referred to in the comment;
- reporting data and comments related to a small section of staff, where you state the name or job title of the one person interviewed from that section elsewhere in your research report;
- referring to an ‘anonymous’ organisation by name on the copy of the questionnaire placed in an appendix;
- attributing comments to named employees;
- thanking those who participated in the research by name;
- using pseudonyms where the initials of the pseudonym – Mike Smith – are the same as those of the actual person interviewed – Mark Saunders;
- including a photograph of the interview site or interviewee in your project report.

BOX 6.17 CHECKLIST

To help anticipate and deal with ethical issues

- Attempt to recognise potential ethical issues that will affect your proposed research.
- Utilise your university’s code on research ethics to guide the design and conduct of your research.
- Anticipate ethical issues at the design stage of your research and discuss how you will seek to control these in your research proposal.
- Seek informed consent through the use of openness and honesty, rather than using deception.
- Do not exaggerate the likely benefits of your research for participating organisations or individuals.
- Respect others’ rights to privacy at all stages of your research project.
- Maintain objectivity and quality in relation to the processes you use to collect data.
Recognise that the nature of an interview-based approach to research will mean that there is greater scope for ethical issues to arise, and seek to avoid the particular problems related to interviews and observation.

Avoid referring to data gained from a particular participant when talking to others, where this would allow the individual to be identified with potentially harmful consequences to that person.

Covert research should be considered only where reactivity is likely to be a significant issue or where access is denied (and a covert presence is practical). However, other ethical aspects of your research should still be respected when using this approach.

Maintain your objectivity during the stages of analysing and reporting your research.

Maintain the assurances that you gave to participating organisations with regard to confidentiality of the data obtained and their organisational anonymity.

Consider the implications of using the Internet and email carefully in relation to the maintenance of confidentiality and anonymity of your research participants and their data, before using this means to collect any data. Avoid using this technology to share any data with other participants.

Protect individual participants by taking great care to ensure their anonymity in relation to anything that you refer to in your research project report, dissertation or thesis.

Consider how the collective interests of your research participants may be adversely affected by the nature of the data that you are proposing to collect, and alter the nature of your research question and objectives where this possibility is likely. Alternatively, declare this possibility to those whom you wish to participate in your proposed research.

Consider how you will use secondary data in order to protect the identities of those who contributed to its collection or who are named within it.

Unless necessary, base your research on genuinely anonymised data. Where it is necessary to process personal data, comply with all of the data protection legal requirements carefully.

6.5 Summary

- Access and ethics are critical aspects for the conduct of research.
- Different types and levels of access have been identified that help us to understand the problem of gaining entry: physical access to an organisation; access to intended participants; continuing access in order to carry out further parts of your research or to be able to repeat the collection of data in another part of the organisation; cognitive access in order to get sufficiently close to find out valid and reliable data.
- Feasibility has been recognised to be an important determinant of what you choose to research and how you undertake the research.
- Strategies to help you to gain access to organisations and to intended participants within them have been described and discussed.
- Research ethics refer to the appropriateness of your behaviour in relation to the rights of those who become the subject of your work or are affected by the work.
- Potential ethical issues should be recognised and considered from the outset of your research and be one of the criteria against which your research proposal is judged.
Ethical concerns are likely to occur at all stages of your research project: when seeking access, during data collection, as you analyse data and when you report them.

Qualitative research is likely to lead to a greater range of ethical concerns in comparison with quantitative research, although all research methods have specific ethical issues associated with them.

Ethical concerns are also associated with the ‘power relationship’ between the researcher and those who grant access, and the researcher’s role (as external researcher, internal researcher or internal consultant).

The use of the Internet and email to collect data may also generate ethical concerns.

The introduction of data protection legislation has led to this aspect of research assuming a greater importance and to a need for researchers to comply carefully with a set of legal requirements to protect the privacy and interests of their data subjects.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

6.1 How can you differentiate between types of access, and why is it important to do this?

6.2 What do you understand by the use of the terms ‘feasibility’ and ‘sufficiency’ when applied to the question of access?

6.3 Which strategies to help to gain access are likely to apply to the following scenarios:
 a. an ‘external’ researcher seeking direct access to managers who will be the research participants;
 b. an ‘external’ researcher seeking access through an organisational gatekeeper/broker to her/his intended participants;
 c. an internal researcher planning to undertake a research project within her/his employing organisation?

6.4 What are the principal ethical issues you will need to consider irrespective of the particular research methods that you use?

6.5 What problems might you encounter in attempting to protect the interests of participating organisations and individuals despite the assurances that you provide?

REVIEW AND DISCUSSION QUESTIONS

6.6 With a friend, discuss how you intend to gain access to the data you need for your research project. In your discussion make a list of possible barriers to your gaining access and how these might be overcome. Make sure that the ways you consider for overcoming these barriers are ethical!

6.7 Agree with a friend to each obtain a copy of your university’s or your own professional association’s ethical code. Make notes regarding those aspects of the ethical code you have obtained that you feel are relevant to each other’s proposed research. Discuss your findings.

6.8 Visit the Suzy Lamplugh Trust website at http://www.suzylamplugh.org. and browse their guidance leaflets. Make a list of the actions you should take to help ensure your own personal safety when undertaking your research project. Make sure you actually put these into practice.
NEGOTIATING ACCESS AND ADDRESSING ETHICAL ISSUES

Consider the following aspects:

- Which types of data will you require in order to be able to answer sufficiently your proposed research question and objectives?
- Which research methods will you attempt to use to yield this data?
- What type(s) of access will you require in order to be able to collect data?
- What problems are you likely to encounter in gaining access?
- Which strategies to gain access will be useful to help you to overcome these problems?
- Depending on the type of access envisaged and your research status (i.e. as external researcher or practitioner-researcher), produce appropriate requests for organisational access, together with a return pro forma, and/or requests to intended participants for their cooperation.
- Describe the ethical issues that are likely to affect your proposed research project, including your own personal safety. Discuss how you might seek to overcome or control these. This should be undertaken in relation to the various stages of your research project.
- Note down your answers.

REFERENCES

CHAPTER 6 · NEGOTIATING ACCESS AND RESEARCH ETHICS

Further reading

Jane was very enthusiastic as the course she was studying involved a live research project. The whole approach of her course, particularly the research project, was to provide solutions to real-life managerial issues, and she felt that this would really help her career in the large restaurant chain that was sponsoring her. The research project seemed an ideal opportunity for her to collect data from the head offices of competitor restaurant chains while working as a student researcher. This could enable her to establish what was really best practice in terms of setting performance standards and ensuring these were maintained in the chains of restaurants run by these companies. Using contacts she had made on the course and her own knowledge of the industry, she was confident that she could collect some really useful data that would make a good research project and advance her career with her sponsor.

Jane's research plans involved talking to people in the head offices of some of her employers' major competitors. She was not concerned that this was unethical because while she was at university her company was not actually employing her, even though they were sponsoring her. She planned to share the results of her research with her company later on; indeed it was a condition of the sponsorship that she do this.

Jane's research involved two stages of data gathering. She hoped to start by looking at service standards in a number of restaurant chains. She knew from her own working experience that mystery customer monitoring of competitors' service standards was a fairly common industry practice. She therefore decided to start by devising a checklist, drawn from her own experience of working in the industry and from reading refereed journal articles on service standards. Using this, she planned a study that involved some participant observation of service standards. She intended to visit a number of different competing restaurant chains as a mystery customer and to record her experiences, if possible by using the video camera in her mobile phone. The second stage of the research would involve depth interviews with these companies where she would ask them to comment on some of the data she had collected.

Before she could start collecting data, Jane had to write a research proposal that described and justified her research methods in some detail, and submit this to her research methods tutors for approval. She also had to complete her Business School's research ethics checklist. This asked her to provide a brief description of her research method, which she duly did. It then asked her a number of simple questions including:

- Does your research involve any of the following:
 - Deception of participants? Yes/No
 - Financial inducements? Yes/No
 - Possible psychological stress? Yes/No
 - Access to confidential information? Yes/No
 - Any other special circumstances? Yes/No

Jane felt that she had to answer ‘yes’ to the deception question, but justified her use of deception as a standard industry practice, referring to a recent search she had undertaken on Google, which had revealed numerous ‘mystery customer’ companies offering their services of which she felt her tutor would also be aware. She also cited two refereed journal papers by Calvert (2005) and Erstad (1998), which she said had used mystery customers.

When Jane got her research proposal back she was horrified to discover that it had been referred by her Research Methods tutor on ethical grounds. The tutor had consulted the Business School Research Ethics Officer (REO), whose views on the ethics of Jane's research were quite different from what she had expected. The REO had advised that the proposal amounted to deliberate deception of participants, which was in breach of the University's Code of Practice on Ethical Standards for Research involving Human Participants. This stated that:
potential participants normally have the right to receive clearly communicated information from the researcher in advance,

participants in a research study have the right to give their informed consent before participating,

honesty should be central to the relationship between researcher, participant and institutional representatives,

the deception of participants should be avoided.

Jane assumed that the problem was with her mystery shopper exercise, but as it turned out this was only a minor part of her problem. The REO agreed that the use of ‘mystery customers’ was standard practice in this sector and therefore permissible. However, Jane was asked to make it clear that the restaurants being studied would not be identified in the research project, and that it must not be possible when she carried out the interviews in the second stage that any of the staff or customers involved could be personally identified by industry insiders.

The REO was much more concerned about the depth interviews in the second stage. In particular, the REO was concerned that Jane proposed to present herself as a student, although she was collecting data that she was going to reveal to a commercial competitor. It would be unethical and unacceptable to use her role as a student at the University in this way, and might well be viewed as a form of industrial espionage.

References

QUESTIONS

1. What is the main ethical issue with regard to Jane’s proposed research project?

2. How can Jane change the design of her mystery customer observation method to avoid ethical problems?

3. How might Jane carry out the second part of her research – with the companies’ head offices – in an ethical manner?

4. Use online databases such as EBSCO Host and Emerald to obtain copies of the two articles that Jane used to justify her use of mystery shopping. To what extent do you believe that these articles support Jane’s belief that becoming a mystery customer is ethical?

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:

- The effects of a merger in a major UK building society
- The quality of service provided by the accounts department
- Misreading issues related to access and ethics in a small-scale enterprise.

SELF-CHECK ANSWERS

6.1 The types of access that we have referred to in this chapter are: physical entry or initial access to an organisational setting; continuing access, which recognises that researchers often need to develop their access on an incremental basis; and cognitive access, where you will be concerned to gain the cooperation of individual participants once you have achieved access to the organisation in which they work.

We also referred to personal access, which allows you to consider whether you actually need to meet with participants in order to carry out an aspect of your research as opposed to corresponding with them or sending them a self-administered, postal questionnaire. Access is strategically related to the success of your research project and needs to be carefully planned. In relation to many research designs, it will need to be thought of as a multifaceted aspect and not a single event.

6.2 Gaining access can be problematic for researchers for a number of reasons. The concept of feasibility recognises this and suggests that in order to be able to conduct your research it will be necessary to design it with access clearly in mind. You may care to look again at the references to the work of Buchanan et al. (1988) and Johnson (1975) in Section 6.2, which demonstrate the relationship between research design and feasibility. Sufficiency refers to another issue related to access. In Section 6.2 we
stated that there are two aspects to the issue of sufficiency. The first of these relates to whether you have sufficiently considered and therefore fully realised the extent and nature of the access that you will require in order to be able to answer your research question and objectives. The second aspect relates to whether you are able to gain sufficient access in practice in order to be able to answer your research question and objectives.

6.3 We may consider the three particular scenarios outlined in the question through Table 6.2 on page 202.

6.4 The principal ethical issues you will need to consider irrespective of which research methods you use are:

■ to respect intended and actual participants’ rights to not being harmed and privacy;
■ to avoid deceiving participants about why you are undertaking the research, its purpose and how the data collected will be used;
■ maintaining your objectivity during the data collection, analysis and reporting stages;
■ respecting assurances provided to organisations about the confidentiality of (certain types of) data;
■ respecting assurances given to organisations and individuals about their anonymity;
■ considering the collective interests of participants in the way you use the data which they provide.

6.5 A number of ethical problems might emerge. These are considered in turn. You may wish to explore a point made by one of your participants but to do so might lead to harmful consequences for this person where the point was attributed to them. It may be possible for some people who read your work to identify a participating organisation, although you do not actually name it. This may cause embarrassment to the organisation. Individual participants may also be identified by the nature of the comments that you report, again leading to harmful consequences for them. Your report may also lead to action being taken within an organisation that adversely affects those who were kind enough to act as participants in your research. Finally, others may seek to reuse any survey data that you collect, and this might be used to disadvantage those who provided the data by responding to your questionnaire.

Get ahead using resources on the Companion Website at: www.pearsoned.co.uk/saunders

■ Improve your SPSS and NVivo research analysis with practice tutorials.
■ Save time researching on the Internet with the Smarter Online Searching Guide.
■ Test your progress using self-assessment questions.
■ Follow live links to useful websites.
Table 6.2 Considering access

<table>
<thead>
<tr>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowing yourself sufficient time to gain access</td>
<td>Universally true in all cases. The practitioner–researcher will be going</td>
<td>The only exception will be related to a covert approach, although sufficient</td>
</tr>
<tr>
<td></td>
<td>through a very similar process to those who wish to gain access from the</td>
<td>time for planning, etc., will of course still be required</td>
</tr>
<tr>
<td></td>
<td>outside in terms of contacting intended participants, meeting with them</td>
<td></td>
</tr>
<tr>
<td></td>
<td>to explain the research, providing assurances, etc.</td>
<td></td>
</tr>
<tr>
<td>Using any existing contacts</td>
<td>Where possible</td>
<td>Yes</td>
</tr>
<tr>
<td>Developing new contacts</td>
<td>Probably necessary</td>
<td>This may still apply within large, complex organisations, depending on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the nature of the research</td>
</tr>
<tr>
<td>**Providing a clear account of the purpose of your research and what type</td>
<td>Definitely necessary</td>
<td>Still necessary although easier to achieve (verbally or internal memos)</td>
</tr>
<tr>
<td>characteristics you require, with the intention of establishing your</td>
<td></td>
<td>with familiar colleagues. Less easy with unfamiliar colleagues, which</td>
</tr>
<tr>
<td>credibility**</td>
<td></td>
<td>suggests just as much care as for external researchers</td>
</tr>
<tr>
<td>**Overcoming organisational concerns in relation to the granting of</td>
<td>Definitely necessary</td>
<td>Should not be a problem unless you propose to undertake a topic that is</td>
</tr>
<tr>
<td>access**</td>
<td>Absolutely necessary. This may be the major problem to overcome since you</td>
<td>highly sensitive to the organisation! We know of students whose proposal</td>
</tr>
<tr>
<td></td>
<td>are asking for access to a range of employees</td>
<td>has been refused within their organisation</td>
</tr>
<tr>
<td>**Outlining possible benefits of granting access to you and any tangible</td>
<td>Probably useful</td>
<td>Work-based research projects contain material of value to the organisation</td>
</tr>
<tr>
<td>outcome from doing so**</td>
<td></td>
<td>although they may largely be theoretically based</td>
</tr>
<tr>
<td>Using suitable language</td>
<td>Definitely necessary</td>
<td>Still necessary at the level of participants in the organisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilitating ease of reply when requesting access</td>
<td>Definitely useful</td>
<td>Might be useful to consider in relation to certain internal participants</td>
</tr>
<tr>
<td>Developing your access on an incremental basis</td>
<td>Should not be necessary, although you may wish to undertake subsequent</td>
<td>Might be a useful strategy depending on the nature of the research and the</td>
</tr>
<tr>
<td></td>
<td>work</td>
<td>work setting</td>
</tr>
<tr>
<td>Establishing your credibility in the eyes of your intended participants</td>
<td>Access is not being sought at ‘lower’ levels within the organisation;</td>
<td>May still be necessary with unfamiliar participants in the organisation</td>
</tr>
</tbody>
</table>
7

Selecting samples

LEARNING OUTCOMES

By the end of this chapter you should:
➔ understand the need for sampling in business and management research;
➔ be aware of a range of probability and non-probability sampling techniques and the possible need to combine techniques within a research project;
➔ be able to select appropriate sampling techniques for a variety of research scenarios and be able to justify their selection;
➔ be able to use a range of sampling techniques;
➔ be able to assess the representativeness of respondents;
➔ be able to assess the extent to which it is reasonable to generalise from a sample;
➔ be able to apply the knowledge, skills and understanding gained to your own research project.

7.1 Introduction

Whatever your research question(s) and objectives you will need to consider whether you need to use sampling. Occasionally it may be possible to collect and analyse data from every possible case or group member; this is termed a census. However, for many research questions and objectives, such as those highlighted in the vignette, it will be impossible for you either to collect or to analyse all the data available to you owing to restrictions of time, money and often access. Sampling techniques provide a range of methods that enable you to reduce the amount of data you need to collect by considering only data from a subgroup rather than all possible cases or elements (Figure 7.1). Some research questions will require sample data to generalise about all the cases from which your sample has been selected. For example, if you asked a sample of consumers what they thought of a new chocolate bar and 75 per cent said that they thought it was too expensive, you might infer that 75 per cent of all consumers felt that way. Other research questions may not involve such generalisations. However, even if you are
adopting a case study strategy using one large organisation and collecting your data using unstructured interviews, you will still need to select your case study (sample) organisation and a group (sample) of employees and managers to interview. Techniques for selecting samples will therefore still be important.

The full set of cases from which a sample is taken is called the **population**. In sampling, the term ‘population’ is not used in its normal sense, as the full set of cases need

Samples are used all around us. We read a newspaper article and the reporter states that she or he talked to a group of employees; advertisements inform us that, in tests, eight out of ten owners said their pet preferred a particular brand of pet food. Less obviously, television programmes offer us the top 100 best pop songs or the top 100 most scary cinema film moments. Implicit in these is the understanding that, as it is impossible to ask every person these questions, data would have to have been collected from individuals in some form of sample who were willing and able to respond.

Towards the end of 2001 the BBC (British Broadcasting Corporation) invited the British public to nominate their greatest-ever Briton, encouraging nominations through a television campaign and the BBC’s website. In the final listing of the top 100, the highest-ranked business person/entrepreneur was Richard Branson at position 85. Whilst it was not possible to discover how representative the sample of tens of thousands of votes cast was, an independent public opinion survey generated an almost identical top ten list (Cooper, 2002:6). Subsequently, a series of ten one-hour television programmes, one for each of the top ten nominations, were broadcast and the public invited to vote by telephone or Internet for the greatest Briton of all time. During and after the voting, numerous questions were raised regarding the extent to which the sample of those voting were representative of the British public as well as there being allegations of vote rigging (Clennell, 2002). Overall, 1,622,648 votes were cast, Winston Churchill polling the highest number: 456,498.
not necessarily be people. For research to discover relative levels of service at burger bars throughout a country, the population from which you would select your sample would be all burger bars in that country. Alternatively, you might need to establish the normal ‘life’ of a long-life battery produced over the past month by a particular manufacturer. Here the population would be all the long-life batteries produced over the past month by that manufacturer.

The need to sample

For some research questions it is possible to collect data from an entire population as it is of a manageable size. However, you should not assume that a census would necessarily provide more useful results than collecting data from a sample which represents the entire population. Sampling provides a valid alternative to a census when:

- it would be impracticable for you to survey the entire population;
- your budget constraints prevent you from surveying the entire population;
- your time constraints prevent you from surveying the entire population;
- you have collected all the data but need the results quickly.

For all research questions where it would be impracticable for you to collect data from the entire population, you need to select a sample. This will be equally important whether you are planning to use interviews, questionnaires, observation or some other data collection technique. You might be able to obtain permission to collect data from only two or three organisations. Alternatively, testing an entire population of products to destruction, such as to establish the crash protection provided by cars, would be impractical for any manufacturer.

With other research questions it might be theoretically possible for you to be able to collect data from the entire population but the overall cost would prevent it. It is obviously cheaper for you to collect, enter (if you are analysing the data using a computer) and check data from 250 customers than from 2500, even though the cost per case for your study (in this example, customer) is likely to be higher than with a census. Your costs will be made up of new costs such as sample selection, and the fact that overhead costs such as questionnaire design and setting up computer software for data entry are spread over a smaller number of cases.

Sampling also saves time, an important consideration when you have tight deadlines. The organisation of data collection is more manageable as fewer people are involved. As you have fewer data to enter, the results will be available more quickly. Occasionally, to save time, questionnaires are used to collect data from the entire population but only a sample of the data collected are analysed. For reasons of economy this procedure has sometimes been adopted for coding open questions after the data have been collected, such as the questions on each household member’s occupation and industry, in the United Kingdom 1991 Census. Although data were collected from the total population for all questions, for these hard-to-code questions, only 10 per cent of the data were coded using a detailed coding scheme (Section 12.2). These 10 per cent were entered into the computer and subsequently analysed, although it should be noted that, for the 2001 Census, advances in automated and computer assisted coding software meant that all these data were coded (Teague, 2000).

Many researchers, for example Henry (1990), argue that using sampling makes possible a higher overall accuracy than a census. The smaller number of cases for which you need to collect data means that more time can be spent designing and piloting the means
of collecting these data. Collecting data from fewer cases also means that you can collect information that is more detailed. In addition, if you are employing people to collect the data (perhaps as interviewers) you can use higher-quality staff. You also can devote more time to trying to obtain data from the more difficult cases. Once your data have been collected, proportionally more time can be devoted to checking and testing the data for accuracy prior to analysis.

An overview of sampling techniques

The sampling techniques available to you can be divided into two types:

- probability or representative sampling;
- non-probability or judgemental sampling.

Those discussed in this chapter are highlighted in Figure 7.2. With probability samples the chance, or probability, of each case being selected from the population is known and is usually equal for all cases. This means that it is possible to answer research questions and to achieve objectives that require you to estimate statistically the characteristics of the population from the sample. Consequently, probability sampling is often associated with survey and experimental research strategies (Section 5.3). For non-probability samples, the probability of each case being selected from the total population is not known and it is impossible to answer research questions or to address objectives that require you to make statistical inferences about the characteristics of the population. You may still be able to generalise from non-probability samples about the population, but not on statistical grounds. For this reason non-probability sampling (other than quota sampling) is more frequently used when adopting a case study strategy (Section 5.3). However, with both types of sample you can answer other forms of research questions such as ‘What attributes attract people to jobs?’ or ‘How are financial services institutions adapting the services they provide to meet recent legislation?’

Subsequent sections of this chapter outline the most frequently used probability (Section 7.2) and non-probability (Section 7.3) sampling techniques, discuss their advantages and

![Figure 7.2 Sampling techniques](image_url)
disadvantages, and give examples of how and when you might use them. Although each technique is discussed separately, for many research projects you will need to use a variety of sampling techniques at different stages, some projects involving both probability and non-probability sampling techniques.

7.2 Probability sampling

Probability sampling (or representative sampling) is most commonly associated with survey-based research strategies where you need to make inferences from your sample about a population to answer your research question(s) or to meet your objectives. The process of probability sampling can be divided into four stages:

1. Identify a suitable sampling frame based on your research question(s) or objectives.
2. Decide on a suitable sample size.
3. Select the most appropriate sampling technique and select the sample.
4. Check that the sample is representative of the population.

Each of these stages will be considered in turn. However, for populations of less than 50 cases Henry (1990) advises against probability sampling. He argues that you should collect data on the entire population as the influence of a single extreme case on subsequent statistical analyses is more pronounced than for larger samples.

Identifying a suitable sampling frame and the implications for generalisability

The sampling frame for any probability sample is a complete list of all the cases in the population from which your sample will be drawn. If your research question or objective is concerned with members of a local golf club, your sampling frame will be the complete membership list for that golf club. If your research question or objective is concerned with registered childminders in a local area, your sampling frame will be the directory of all registered childminders in this area. For both, you then select your sample from this list. The completeness of your sampling frame is very important. An incomplete or inaccurate list means that some cases will have been excluded and so it will be impossible for every case in the population to have a chance of selection. Consequently your sample may not be representative of the total population.

Where no suitable list exists you will have to compile your own sampling frame, perhaps drawing upon existing lists (Box 7.1). It is important to ensure that the sampling frame is unbiased, current and accurate. You might decide to use a telephone directory as the sampling frame from which to select a sample of typical UK householders. However, the telephone directory covers only subscribers in one geographical area who rent a telephone landline. Your survey will therefore be biased towards householders who have a landline telephone. Because the telephone directory is only published biennially, the sampling frame will be out of date (non-current). As some householders choose to be ex-directory, or only have mobile telephones, it will be inaccurate as it does not include all those who own telephones. This means that you will be selecting a sample of telephone subscribers at the date the directory was compiled who chose not to be ex-directory!

The way you define your sampling frame also has implications regarding the extent to which you can generalise from your sample. As we have already discussed, sampling is
used when it is impracticable to collect data from the entire population. Within probability sampling, by defining the sampling frame you are defining the population about which you want to generalise. This means that if your sampling frame is a list of all customers of an organisation, strictly speaking you can only generalise, that is apply the findings based upon your sample, to that population. Similarly, if your sampling frame is all employees of an organisation (the list being the organisation’s payroll) you can only generalise to employees of that organisation. This can create problems, as often we hope that our findings have wider applicability than the population from which the sample was selected. However, even if your probability sample has been selected from one large multinational organisation, you should not claim that what you have found will also occur in similar organisations. In other words, you should not generalise beyond your sampling frame. Despite this, researchers often do make such claims, rather than placing clear limits on the generalisability of the findings.

BOX 7.1 FOCUS ON MANAGEMENT RESEARCH

Selecting a suitable sampling frame

In their 2005 *British Journal of Management* paper ‘An analysis of the relationship between environmental motivations and ISO14001 certification’ González-Benito and González-Benito outline and justify how they selected their sample of Spanish companies in three industrial sectors: chemicals, electronics and furniture manufacturing. They selected the chemical sector because of the high level of resources devoted to addressing pollution, whilst electronics was selected as it was facing up to increasingly stringent regulation. In contrast, they selected furniture manufacturing because it was subject to relatively low levels of regulatory pressure. Subsequently, lists of all companies in each of the three sectors employing 100 or more people were extracted from the Dun & Bradstreet census of the 50,000 largest Spanish companies. In creating their sampling frame, González-Benito and González-Benito excluded pharmaceutical companies. They argued that, for these organisations, humanitarian objectives might be prioritised over environmental objectives, resulting in the pharmaceutical companies not be subject to the same environmental pressures as others in the chemical sector. Their sampling frame consisted of 428 companies, 156 in the chemical sector, 211 in the electronics sector and 61 in the furniture sector. From these 184 valid responses were received, an overall response rate of 43 per cent.

Source: González-Benito and González-Benito (2005)

In recent years a number of organisations have been established that specialise in selling lists of names, addresses and email addresses. These lists include a wide range of people such as company directors, chief executives, marketing managers, production managers and human resource managers, for public, private and non-profit-making organisations. They are usually in a format suitable for being read by word-processing and database computer software and can easily be merged into standard letters such as those included with questionnaires (Section 11.4). Because you pay for such lists by the case (individual address), the organisations that provide them usually select your sample. It is therefore important to establish precisely how they will select your sample as well as how the list was compiled and when it was last revised. For example, when obtaining a list of email addresses you need to be aware that a certain proportion of Internet users change their Internet Service Provider and also their email address regularly. This means the sampling frame is likely to under-represent this group who, it might be argued, are more likely to be price-sensitive consumers (Bradley, 1999). Whilst Internet users do not
differ from the total population in terms of sexual orientation, marital status, ethnicity, education and religion, they do in terms of age and gender. In particular, Internet users tend to be younger and have a greater proportion of males (Hewson et al., 2003). Box 7.2 provides a checklist against which to check your sampling frame.

BOX 7.2 CHECKLIST

Selecting your sampling frame

- ✔ Are cases listed in the sampling frame relevant to your research topic, in other words will they enable you to answer your research question and meet your objectives?
- ✔ How recently was the sampling frame compiled, in particular is it up to date?
- ✔ Does the sampling frame include all cases, in other words is it complete?
- ✔ Does the sampling frame exclude irrelevant cases, in other words is it precise?
- ✔ (For purchased lists) Can you establish and control precisely how the sample will be selected?

Deciding on a suitable sample size

Generalisations about populations from data collected using any probability sample are based on statistical probability. The larger your sample’s size the lower the likely error in generalising to the population. Probability sampling is therefore a compromise between the accuracy of your findings and the amount of time and money you invest in collecting, checking and analysing the data. Your choice of sample size within this compromise is governed by:

- the confidence you need to have in your data – that is, the level of certainty that the characteristics of the data collected will represent the characteristics of the total population;
- the margin of error that you can tolerate – that is, the accuracy you require for any estimates made from your sample;
- the types of analyses you are going to undertake – in particular the number of categories into which you wish to subdivide your data, as many statistical techniques have a minimum threshold of data cases for each cell (e.g. chi square, Section 12.5);

and to a lesser extent:

- the size of the total population from which your sample is being drawn.

Given these competing influences it is not surprising that the final sample size is almost always a matter of judgement as well as of calculation. For many research questions and objectives, your need to undertake particular statistical analyses (Section 12.5) will determine the threshold sample size for individual categories. In particular, an examination of virtually any statistics textbook (or Sections 12.3 and 12.5 of this book) will highlight that, in order to ensure spurious results do not occur, the data analysed must be normally distributed. Whilst the normal distribution is discussed in Chapter 12, its implications for sample size need to be considered here. Statisticians have proved that the larger the absolute size of a sample, the more closely its distribution will be to the normal distribution and thus the more robust it will be (Box 7.3). This relationship,
known as the *central limit theorem*, occurs even if the population from which the sample is drawn is not normally distributed. Statisticians have also shown that a sample size of 30 or more will usually result in a sampling distribution for the mean that is very close to a normal distribution. For this reason, Stutely’s (2003) advice of a minimum number of 30 for statistical analyses provides a useful rule of thumb for the smallest number in each category within your overall sample. Where the population in the category is less than 30, and you wish to undertake your analysis at this level of detail, you should normally collect data from all cases in that category. Alternatively, you may have access to an expert system such as Ex-Sample™. This software calculates the minimum sample size required for different statistical analyses as well as the maximum possible sample size given resources such as time, money and response rates. In addition, it provides a report justifying the sample size calculated (Idea Works, 2005).

Box 7.3 Research in the News

In poll position

Politicians, it often seems, do not dare formulate a policy these days without first testing public opinion. Are fund managers going in the same direction?

Research published this week by Mori, the polling company, purported to show that changes in satisfaction ratings it recorded among the customers of consumer companies such as Tesco and Vodafone were reflected in the companies’ share price performance three to 12 months later.

One may question the statistical robustness of such a link, particularly among such a small sample, but the fact is that portfolio managers – particularly more cutting edge hedge funds – increasingly appreciate that private polling data like this can give you an investment advantage.

It does not need to be limited to issues as simple as consumer satisfaction.

For example, the City is divided over the outlook for yellow pages companies. Do they have a bright future, or will they be swept aside by Google and other Internet operators? Market research into who uses yellow pages, and how, might provide a better answer than gut instinct, or pages of thumb sucking by brokers’ analysts.

It is a modern approach to the wise old investment adage – promoted by the likes of Warren Buffett and Peter Lynch, the legendary Fidelity fund manager – that you should invest in what you know about. Unfortunately, few of us can afford to employ the likes of Mori.

It is likely that, if you are undertaking statistical analyses on your sample, you will be drawing conclusions from these analyses about the population from which your sample was selected. This process of coming up with conclusions about a population on the basis of data describing the sample is called *statistical inference* and allows you to calculate how probable it is that your result, given your sample size, could have been obtained by chance. Such probabilities are usually calculated automatically by statistical analysis software. However, it is worth remembering that, providing they are not biased, samples of larger absolute size are more likely to be representative of the population from which they are drawn than smaller samples and, in particular, the mean (average) calculated for the sample is more likely to equal the mean for the population. This is known as the *law of large numbers*.

Researchers normally work to a 95 per cent level of certainty. This means that if your sample was selected 100 times, at least 95 of these samples would be certain to represent the characteristics of the population. The *margin of error* describes the precision of your estimates of the population. Table 7.1 provides a rough guide to the different *minimum*
sample sizes required from different sizes of population at the 95 per cent level of certainty. It assumes that data are collected from all cases in the sample (full details of the calculation for minimum sample size and adjusted minimum sample size are given in Appendix 3). For most business and management research, researchers are content to estimate the population’s characteristics to within plus or minus 3 to 5 per cent of its true values. This means that if 45 per cent of your sample are in a certain category then your estimate for the total population within the same category will be 45 per cent plus or minus the margin of error – somewhere between 42 and 48 per cent for a 3 per cent margin of error.

As you can see from Table 7.1, the smaller the absolute size of the sample and, to a far lesser extent, the smaller the relative proportion of the total population sampled, the greater the margin of error. Within this, the impact of absolute sample size on the margin of error decreases for larger sample sizes. deVaus (2002) argues that it is for this reason that many market research companies limit their samples’ sizes to approximately 2000. Unfortunately, from many samples, a 100 per cent response rate is unlikely and so your sample will need to be larger to ensure sufficient responses for the margin of error you require.

The importance of a high response rate

The most important aspect of a probability sample is that it represents the population. A perfect representative sample is one that exactly represents the population from which it is taken. If 60 per cent of your sample were small service sector companies then, provided that the sample was representative, you would expect 60 per cent of the population to be small service sector companies. You therefore need to obtain as high a response rate as possible to ensure that your sample is representative.

In reality, you are likely to have non-responses. Non-respondents are different from the rest of the population because they have refused to be involved in your research for whatever reason. Consequently, your respondents will not be representative of the total
population, and the data you collect may be biased. In addition, any non-responses will
necessitate extra respondents being found to reach the required sample size, thereby
increasing the cost of your data collection.

You should therefore analyse the refusals to respond to both individual questions and
entire questionnaires or interview schedules to check for bias (Section 12.2). Non-
response is due to four interrelated problems:

■ refusal to respond;
■ eligibiliry to respond;
■ inability to locate respondent;
■ respondent located but unable to make contact.

The most common reason for non-response is that your respondent refuses to answer
all the questions or be involved in your research, but does not give a reason. Such non-
response can be minimised by paying careful attention to the methods used to collect
your data (Chapters 9, 10 and 11). Alternatively, some of your selected respondents may
not meet your research requirements and so will be ineligible to respond. Non-location
and non-contact create further problems; the fact that these respondents are unreachable
means they will not be represented in the data you collect.

As part of your research report, you will need to include your response rate. Neumann
(2000) suggests that when you calculate this you should include all eligible respondents:

\[
\text{total response rate} = \frac{\text{total number of responses}}{\text{total number in sample} - \text{ineligible}}
\]

This he calls the total response rate. A more common way of doing this excludes ineligible respondents and those who, despite repeated attempts (Sections 10.3 and 11.5),
were unreachable. This is known as the active response rate:

\[
\text{active response rate} = \frac{\text{total number of responses}}{\text{total number in sample} - (\text{ineligible} + \text{unreachable})}
\]

An example of the calculation of both the total response rate and the active response rate
is given in Box 7.4.

BOX 7.4 WORKED EXAMPLE

Calculation of total and active response rates

Ming had decided to administer a telephone questionnaire to people who had left his
company’s employment over the past five years. He obtained a list of the 1034 people who had
left over this period (the total population) and selected a 50% sample. Unfortunately he could
obtain current telephone numbers for only 311 of the 517 ex-employees who made up his total
sample. Of these 311 people who were potentially reachable, he obtained a response from 147.
In addition, his list of people who had left his company was inaccurate, and nine of those he
contacted were ineligible to respond, having left the company over five years earlier.

His total response rate \[= \frac{147}{517 - 9} = \frac{147}{508} = 28.9%\]

His active response rate \[= \frac{147}{311 - 9} = \frac{147}{302} = 48.7%\]
Even after ineligible and unreachable respondents have been excluded, it is probable that you will still have some non-responses. You therefore need to be able to assess how representative your data are and to allow for the impact of non-response in your calculations of sample size. These issues are explored in subsequent sections.

Estimating response rates and actual sample size required

With all probability samples, it is important that your sample size is large enough to provide you with the necessary confidence in your data. The margin of error must therefore be within acceptable limits, and you must ensure that you will be able to undertake your analysis at the level of detail required. You therefore need to estimate the likely response rate – that is, the proportion of cases from your sample who will respond or from which data will be collected – and increase the sample size accordingly. Once you have an estimate of the likely response rate and the minimum or the adjusted minimum sample size, the actual sample size you require can be calculated using the following formula:

\[
n^a = \frac{n \times 100}{re\%}
\]

where \(n^a\) is the actual sample size required, \(n\) is the minimum (or adjusted minimum) sample size (see Table 7.1 or Appendix 3), \(re\%\) is the estimated response rate expressed as a percentage.

This calculation is shown in Box 7.5.

BOX 7.5 WORKED EXAMPLE

Calculation of actual sample size

Jan was a part-time student employed by a large manufacturing company. He had decided to send a questionnaire to the company’s customers and calculated that an adjusted minimum sample size of 439 was required. Jan estimated the response rate would be 30 per cent. From this, he could calculate his actual sample size:

\[
n^a = \frac{439 \times 100}{30} = \frac{43900}{30} = 1463
\]

Jan’s actual sample therefore needed to be 1463 customers. Because of time and financial constraints this was rounded down to 1400 customers. The likelihood of 70 per cent non-response meant that Jan needed to include a means of checking that his sample was representative when he designed his questionnaire.

If you are collecting your sample data from a secondary source (Section 8.2) within an organisation that has already granted you access, your response rate should be virtually 100 per cent. In research Mark undertook he established that all the data he required were available from employees’ personnel files. Once access had been granted to these files by the organisation he was ensured of virtually a 100 per cent response rate. His actual sample size was therefore the same as his minimum sample size.
In contrast, estimating the likely response rate from a sample to whom you will be sending a questionnaire or interviewing is more difficult. One way of obtaining this estimate is to consider the response rates achieved for similar surveys that have already been undertaken and base your estimate on these. Alternatively, you can err on the side of caution. For most academic studies involving top management or organisations’ representatives a response rate of approximately 35 per cent is reasonable (Baruch, 1999).

However, beware: response rates can vary considerably when collecting primary data. Willimack et al. (2002) report response rates for North American university-based questionnaire surveys of business ranging from 50 to 65 per cent, with even higher non-response for individual questions. Work by Healey (1991) also records a wide variation in response rates. He suggests average response rates of about 50 per cent for postal surveys and 75 per cent for face-to-face interviews, principally in the UK. More recently, Neuman (2000) suggests response rates of between 10 and 50 per cent for postal surveys and up to 90 per cent for face-to-face interviews. The former rate concurs with a questionnaire survey we undertook for a multinational organisation that had an overall response rate of 52 per cent. In our survey, response rates for individual sites varied from 41 to 100 per cent, again emphasising variability. Our examination of response rates to recent business surveys reveals rates as low as 10–20 per cent for postal surveys, an implication being that respondents’ questionnaire fatigue was a contributory factor! Fortunately a number of different techniques, depending on your data collection method, can be used to enhance your response rate. These are discussed with the data collection method in the appropriate sections (Sections 10.3 and 11.5).

Selecting the most appropriate sampling technique and the sample

Having chosen a suitable sampling frame and established the actual sample size required, you need to select the most appropriate sampling technique to obtain a representative sample. Five main techniques can be used to select a probability sample (Figure 7.3):

- simple random;
- systematic;
- stratified random;
- cluster;
- multi-stage.

Your choice of probability sampling technique depends on your research question(s) and your objectives. Subsequently, your need for face-to-face contact with respondents, the geographical area over which the population is spread, and the nature of your sampling frame will further influence your choice of probability sampling technique (Figure 7.3). The structure of the sampling frame, the size of sample you need and, if you are using support workers, the ease with which the technique may be explained will also influence your decision. The impact of each of these is summarised in Table 7.2.

Simple random sampling

Simple random sampling (sometimes called just random sampling) involves you selecting the sample at random from the sampling frame using either random number tables (Appendix 4) or a computer. To do this you:

1. Number each of the cases in your sampling frame with a unique number. The first case is numbered 0, the second 1 and so on.
CHAPTER 7 · SELECTING SAMPLES

Figure 7.3 Selecting a probability sample
(Note that random sampling requires ideally a sample size of over a few hundred)

2 Select cases using random numbers (Table 7.3, Appendix 4) until your actual sample size is reached.

It is usual to select your first random number at random (closing your eyes and pointing with your finger is a good way!) as this ensures that the set of random numbers obtained for different samples is unlikely to be the same. If you do not, you will obtain sets of numbers that are random but identical.

Starting with this number, you read off the random numbers (and select the cases) in a regular and systematic manner until your sample size is reached. If the same number is read off a second time it must be disregarded as you need different cases. This means that you are not putting each case’s number back into the sampling frame after it has been selected and is termed sampling without replacement. If a number is selected that is outside the range of those in your sampling frame, you simply ignore it and continue reading off numbers until your sample size is reached (Box 7.6).

You can use a computer program such as a spreadsheet to generate random numbers. However, you must ensure that the numbers generated are within your range and that if a number is repeated it is ignored and replaced. If details of the population are stored on the computer it is possible to generate a sample of randomly selected cases. For telephone interviews many market research companies now use computer-aided telephone inter-
Table 7.2: Impact of various factors on choice of probability sampling techniques

<table>
<thead>
<tr>
<th>Sample technique</th>
<th>Sampling frame required</th>
<th>Size of sample needed</th>
<th>Geographical area to which suited</th>
<th>Relative cost</th>
<th>Easy to explain to support workers?</th>
<th>Advantages compared with simple random</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple random</td>
<td>Accurate and easily accessible</td>
<td>Better with over a few hundred</td>
<td>Concentrated if face-to-face contact required, otherwise does not matter</td>
<td>High if large sample size or sampling frame not computerised</td>
<td>Relatively difficult to explain</td>
<td>--</td>
</tr>
<tr>
<td>Systematic</td>
<td>Accurate, easily accessible and not containing periodic patterns. Actual list not always needed</td>
<td>Suitable for all sizes</td>
<td>Concentrated if face-to-face contact required, otherwise does not matter</td>
<td>Low</td>
<td>Relatively easy to explain</td>
<td>Normally no difference</td>
</tr>
<tr>
<td>Stratified random</td>
<td>Accurate, easily accessible, divisible into relevant strata (see comments for simple random and systematic as appropriate)</td>
<td>See comments for simple random and systematic as appropriate</td>
<td>Concentrated if face-to-face contact required, otherwise does not matter</td>
<td>Low, provided that lists of relevant strata available</td>
<td>Relatively difficult to explain (once strata decided, see comments for simple random and systematic as appropriate)</td>
<td>Better comparison and hence representation across strata. Differential response rates may necessitate re-weighting</td>
</tr>
<tr>
<td>Cluster</td>
<td>Accurate, easily accessible, relates to relevant clusters, not individual population members</td>
<td>As large as practicable</td>
<td>Dispersed if face-to-face contact required and geographically based clusters used</td>
<td>Low, provided that lists of relevant clusters available</td>
<td>Relatively difficult to explain until clusters selected</td>
<td>Quick but reduced precision</td>
</tr>
<tr>
<td>Multi-stage</td>
<td>Initial stages: geographical. Final stage: needed only for geographical areas selected, see comments for simple random and systematic as appropriate</td>
<td>Initial stages: as large as practicable. Final stage: see comments for simple random and systematic as appropriate</td>
<td>Dispersed if face-to-face contact required, otherwise no need to use this technique!</td>
<td>Low, as sampling frame for actual survey population required only for final stage</td>
<td>Initial stages: relatively difficult to explain. Final stage: see comments for simple random and systematic as appropriate</td>
<td>Difficult to adjust for differential response rates. Substantial errors possible! However, often only practical approach when sampling a large complicated population</td>
</tr>
</tbody>
</table>

Source: © Mark Saunders, Philip Lewis and Adrian Thornhill 2006
viewing (CATI) software to select and dial telephone numbers at random from an existing
database or random digit dialling and to contact each respondent in turn.

Random numbers allow you to select your sample without bias. The sample selected
can therefore be said to be representative of the whole population. However, the selection
that simple random sampling provides is more evenly dispersed throughout the population for samples of more than a few hundred cases. The first few hundred cases
selected using simple random sampling normally consist of bunches of cases whose
numbers are close together followed by a gap and then further bunching. For over a few
hundred cases this pattern occurs far less frequently. Because of the technique’s random
nature it is therefore possible that the chance occurrence of such patterns will result in
certain parts of a population being over- or under-represented.

Simple random sampling is best used when you have an accurate and easily accessible
sampling frame that lists the entire population, preferably stored on a computer. While
you can often obtain these for employees within organisations or members of clubs or
societies, adequate lists are often not available for types of organisation. If your popu-
lation covers a large geographical area, random selection means that selected cases are
likely to be dispersed throughout the area. Consequently, this form of sampling is not
suitable if you are undertaking a survey that covers a large geographical area and requires
face-to-face contact, owing to the associated high travel costs. Simple random sampling
would still be suitable for a geographically dispersed area if you used an alternative tech-
nique of collecting data such as online or postal questionnaires or telephone
interviewing (Chapter 11).

Sampling frames used for telephone interviewing are being replaced increasingly by
random digital dialling. By selecting particular within-country area dialling codes this pro-
vides a chance to reach any household within that area represented by that code which
has a telephone, regardless of whether or not the number is ex-directory (Lavrakas, 1993).
However, care must be taken as, increasingly, households have more than one telephone
number as well. Consequently there is a higher probability of people in such households
being selected as part of the sample. In addition, such a sample would exclude people
who use only mobile telephones as their dialling codes are telephone network operator
rather than geographical area specific.

Systematic sampling

Systematic sampling involves you selecting the sample at regular intervals from the
sampling frame. To do this you:

1. Number each of the cases in your sampling frame with a unique number. The first case
 is numbered 0, the second 1 and so on.
Select the first case using a random number.

Calculate the sampling fraction.

Select subsequent cases systematically using the sampling fraction to determine the frequency of selection.

To calculate the sampling fraction — that is, the proportion of the total population that you need to select — you use the formula

\[
\text{sampling fraction} = \frac{\text{actual sample size}}{\text{total population}}
\]

If your sampling fraction is \(\frac{1}{3}\) you need to select one in every three cases — that is, every third case from the sampling frame. Unfortunately, your calculation will usually result in a more complicated fraction. In these instances it is normally acceptable to round your population down to the nearest 10 (or 100) and to increase your minimum sample size until a simpler sampling fraction can be calculated.

On its own, selecting one in every three would not be random as every third case would be bound to be selected, whereas those between would have no chance of selection. To overcome this a random number is used to decide where to start on the sampling frame. If your sampling fraction is \(\frac{1}{3}\) the starting point must be one of the first three cases. You therefore select a random number (in this example a one-digit random number between 0 and 2) as described earlier and use this as the starting point.

Once you have selected your first case at random you then select, in this example, every third case until you have gone right through your sampling frame (Box 7.7). As with simple random sampling, you can use a computer to generate the first random and subsequent numbers that are in the sample.
CHAPTER 7 · SELECTING SAMPLES

In some instances it is not necessary to construct a list for your sampling frame. Research Mark undertook for a local authority required data to be collected about every tenth client of a social services department. Although these data were not held on computer they were available from each client’s manual record. The were stored in files in alphabetical order and, once the first file (client) was selected at random, it was easy to extract every tenth file (client) thereafter. This process had the additional advantage that it was easy to explain to social services’ employees, although Mark still had to explain to inquisitive employees that he needed a representative sample and so their ‘interesting’ clients might not be selected! For online questionnaires, such as pop-up questionnaires that appear in a window on the computer screen, there is no need to create an actual list if computer software is used to trigger an invitation to participate at random. For systematic sampling, the random selection could be triggered by some mechanism such as every tenth visitor to the site over a specified time period (Bradley, 1999).

BOX 7.7 WORKED EXAMPLE

Systematic sampling

Stefan worked as a receptionist in a dental surgery with approximately 1500 patients. He wished to find out their attitudes to the new automated appointments scheme. As there was insufficient time and money to collect data from all patients using a questionnaire he decided to send the questionnaire to a sample. The calculation of sample size revealed that to obtain acceptable levels of confidence and accuracy he needed an actual sample size of approximately 300 patients. Using the patient files kept in the filing cabinet as a sampling frame he decided to select his sample systematically.

First he calculated the sampling fraction:

\[
\frac{300}{1500} = \frac{1}{5}
\]

This meant that he needed to select every fifth patient from the sampling frame.

Next he used a random number to decide where to start on his sampling frame. As the sampling fraction was \(\frac{1}{5}\), the starting point had to be one of the first five patients. He therefore selected a one-digit random number between 0 and 4.

Once he had selected his first patient at random he continued to select every fifth patient until he had gone right through his sampling frame (the filing cabinet). If the random number Stefan had selected was 2, then he would have selected the following patient numbers:

\[271, 21, 72, 22, 73, 23, 7\]

and so on until 300 patients had been selected.

Despite the advantages, you must be careful when using existing lists as sampling frames. You need to ensure that the lists do not contain periodic patterns.

A high street bank needs you to administer a questionnaire to a sample of individual customers with joint bank accounts. A sampling fraction of \(\frac{1}{4}\) means that you will need to select every fourth customer on the list. The names on the customer lists, which you intend to use as the sampling frame, are arranged alphabetically by account with males followed by females (Table 7.4). If you start with a male customer, all those in your sample will be male. Conversely, if you start with a female customer, all those in your sample will be female. Consequently your sample will be biased (Table 7.4). This sampling frame is therefore not suitable without reordering or stratifying (discussed later).
Unlike simple random sampling, systematic sampling works equally well with a small or large number of cases. However, if your population covers a large geographical area, the random selection means that the sample cases are likely to be dispersed throughout the area. Consequently systematic sampling is suitable for geographically dispersed cases only if you do not require face-to-face contact when collecting your data.

Stratified random sampling

Stratified random sampling is a modification of random sampling in which you divide the population into two or more relevant and significant strata based on one or a number of attributes. In effect your sampling frame is divided into a number of subsets. A random sample (simple or systematic) is then drawn from each of the strata. Consequently, stratified sampling shares many of the advantages and disadvantages of simple random or systematic sampling.

Dividing the population into a series of relevant strata means that the sample is more likely to be representative, as you can ensure that each of the strata is represented proportionally within your sample. However, it is only possible to do this if you are aware of, and can easily distinguish, significant strata in your sampling frame. In addition, the extra stage in the sampling procedure means that it is likely to take longer, to be more expensive, and to be more difficult to explain than simple random or systematic sampling.

In some instances, as pointed out by deVaus (2002), your sampling frame will already be divided into strata. A sampling frame of employee names that is in alphabetical order will automatically ensure that, if systematic sampling is used (discussed earlier), employees will be sampled in the correct proportion to the letter with which their name begins. Similarly, membership lists that are ordered by date of joining will automatically result in stratification by length of membership if systematic sampling is used. However, if you are using simple random sampling or your sampling frame contains periodic patterns, you will need to stratify it. To do this you:

1. Choose the stratification variable or variables.
2. Divide the sampling frame into the discrete strata.
3. Number each of the cases within each stratum with a unique number, as discussed earlier.
4. Select your sample using either simple random or systematic sampling, as discussed earlier.

The stratification variable (or variables) chosen should represent the discrete characteristic (or characteristics) for which you want to ensure correct representation within the sample (Box 7.8).
Samples can be stratified using more than one characteristic. You may wish to stratify a sample of an organisation’s employees by both department and salary grade. To do this you would:

1. Divide the sampling frame into the discrete departments.
2. Within each department divide the sampling frame into discrete salary grades.
3. Number each of the cases within each salary grade within each department with a unique number, as discussed earlier.
4. Select your sample using either simple random or systematic sampling, as discussed earlier.

In some instances the relative sizes of different strata mean that, in order to have sufficient data for analysis, you need to select larger samples from the strata with smaller populations. Here the different sample sizes must be taken into account when aggregating data from each of the strata to obtain an overall picture. The more sophisticated statistical analysis software packages enable you to do this by differentially weighting the responses for each stratum (Section 12.2).

Box 7.8 Worked Example

Stratified random sampling

Dilek worked for a major supplier of office supplies to public and private organisations. As part of her research into her organisation’s customers she needed to ensure that both public and private sector organisations were represented correctly. An important stratum was therefore the sector of the organisation. Her sampling frame was thus divided into two discrete strata: public sector and private sector. Within each stratum the individual cases were then numbered:

<table>
<thead>
<tr>
<th>Number</th>
<th>Customer</th>
<th>Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Anyshire County Council</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>Anyshire Hospital Trust</td>
<td>✓</td>
</tr>
<tr>
<td>002</td>
<td>Newshire Army Training Barracks</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Newshire Police Force</td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>Newshire Housing</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>St Peter’s Secondary School</td>
<td>✓</td>
</tr>
<tr>
<td>006</td>
<td>University of Anytown</td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>West Anyshire Council</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Customer</td>
<td>Selected</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>000</td>
<td>ABC Automotive manufacturer</td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>Anytown printers and bookbinders</td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>Benjamin Toy Company</td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>Jane’s Internet Flower shop</td>
<td>✓</td>
</tr>
<tr>
<td>004</td>
<td>Multimedia productions</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>Roger’s Consulting</td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>The Paperless Office</td>
<td>✓</td>
</tr>
<tr>
<td>007</td>
<td>U-need-us Ltd</td>
<td></td>
</tr>
</tbody>
</table>

She decided to select a systematic sample. A sampling fraction of ¼ meant that she needed to select every fourth customer on the list. As indicated by the ticks (✓), random numbers were used to select the first case in the public sector (001) and private sector (003) strata. Subsequently every fourth customer in each stratum was selected.
Cluster sampling

Cluster sampling is, on the surface, similar to stratified sampling as you need to divide the population into discrete groups prior to sampling (Henry, 1990). The groups are termed clusters in this form of sampling and can be based on any naturally occurring grouping. For example, you could group your data by type of manufacturing firm or geographical area (Box 7.9).

For cluster sampling your sampling frame is the complete list of clusters rather than a complete list of individual cases within the population. You then select a few clusters, normally using simple random sampling. Data are then collected from every case within the selected clusters. The technique has three main stages:

1. Choose the cluster grouping for your sampling frame.
2. Number each of the clusters with a unique number. The first cluster is numbered 0, the second 1 and so on.
3. Select your sample using some form of random sampling as discussed earlier.

Selecting clusters randomly makes cluster sampling a probability sampling technique. Despite this, the technique normally results in a sample that represents the total population less accurately than stratified random sampling. Restricting the sample to a few relatively compact geographical subareas (clusters) maximises the number of interviews you can undertake within the resources available. However, it may also reduce the representativeness of your sample. For this reason you need to maximise the number of subareas to allow for variations in the population within the available resources. Your choice is between a large sample from a few discrete subgroups and a smaller sample distributed over the whole group. It is a trade-off between the amount of precision lost by using a few subgroups and the amount gained from a larger sample size.

BOX 7.9 WORKED EXAMPLE

Cluster sampling

Ceri needed to select a sample of firms to undertake an interview-based survey about the use of photocopiers. As she had limited resources with which to pay for travel and other associated data collection costs, she decided to interview firms in four geographical areas selected from a cluster grouping of local administrative areas. A list of all local administrative areas formed her sampling frame. Each of the local administrative areas (clusters) was given a unique number, the first being 0, the second 1 and so on. The four sample clusters were selected from this sampling frame of local administrative areas using simple random sampling.

Ceri’s sample was all firms within the selected clusters. She decided that the appropriate telephone directories would probably provide a suitable list of all firms in each cluster.

Multi-stage sampling

Multi-stage sampling, sometimes called multi-stage cluster sampling, is a development of cluster sampling. It is normally used to overcome problems associated with a geographically dispersed population when face-to-face contact is needed or where it is expensive and time consuming to construct a sampling frame for a large geographical area. However, like cluster sampling, you can use it for any discrete groups, including those that are not geographically based. The technique involves taking a series of cluster samples, each involving some form of random sampling. This aspect is represented by
the dotted lines in Figure 7.1. It can be divided into four phases. These are outlined in Figure 7.4.

Because multi-stage sampling relies on a series of different sampling frames, you need to ensure that they are all appropriate and available. In order to minimise the impact of selecting smaller and smaller subgroups on the representativeness of your sample, you can apply stratified sampling techniques (discussed earlier). This technique can be further refined to take account of the relative size of the subgroups by adjusting the sample size for each subgroup. As you have selected your subareas using different sampling frames, you only need a sampling frame that lists all the members of the population for those subgroups you finally select (Box 7.10). This provides considerable savings in time and money.

Checking the sample is representative

Often it is possible to compare data you collect from your sample with data from another source for the population. For example, you can compare data on the age and socioeconomic characteristics of respondents in a marketing survey with these characteristics for the population in that country as recorded by the latest national census of population. If there is no statistically significant difference then the sample is representative with respect to these characteristics.
When working within an organisation comparisons can also be made. In a recent survey Mark and Adrian undertook of all types of employees in a large UK organisation they asked closed questions about salary grade, gender, length of service and place of work. Possible responses to each question were designed to provide sufficient detail to compare the characteristics of the sample with the characteristics of the entire population of employees as recorded by the organisation’s computerised personnel system. At the same time they kept the categories sufficiently broad to preserve, and to be seen to preserve, the confidentiality of individual respondents. The two questions on length of service and salary grade from a questionnaire they developed illustrate this:

58 How long have you worked for organisation’s name?
- up to 3 years □
- over 3 years to 10 years □
- over 10 years □

59 Which one of the following best describes your job?
- Clerical (grades 1–3) □
- Senior management (grades 12–14) □
- Supervisor (grades 4–5) □
- Directorate (grades 15–17) □
- Professional (grades 6–8) □
- Other (please say) □
- Management (grades 9–11) □

Using the Kolmogorov test (Section 12.5) Mark and Adrian found there was no statistically significant difference between the proportions of respondents in each of the length of service groups and the data obtained from the organisation’s personnel database for all employees. This meant that their sample was representative of all employees with respect to length of service. However, those responding were (statistically) significantly more likely to be in professional and managerial grades than in technical, clerical
or supervisory grades. They therefore added a note of caution about the representativeness of their findings.

You can also assess the representativeness of samples for longitudinal studies. Obviously, it is still possible to compare respondent characteristics with data from another source. In addition, the characteristics of those who responded can be compared for different data collection periods. For example, you could compare the characteristics of those in your sample who responded to a questionnaire at the start of a research project with those who responded to a questionnaire six months later. We should like to add a note of caution here. Such a comparison will enable you to discuss the extent to which the groups of respondents differed for these characteristics over time. However, depending on your choice of characteristics, these differences might be expected owing to some form of managerial intervention or other change between these data collection periods.

7.3 Non-probability sampling

The techniques for selecting samples discussed earlier have all been based on the assumption that your sample will be chosen statistically at random. Consequently, it is possible to specify the probability that any case will be included in the sample. However, within business research, such as market surveys and case study research, this may either not be possible (as you do not have a sampling frame) or appropriate to answering your research question. This means your sample must be selected some other way. Non-probability sampling (or non-random sampling) provides a range of alternative techniques to select samples based on your subjective judgement. In the exploratory stages of some research projects, such as a pilot survey, a non-probability sample may be the most practical, although it will not allow the extent of the problem to be determined. Subsequent to this, probability sampling techniques may be used. For other business and management research projects your research question(s), objectives and choice of research strategy (Sections 2.4, 5.3) may dictate non-probability sampling. To answer your research question(s) and to meet your objectives you may need to undertake an in-depth study that focuses on a small, perhaps one, case selected for a particular purpose. This sample would provide you with an information-rich case study in which you explore your research question. Alternatively, limited resources or the inability to specify a sampling frame may dictate the use of one or a number of non-probability sampling techniques.

Selecting the most appropriate sampling technique and the sample

A range of non-probability sampling techniques is available that should not be discounted as they can provide sensible alternatives to select cases to answer your research question(s) and to address your objectives (Figure 7.2). At one end of this range is quota sampling, which, like probability samples, tries to represent the total population. Quota sampling has similar requirements for sample size as probabilistic sampling techniques.

At the other end of this range are techniques based on the need to obtain a sample as quickly as possible where you have little control over the content and there is no attempt to obtain a representative sample which will allow you to generalise in a statistical sense to a population. These include convenience and self-selection sampling techniques. Purposive sampling and snowball sampling techniques lie between these extremes (Table 7.5). For these techniques the issue of sample size is ambiguous. Unlike quota and probability samples there
are no rules. Rather, sample size is dependent on your research question(s) and objectives – in particular, what you need to find out, what will be useful, what will have credibility and what can be done within your available resources (Patton, 2002). This is particularly so where you are intending to collect qualitative data. The validity and understanding that you will gain from your data will be more to do with your data collection and analysis skills than with the size of your sample (Patton, 2002). As such, it is the logical relationship between your sample selection technique and the purpose and focus of your research that is important (Figure 7.5), generalisations being made to theory rather than a population. This means that it is the quality of the theoretical inferences that can be made from data collected using non-probability samples that is used to assess the extent to which generalisations can be made.

Quota sampling

Quota sampling is entirely non-random and is normally used for interview surveys. It is based on the premise that your sample will represent the population as the variability in your sample for various quota variables is the same as that in the population. Quota sampling is therefore a type of stratified sample in which selection of cases within strata is entirely non-random (Barnett, 1991). To select a quota sample you:

Figure 7.5 Selecting a non-probability sampling technique
1. Divide the population into specific groups.

2. Calculate a quota for each group based on relevant and available data.

3. Give each interviewer an assignment, which states the number of cases in each quota from which they must collect data.

4. Combine the data collected by interviewers to provide the full sample.

Quota sampling has a number of advantages over the probabilistic techniques. In particular, it is less costly and can be set up very quickly. If, as with television audience research surveys, your data collection needs to be undertaken very quickly then quota sampling may be the only possibility. In addition, it does not require a sampling frame and may therefore be the only technique you can use if one is not available.

Quota sampling is normally used for large populations. For small populations it is usually possible to obtain a sampling frame. Decisions on sample size are governed by the need to have sufficient responses in each quota to enable subsequent statistical analyses to be undertaken. This normally necessitates a sample size of between 2000 and 5000.

Calculations of quotas are based on relevant and available data and are usually relative to the proportions in which they occur in the population (Box 7.11). Without sensible and relevant quotas, data collected may be biased. For many market research projects, quotas are derived from census data. Your choice of quota is dependent on two main factors:
usefulness as a means of stratifying the data;
ability to overcome likely variations between groups in their availability for interview.

Where people who are retired are likely to have different opinions from those in work, a quota that does not ensure that these differences are captured may result in the data being biased as it would probably be easier to collect the data from those people who are retired. Quotas used in market research surveys and political opinion polls usually include measures of age, gender and socioeconomic status or social class. These may be supplemented by additional quotas dictated by the research question(s) and objectives (Box 7.12).

Once you have given each interviewer their particular assignment, they decide whom to interview until they have completed their quota. You then combine the data from this assignment with those collected by other interviewers to provide the full sample. Because the interviewer can choose within quota boundaries whom he or she interviews, your quota sample may be subject to bias. Interviewers tend to choose respondents who are easily accessible and who appear willing to answer the questions. Clear controls may therefore be needed. In addition, it has been known for interviewers to fill in quotas incorrectly. This is not to say that your quota sample will not produce good results; they can and often do! However, you cannot measure the level of certainty or margins of error as the sample is not probability based.

BOX 7.11 WORKED EXAMPLE

Devising a quota sample

Mohammad was undertaking the data collection for his dissertation as part of his full-time employment. For his research he needed to interview a sample of people representing those aged 20–64 who were in work in his country. No sampling frame was available. Once the data had been collected, he was going to disaggregate his findings into subgroups dependent on respondents’ age and type of employment. Previous research had suggested that gender would also have an impact on responses and so he needed to make sure that those interviewed in each group also reflected the proportions of males and females in the population. Fortunately, his country’s national census of population contained a breakdown of the number of people in employment by gender, age and socioeconomic status. These formed the basis of the categories for his quotas:

<table>
<thead>
<tr>
<th>gender</th>
<th>age group</th>
<th>socioeconomic status</th>
</tr>
</thead>
<tbody>
<tr>
<td>male</td>
<td>20–29</td>
<td>professional</td>
</tr>
<tr>
<td></td>
<td>30–34</td>
<td>managers/employers</td>
</tr>
<tr>
<td>female</td>
<td>45–64</td>
<td>intermediate and junior non-manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>skilled manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>semi-skilled manual</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unskilled manual</td>
</tr>
</tbody>
</table>

As he was going to analyse the data for individual age and socioeconomic status groups, it was important that each of these categories had sufficient respondents (at least 30) to enable meaningful statistical analyses. Mohammad calculated that a 0.5 per cent quota for each of the groups would provide sufficient numbers for all groups, provided his analyses were not also disaggregated by gender. This gave him the following quotas:
CHAPTER 7 · SELECTING SAMPLES

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age group</th>
<th>Socioeconomic status</th>
<th>Population (10% sample)</th>
<th>Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20–29</td>
<td>Professional</td>
<td>11210</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Managers/employers</td>
<td>7983</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate and junior non-manual</td>
<td>9107</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skilled manual</td>
<td>16116</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-skilled manual</td>
<td>12605</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unskilled manual</td>
<td>5039</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>30–44</td>
<td>Professional</td>
<td>21431</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Managers/employers</td>
<td>23274</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate and junior non-manual</td>
<td>7997</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skilled manual</td>
<td>21410</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-skilled manual</td>
<td>19244</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unskilled manual</td>
<td>4988</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>45–64</td>
<td>Professional</td>
<td>16612</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Managers/employers</td>
<td>23970</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate and junior non-manual</td>
<td>9995</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skilled manual</td>
<td>20019</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-skilled manual</td>
<td>17616</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unskilled manual</td>
<td>5763</td>
<td>29</td>
</tr>
<tr>
<td>Female</td>
<td>20–29</td>
<td>Professional</td>
<td>8811</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Managers/employers</td>
<td>6789</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate and junior non-manual</td>
<td>21585</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skilled manual</td>
<td>1754</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-skilled manual</td>
<td>9632</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unskilled manual</td>
<td>3570</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>30–44</td>
<td>Professional</td>
<td>16380</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Managers/employers</td>
<td>9765</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate and junior non-manual</td>
<td>28424</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skilled manual</td>
<td>2216</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-skilled manual</td>
<td>11501</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unskilled manual</td>
<td>8797</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>45–64</td>
<td>Professional</td>
<td>8823</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Managers/employers</td>
<td>7846</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate and junior non-manual</td>
<td>21974</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skilled manual</td>
<td>1578</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Semi-skilled manual</td>
<td>9421</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unskilled manual</td>
<td>8163</td>
<td>41</td>
</tr>
</tbody>
</table>

Total sample
441604 2200

These were then divided into assignments of 50 people for each interviewer.

Purposive sampling

Purposive or judgemental sampling enables you to use your judgement to select cases that will best enable you to answer your research question(s) and to meet your objectives. This form of sample is often used when working with very small samples such as in case study research and when you wish to select cases that are particularly informative (Neuman, 2000). Purposive sampling may also be used by researchers adopting the grounded theory strategy. For such research, findings from data collected from your initial sample inform the way you extend your sample into subsequent cases (Section 13.7). Such samples cannot, however, be considered to be statistically representative of the total population. The logic on which you base your strategy for selecting cases for a purposive sample...
In the past few days, volatile opinion poll results have added a new frisson to the election campaign. Using a rolling average of the latest five polls, Labour’s lead over the past three months has remained between 3½ and 6½ points, and is currently at the top end of that range.

But last week there were two bad polls for Labour, showing its lead shrinking to 3 percentage points or fewer.

The other striking feature of the recent polls, however, is that they have become more erratic. In February, estimates of Labour’s lead ranged from 1 to 12 percentage points, compared with a range of 3 and 9 points during December.

The increased volatility of the results suggests that some of the polls might be misjudging public opinion. In the half century up to 1992, political polling looked pretty easy. The gap between what the pollsters expected the difference between the two parties to be and the actual result had been more than 5 percentage points only twice since 1945.

In 1992 it all went wrong. The polls were out by nearly 9 points and the Conservatives squeezed home against the odds. Since then there has been a range of changes in polling methodology that are still keenly debated.

The fear that the volatility might be pointing to a repeat of 1992 means that polling techniques are now coming under scrutiny.

Getting a representative sample is easier said than done and is getting harder as voting patterns become more complex.

Of the many pollsters doing surveys, only six conduct monthly polls on voting intentions: ICM, Mori, Populous, YouGov, NOP and Communicate Research. Each has its own methods.

Framing the question is one of the most important factors. There is a big difference for example, between “Who will you vote for?” and “Will you vote for Labour, Conservatives, Liberal Democrats or another party?”.

Where a question comes in a survey is also important. Asking voting intention after questions about immigration raises support for the UK Independence Party.

The standard method for all pollsters used to be face-to-face quota sampling: selecting set numbers of people by sex and age. But a review by the Market Research Society after the 1992 disaster said that quota sampling was too “down-market” and failed to catch a representative selection of the middle classes.

It also said the problems reflected a late swing to the right and the unwillingness of some Conservative supporters to respond truthfully: a phenomenon that became known as a “spiral of silence” or “shy Tories”.

Since 1992, interviewees have been selected more finely – allowing for home ownership and other demographic variables – and the location of interviews has been made more representative.

Some pollsters moved to telephone polling, which is now the most commonly used method. Almost all households have a phone.

But phone polling, too, is now under pressure. It risks losing people who are rarely at home, use only a mobile phone or who filter their phone calls.

The increased use of cold calling from salesmen has also poisoned the phone for political polling.

But concerns about phone polling do not affect the one organisation that does not use phones – YouGov, which uses the internet.

It has been successful at accurately predicting results and argues that respondents are more honest on topics such as tax when responding on the internet rather than to another person. The issue of turnout and the “don’t knows” is also tricky – some pollsters show a proportion of “don’t knows” voting as they did at the previous election, others ignore them.

After doing very well in calling the 1997 election result, the pollsters’ performance deteriorated again in 2001, although Labour’s lead was so huge that it barely mattered.

However, we will have to wait for the results of the next election to see whether the pollsters have really managed to put the 1992 outcome behind them.

should be dependent on your research question(s) and objectives. Patton (2002) emphasises this point by contrasting the need to select information-rich cases in purposive sampling with the need to be statistically representative in probability sampling. The more common purposive sampling strategies were outlined in Figure 7.2 and are discussed below:

- **Extreme case or deviant** sampling focuses on unusual or special cases on the basis that the data collected about these unusual or extreme outcomes will enable you to learn the most and to answer your research question(s) and to meet your objectives most effectively. This is often based on the premise that findings from extreme cases will be relevant in understanding or explaining more typical cases (Patton, 2002). Peters and Waterman’s (1982) research on excellent companies was based on a purposive sample of extreme (excellent) companies.

- **Heterogeneous or maximum variation** sampling enables you to collect data to describe and explain the key themes that can be observed. Although this might appear a contradiction, as a small sample may contain cases that are completely different, Patton (2002) argues that this is in fact a strength. Any patterns that do emerge are likely to be of particular interest and value and represent the key themes. In addition, the data collected should enable you to document uniqueness. To ensure maximum variation within a sample Patton (2002) suggests you identify your diverse characteristics (sample selection criteria) prior to selecting your sample.

- In direct contrast to heterogeneous sampling, **homogeneous** sampling focuses on one particular subgroup in which all the sample members are similar. This enables you to study the group in great depth.

- **Critical case** sampling selects critical cases on the basis that they can make a point dramatically or because they are important. The focus of data collection is to understand what is happening in each critical case so that logical generalisations can be made (Box 7.13). Patton (2002) outlines a number of clues that suggest critical cases. These can be summarised by the questions such as:
 - If it happens there, will it happen everywhere?
 - If they are having problems, can you be sure that everyone will have problems?
 - If they cannot understand the process, is it likely that no one will be able to understand the process?

- In contrast, **typical case** sampling is usually used as part of a research project to provide an illustrative profile using a representative case. Such a sample enables you to provide an illustration of what is ‘typical’ to those who will be reading your research report and may be unfamiliar with the subject matter. It is not intended to be definitive.

Snowball sampling

Snowball sampling is commonly used when it is difficult to identify members of the desired population, for example people who are working while claiming unemployment benefit. You therefore need to:

1. Make contact with one or two cases in the population.
2. Ask these cases to identify further cases.
3. Ask these new cases to identify further new cases (and so on).
4. Stop when either no new cases are given or the sample is as large as is manageable.

The main problem is making initial contact. Once you have done this, these cases identify further members of the population, who then identify further members, and so
the sample snowballs (Box 7.14). For such samples the problems of bias are huge, as respondents are most likely to identify other potential respondents who are similar to themselves, resulting in a homogeneous sample (Lee, 1993). The next problem is to find these new cases. However, for populations that are difficult to identify, snowball sampling may provide the only possibility.

BOX 7.13 FOCUS ON MANAGEMENT RESEARCH

Purposive sampling

A paper by Mark and a colleague published in the *Services Industries Journal* reports on research into an alternative process for measuring service users’ and deliverers’ perceptions of service quality independently. Within this paper they provide examples of four service situations in which the Extended Service Template Process was evaluated and explain how separate samples of service users and deliverers were selected. In each example, purposive samples of service users and deliverers were selected on the basis of their criticality to that service, it being argued that these would enable the diversity and key dimensions of the service to be explored and logical generalisations made regarding key themes. The service quality issues explored in these examples included the need for improvements to the main reception of a large multi-site public sector organisation. In this organisation three purposive samples were selected to enable the views of the service users, the service deliverers and their manager to be explored and understood:

- six internal staff representing key service users of this reception service;
- three receptionists employed at the main reception, these being the service deliverers;
- the receptionist’s departmental manager.

Subsequently, separate group interviews were held with each of these parties to collect data.

BOX 7.14 WORKED EXAMPLE

Snowball sampling

Steve was a part-time student. His project was concerned with the career paths of managing directors of large companies. As part of this, Steve needed to interview managing directors. He arranged his first interview with the managing director of his own company. Towards the end of the interview the managing director asked Steve whether he could be of further assistance. Two other managing directors that Steve could interview were suggested. Steve’s managing director offered to ‘introduce’ Steve to them and provided him with contact telephone numbers and the names of their personal assistants. Steve’s sample had started to snowball!

Self-selection sampling

Self-selection sampling occurs when you allow each case, usually individuals, to identify their desire to take part in the research. You therefore:

1. Publicise your need for cases, either by advertising through appropriate media or by asking them to take part.
2. Collect data from those who respond.
Publicity for convenience samples can take many forms. These include articles and advertisements in magazines that the population are likely to read, postings on appropriate Internet newsgroups and discussion groups, hyperlinks from other websites as well as letters or emails of invitation to colleagues and friends (Box 7.15). Cases that self-select often do so because of their feelings or opinions about the research question(s) or stated objectives. In some instances, as in research undertaken by Adrian, Mark and colleagues on the management of the survivors of downsizing (Thornhill et al., 1997), this is exactly what the researcher wants. In this research a letter in the personnel trade press generated a list of self-selected organisations that were interested in the research topic, considered it important and were willing to devote time to being interviewed.

BOX 7.15 WORKED EXAMPLE

Self-selection sampling

Siân’s research was concerned with teleworking. She had decided to administer her questionnaire using the Internet. She publicised her research on a range of bulletin boards and through the teleworkers’ association, asking for volunteers to fill in a questionnaire. Those who responded were sent a short questionnaire by email.

Convenience sampling

Convenience sampling (or haphazard sampling) involves selecting haphazardly those cases that are easiest to obtain for your sample, such as the person interviewed at random in a shopping centre for a television programme. The sample selection process is continued until your required sample size has been reached. Although this technique of sampling is used widely, it is prone to bias and influences that are beyond your control, as the cases appear in the sample only because of the ease of obtaining them. Often the sample is intended to represent the total population, for example managers taking an MBA course as a surrogate for all managers! In such instances the choice of sample is likely to have biased the sample, meaning that subsequent generalisations are likely to be at best flawed. These problems are less important where there is little variation in the population, and such samples often serve as pilots to studies using more structured samples.

7.4 Summary

- Your choice of sampling techniques is dependent on the feasibility and sensibility of collecting data to answer your research question(s) and to address your objectives from the entire population. For populations of under 50 it is usually more sensible to collect data from the entire population where you are considering using probability sampling.
- Choice of sampling technique or techniques is dependent on your research question(s) and objectives:
 - Research question(s) and objectives that need you to estimate statistically the characteristics of the population from a sample require probability samples.
 - Research question(s) and objectives that do not require such generalisations can, alternatively, make use of non-probability sampling techniques.
- Factors such as the confidence that is needed in the findings, accuracy required and likely categories for analyses will affect the size of the sample that needs to be collected:
– Statistical analyses usually require a minimum sample size of 30.
– Research question(s) and objectives that do not require statistical estimation may need far smaller samples.

Sample size and the technique used are also influenced by the availability of resources, in particular financial support and time available to select the sample and to collect, enter into a computer and analyse the data.

Probability sampling techniques all necessitate some form of sampling frame, so they are often more time consuming than non-probability techniques.

Where it is not possible to construct a sampling frame you will need to use non-probability sampling techniques.

Non-probability sampling techniques also provide you with the opportunity to select your sample purposively and to reach difficult-to-identify members of the population.

For many research projects you will need to use a combination of different sampling techniques.

All your choices will be dependent on your ability to gain access to organisations. The considerations summarised earlier must therefore be tempered with an understanding of what is practically possible.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

7.1 Identify a suitable sampling frame for each of the following research questions:
 a How do company directors of manufacturing firms of over 500 employees think a specified piece of legislation will affect their companies?
 b Which factors are important in accountants' decisions regarding working in mainland Europe?
 c How do employees at Cheltenham Gardens Ltd think the proposed introduction of compulsory Saturday working will affect their working lives?

7.2 Lisa has emailed her tutor with the following query regarding sampling and dealing with non-response. Imagine you are Lisa's tutor. Draft a reply to answer her query.

7.3 You have been asked to select a sample of manufacturing firms using the sampling frame below. This also lists the value of their annual output in tens of thousands of pounds over the past year. To help you in selecting your sample the firms have been numbered from 0 to 99.
a Select two simple random samples, each of 20 firms, and mark those firms selected for each sample on the sampling frame.
b Describe and compare the pattern on the sampling frame of each of the samples selected.
c Calculate the average (mean) annual output in tens of thousands of pounds over the past year for each of the samples selected.
d Given that the true average annual output is £6 608 900, is there any bias in either of the samples selected?

7.4 You have been asked to select a 10 per cent sample of firms from the sampling frame used for self-check question 7.3.
a Select a 10 per cent systematic sample and mark those firms selected for the sample on the sampling frame.
b Calculate the average (mean) annual output in tens of thousands of pounds over the past year for your sample.
c Given that the true average annual output is £6 608 900, why does systematic sampling provide such a poor estimate of the annual output in this case?

7.5 You need to undertake a face-to-face interview survey of managing directors of small to medium-sized organisations. From the data you collect you need to be able to generalise about the attitude of such managing directors to recent changes in government policy towards these firms. Your generalisations need to be accurate to within plus or minus 5 per cent. Unfortunately, you have limited resources to pay for interviewers, travelling and other associated costs.
a How many managing directors will you need to interview?
b You have been given the choice between cluster and multi-stage sampling. Which technique would you choose for this research? You should give reasons for your choice.

7.6 You have been asked to undertake a survey of residents’ opinions regarding the siting of a new supermarket in an inner city suburb (estimated catchment population 111 376 at the last census). The age and gender distribution of the catchment population at the last census is listed below:
REVIEW AND DISCUSSION QUESTIONS

Gender and Age Group

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0–4</td>
</tr>
<tr>
<td>Males</td>
<td>3498</td>
</tr>
<tr>
<td>Females</td>
<td>3461</td>
</tr>
</tbody>
</table>

*59 females, 64 males; *60 females, 65 males

a Devise a quota for a quota sample using these data.
b What other data would you like to include to overcome likely variations between groups in their availability for interview and replicate the total population more precisely? Give reasons for your answer.
c What problems might you encounter in using interviewers?

7.7 For each of the following research questions it has not been possible for you to obtain a sampling frame. Suggest the most suitable non-probability sampling technique to obtain the necessary data, giving reasons for your choice.

a What support do people sleeping rough believe they require from social services?
b Which television advertisements do people remember watching last weekend?
c How do employers’ opinions vary regarding the impact of European Union legislation on employee recruitment?
d How are manufacturing companies planning to respond to the introduction of road tolls?
e Would users of the squash club be prepared to pay a 10 per cent increase in subscriptions to help fund two extra courts (answer needed by tomorrow morning)?

7.8 With a friend or colleague choose one of the following research questions (or one of your own) in which you are interested.

- What attributes attract people to jobs?
- How are financial institutions adapting the services they provide to meet recent legislation?

Use the flow charts for both probability sampling (Figure 7.3) and non-probability sampling (Figure 7.5) to decide how you could use each type of sampling independently to answer the research question.

7.9 Agree with a colleague to watch a particular documentary or consumer rights programme on the television. If possible, choose a documentary with a business or management focus. During the documentary, pay special attention to the samples from which the data for the documentary are drawn. Where possible, note down details of the sample such as who were interviewed, or who responded to questionnaires and the reasons why these people were chosen. Where this is not possible, make a note of the information you would have liked to have been given. Discuss your findings with your colleague and come to a conclusion regarding the nature of the sample used, its representativeness and the extent it was possible for the programme maker to generalise from that sample.

7.10 Obtain a copy of a quality daily newspaper and, within the newspaper, find an article which discusses a ‘survey’ or ‘poll’. Share the article with a friend. Make notes of the process used to select the sample for the ‘survey’ or ‘poll’. As you make your notes, note down any areas where you feel there is insufficient information to fully understand the sampling process. Aspects for which information may be lacking include the total population, size of sample, how the sample were selected, representativeness and so on. Discuss your findings with your friend.
CHAPTER 7 · SELECTING SAMPLES

PROGRESSING YOUR RESEARCH PROJECT

Using sampling as part of your research

☐ Consider your research question(s) and objectives. You need to decide whether you will be able to collect data on the entire population or will need to collect data from a sample.

☐ If you decide that you need to sample, you must establish whether your research question(s) and objectives require probability sampling. If they do, make sure that a suitable sampling frame is available or can be devised, and calculate the actual sample size required taking into account likely response rates. If your research question(s) and objectives do not require probability sampling, or you are unable to obtain a suitable sampling frame, you will need to use non-probability sampling.

☐ Select the most appropriate sampling technique or techniques after considering the advantages and disadvantages of all suitable techniques and undertaking further reading as necessary.

☐ Select your sample or samples following the technique or techniques as outlined in this chapter.

☐ Remember to note down the reasons for your choices when you make them, as you will need to justify your choices when you write about your research method.

References

Further reading

Barnett, V. (1991) Sample Survey Principles and Methods, London, Edward Arnold. Chapters 2, 5 and 6 provide an explanation of statistics behind probability sampling and quota sampling as well as the techniques.

Baruch, Y. (1999) ‘Response rates in academic studies – a comparative analysis’, Human Relations 52: 4, 421–38. This examines 175 different studies in which sampling was used covering approximately 200,000 respondents. The paper suggests likely response rates between studies and highlights a decline in response rates over the period 1975–95.

Dillman, D.A., Eltinge, J.L., Groves, J.L. and Little, R.J.A. (eds) (2002) Survey Nonresponse, New York, Wiley Interscience. This book contains a wealth of information on survey nonresponse. Chapter 1 provides a useful overview in relation to the impact of survey design on non-response. This is discussed in more detail in Chapters 7 to 17, Chapter 14 referring specifically to business surveys and Chapter 15 to Internet-based surveys.

As soon as Andrea got back to the flat after the afternoon’s lectures, she rushed to her computer and switched it on. Would he have replied to her email yet? Five days she’d been waiting for a reply from Peter, a partner at a medium-sized, United Kingdom (UK) based audit firm. She had sent him a set of questions asking about the pressures he faced from companies to agree or ‘sign off’ their annual accounts when he was not entirely happy with their treatment of certain accounting items. And she wanted some answers. She couldn’t fabricate her research material, but if she didn’t get some more primary data soon, she couldn’t see how her final-year research project was going to get the grade she needed to ensure that she graduated with a good degree.

The topic was certainly a good one, as her project tutor had confirmed. From her reading of auditing texts (for example: Gray and Manson, 2005; Millichamp, 2002; Porter et al., 2003), she had established that the basic aim of an audit is to express an independent, professional opinion on the financial statements drawn up by, or on behalf of, the directors of a company. However, recent high-profile financial scandals involving companies with a previous record of unqualified or ‘clean’ audit reports suggested that auditors were not keeping ‘creative accounting’ under control. She wanted to know about the threats to their independence and integrity that auditors experienced while conducting a company audit. As a partner, Peter was an ideal source of information.

She had never met Peter. It was his suggestion to have an electronic conversation about her research into auditor independence and its importance for professional integrity; when he ticked the box on her questionnaire indicating he was willing to be interviewed, he’d scribbled by the side of it, ‘Why don’t we do this by email?’

She had originally mailed her questionnaire to each of the top 50 audit firms, a list of which she’d found while browsing through a copy of the weekly professional publication, Accountancy Age (2005), that her older, professionally qualified brother had lent her. The table gave the names of the top 50 UK auditing firms, ranked by total UK fee income. She’d then looked up the main postal address of each one on the Internet and sent one copy of her questionnaire to each address, asking for the questionnaire to be completed by one of their audit engagement partners. Since these people (or equivalent) are responsible for dealing with the board of directors, senior management and audit committee of the client company and will be a senior person with substantial experience of auditing, she considered them ideally qualified to answer the kinds of questions she was asking.

Five weeks later, Peter’s was one of only 11 responses she had received, far short of the 25 she had been hoping for. Most of those had arrived in the third week after the mailing and she hadn’t had anything in the post for nearly a week now. She was also disappointed that the answers to the closed questions showed a high degree of homogeneity and many of the write-in answers to the open questions didn’t say much at all. She’d even thought about throwing the questionnaires away and starting again, but it was getting too near the submission deadline to do that. As far as Andrea could see, the only useful thing to come out of the questionnaire survey was the two interview leads. At least it wasn’t going to take her long to analyse the questionnaire responses, such as they were, though it was a shame that she wouldn’t be able to show off the statistical skills she had learnt the previous year.

Given that only one other respondent had volunteered to be interviewed, she had jumped at the opportunity to get some more data for the research project by ‘e-interviewing’ Peter (Bampton and Cowton, 2002). With ethically sensitive issues there is always the problem of whether people are ‘telling like it is’ (Randall and Fernandes, 1991), but an interview seemed to offer the prospect of getting...
to the heart of ethical issues in a way that the questionnaire couldn’t do (Liedtka, 1992) – and the first round of questions and answers with Peter had been encouraging. His replies had seemed to be really open and candid, and he had made some interesting remarks about the ‘real world’ of auditing, not least the pressure not to lose a particular audit engagement: push the client too hard, and the directors of the company could well be looking to appoint a new auditor next year. Then you could say goodbye to the audit fee and any additional consultancy services – and find yourself telling some of your staff that they were ‘no longer required’. His comments had brought home to her just how risky it could be to be over-zealous in audit work, to stand up to a client who was wanting to bend the financial reporting rules. She wanted and needed to know more and had immediately sent off the following open-ended questions, to which she was still awaiting a response:

- Which items in the accounts cause you the most problems as an auditor? Where are companies at their most ‘creative’ with the figures?
- Have you ever given an unqualified audit report which you didn’t feel happy about at the time or which you later regretted?
- Have any companies threatened you with the loss of an audit engagement? If so, how has this been communicated to you?
- What do you think should be done to ensure that auditors act more ethically? How can professional integrity be safeguarded?

Her ancient computer at last booted up and she logged onto her email account. She opened the inbox: still no reply from Peter. Her heart sank. She wondered what was happening. She worried that perhaps her follow-up questions had been too probing. After all, with so many big accounting scandals in recent years, the independence of auditors and their professional integrity were a big issue, and a sensitive one. Some of the excesses of ‘creative accounting’ were being blamed on auditors who weren’t courageous or scrupulous enough to stand up to corporate management. She could imagine why he might be reluctant to answer some of her questions. But then again, was she just being unduly pessimistic or even paranoid? Was he simply busy at the moment? A final-year student project wouldn’t be his top priority. He might even be on holiday. (At this point a picture formed in her mind of a luxury villa on a sun-drenched island and she began to dream of how she would love to be there now. But then the reality of her research project burst back in and she was back in her flat, staring at the computer screen.)

What should she do now? What could she do? Should she email him a reminder? That might seem impudent. Should she try telephoning him? That might seem pushy. Should she perhaps offer to visit him in his office? But it was 140 miles to the firm’s headquarters, a full day’s round trip, when she had so many academic assignment deadlines to meet and a part-time job to hold down – not to mention the train fare to find out of her meagre financial resources. And, after all, it was his idea to do the interview by email. Perhaps it was best to leave it another day and hope that he would get back to her without any prompting. She turned off the computer and headed for the kitchen and the biscuits.

References

QUESTIONS
1 From what you know of her research design and approach, how appropriate do you consider Andrea’s approach to sampling to be?
CHAPTER 7 · SELECTING SAMPLES

2 How would you assess her current position in relation to the number of responses and what advice could you give her about possible options for improving her chances of completing a reasonably successful project?

3 What are the major benefits and drawbacks of seeking to interview via email? What are the practical issues that would need to be addressed when collecting data through an ‘e-interview’?

4 How would you select a sample and research a sensitive topic like auditor independence and integrity?

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:

- Change management at Hattersley Electronics
- Employment networking in the Hollywood film industry.

SELF-CHECK ANSWERS

7.1 a A complete list of all directors of large manufacturing firms could be purchased from an organisation that specialised in selling such lists to use as the sampling frame. Alternatively, a list that contained only those selected for the sample could be purchased to reduce costs. These data are usually in a format suitable for being read by word-processing and database computer software, and so they could easily be merged into standard letters such as those included with questionnaires.

b A complete list of accountants, or one that contained only those selected for the sample, could be purchased from an organisation that specialised in selling such lists. Care would need to be taken regarding the precise composition of the list to ensure that it included those in private practice as well as those working for organisations. Alternatively, if the research was interested only in qualified accountants then the professional accountancy bodies’ yearbooks, which list all their members and their addresses, could be used as the sampling frame.

c The personnel records or payroll of Cheltenham Gardens Ltd could be used. Either would provide an up-to-date list of all employees with their addresses.

7.2 Your draft of Lisa’s tutor’s reply is unlikely to be worded the same way as the one below. However, it should contain the same key points:

From: “tutor’s name” <lisas.tutor@anytown.ac.uk>
To: <lisa@anytown.ac.uk>
Sent: today’s date 7:06
Subject: Re: Help!!! Sampling non-response?

Hi Lisa

Many thanks for the email. This is not in the least unusual. I reckon to get about 1 in 20 interviews which go this way and you just have to say ‘c’est la vie’. This is not a problem from a methods perspective as, in sampling terms, it can be treated as a non-response due to the person refusing to respond to your questions. This would mean you could not use the material. However, if he answered some other questions then you should treat this respondent as a partial non-response and just not use those answers.

Hope this helps.
‘Tutor’s name’
Self-Check Answers

7.3 a Your answer will depend on the random numbers you selected. However, the process you follow to select the samples is likely to be similar to that outlined. Starting at randomly selected points, two sets of 20 two-digit random numbers are read from the random number tables (Appendix 4). If a number is selected twice it is disregarded. Two possible sets are:

Sample 1: 38 41 14 59 53 03 52 86 21 88 55 87 85 90 74 18 89 40 84 71
Sample 2: 28 00 06 70 81 76 36 65 30 27 92 73 20 87 58 15 69 22 77 31

These are then marked on the sampling frame (sample 1 is shaded blue, sample 2 is shaded orange) as shown below:

b Your samples will probably produce patterns that cluster around certain numbers in the sampling frame, although the amount of clustering may differ, as illustrated by samples 1 and 2 above.

c The average (mean) annual output in tens of thousands of pounds will depend entirely upon your sample. For the two samples selected the averages are:

Sample 1 (blue): £6 752 000
Sample 2 (orange): £7 853 500

d There is no bias in either of the samples, as both have been selected at random. However, the average annual output calculated from sample 1 represents the total population more closely than that calculated from sample 2, although this has occurred entirely at random.

7.4 a Your answer will depend on the random number you select as the starting point for your systematic sample. However, the process you followed to select your sample is likely to be similar to that outlined. As a 10 per cent sample has been requested, the sampling fraction is \(\frac{1}{10} \). Your starting point is selected using a random number between 0 and 9, in this case 2. Once the firm numbered 2 has been selected, every tenth firm is selected:

2 12 22 32 42 52 62 72 82 92
These are shaded orange on the sampling frame and will result in a regular pattern whatever the starting point:

<table>
<thead>
<tr>
<th>0</th>
<th>1163</th>
<th>20</th>
<th>1072</th>
<th>40</th>
<th>1257</th>
<th>60</th>
<th>1300</th>
<th>80</th>
<th>1034</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>21</td>
<td>7</td>
<td>41</td>
<td>29</td>
<td>61</td>
<td>39</td>
<td>81</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>57</td>
<td>22</td>
<td>92</td>
<td>42</td>
<td>84</td>
<td>73</td>
<td>82</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>149</td>
<td>23</td>
<td>105</td>
<td>43</td>
<td>97</td>
<td>63</td>
<td>161</td>
<td>83</td>
<td>165</td>
</tr>
<tr>
<td>4</td>
<td>205</td>
<td>24</td>
<td>157</td>
<td>44</td>
<td>265</td>
<td>64</td>
<td>275</td>
<td>84</td>
<td>301</td>
</tr>
<tr>
<td>5</td>
<td>163</td>
<td>25</td>
<td>214</td>
<td>45</td>
<td>187</td>
<td>65</td>
<td>170</td>
<td>85</td>
<td>161</td>
</tr>
<tr>
<td>6</td>
<td>1359</td>
<td>26</td>
<td>1440</td>
<td>46</td>
<td>1872</td>
<td>66</td>
<td>1598</td>
<td>86</td>
<td>1341</td>
</tr>
<tr>
<td>7</td>
<td>330</td>
<td>27</td>
<td>390</td>
<td>47</td>
<td>454</td>
<td>67</td>
<td>378</td>
<td>87</td>
<td>431</td>
</tr>
<tr>
<td>8</td>
<td>2097</td>
<td>28</td>
<td>1935</td>
<td>48</td>
<td>1822</td>
<td>68</td>
<td>1634</td>
<td>88</td>
<td>1756</td>
</tr>
<tr>
<td>9</td>
<td>1059</td>
<td>29</td>
<td>998</td>
<td>49</td>
<td>1091</td>
<td>69</td>
<td>1101</td>
<td>89</td>
<td>907</td>
</tr>
<tr>
<td>10</td>
<td>1037</td>
<td>30</td>
<td>1298</td>
<td>50</td>
<td>1251</td>
<td>70</td>
<td>1070</td>
<td>90</td>
<td>1158</td>
</tr>
<tr>
<td>11</td>
<td>59</td>
<td>31</td>
<td>10</td>
<td>51</td>
<td>9</td>
<td>71</td>
<td>37</td>
<td>91</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>68</td>
<td>32</td>
<td>70</td>
<td>52</td>
<td>93</td>
<td>72</td>
<td>88</td>
<td>92</td>
<td>66</td>
</tr>
<tr>
<td>13</td>
<td>166</td>
<td>33</td>
<td>159</td>
<td>53</td>
<td>103</td>
<td>73</td>
<td>102</td>
<td>93</td>
<td>147</td>
</tr>
<tr>
<td>14</td>
<td>302</td>
<td>34</td>
<td>276</td>
<td>54</td>
<td>264</td>
<td>74</td>
<td>157</td>
<td>94</td>
<td>203</td>
</tr>
<tr>
<td>15</td>
<td>161</td>
<td>35</td>
<td>215</td>
<td>55</td>
<td>189</td>
<td>75</td>
<td>168</td>
<td>95</td>
<td>163</td>
</tr>
<tr>
<td>16</td>
<td>1298</td>
<td>36</td>
<td>1450</td>
<td>56</td>
<td>1862</td>
<td>76</td>
<td>1602</td>
<td>96</td>
<td>1339</td>
</tr>
<tr>
<td>17</td>
<td>329</td>
<td>37</td>
<td>387</td>
<td>57</td>
<td>449</td>
<td>77</td>
<td>381</td>
<td>97</td>
<td>429</td>
</tr>
<tr>
<td>18</td>
<td>2103</td>
<td>38</td>
<td>1934</td>
<td>58</td>
<td>1799</td>
<td>78</td>
<td>1598</td>
<td>98</td>
<td>1760</td>
</tr>
<tr>
<td>19</td>
<td>1061</td>
<td>39</td>
<td>1000</td>
<td>59</td>
<td>1089</td>
<td>79</td>
<td>1099</td>
<td>99</td>
<td>898</td>
</tr>
</tbody>
</table>

b The average (mean) annual output of firms for your sample will depend upon where you started your systematic sample. For the sample selected above it is £757,000.

c Systematic sampling has provided a poor estimate of the annual output because there is an underlying pattern in the data, which has resulted in firms with similar levels of output being selected.

7.5 a If you assume that there are at least 100,000 managing directors of small to medium-sized organisations from which to select your sample, you will need to interview approximately 380 to make generalisations that are accurate to within plus or minus 5 per cent (Table 7.1).

b Either cluster or multi-stage sampling could be suitable; what is important is the reasoning behind your choice. This choice between cluster and multi-stage sampling is dependent on the amount of limited resources and time you have available. Using multi-stage sampling will take longer than cluster sampling as more sampling stages will need to be undertaken. However, the results are more likely to be representative of the total population owing to the possibility of stratifying the samples from the subareas.

7.6 a Prior to deciding on your quota you will need to consider the possible inclusion of residents who are aged less than 16 in your quota. Often in such research projects residents aged under 5 (and those aged 5–15) are excluded. You would need a quota of between 2000 and 5000 residents to obtain a reasonable accuracy. These should be divided proportionally between the groupings as illustrated in the possible quota below:

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age group</th>
<th>16–19</th>
<th>20–29</th>
<th>30–44</th>
<th>45–59/64</th>
<th>60/65–74</th>
<th>75+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td>108</td>
<td>169</td>
<td>217</td>
<td>285</td>
<td>110</td>
<td>59</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td>154</td>
<td>209</td>
<td>180</td>
<td>203</td>
<td>205</td>
<td>99</td>
</tr>
</tbody>
</table>
b Data on social class, employment status, socioeconomic status or car ownership could also be used as further quotas. These data are available from the Census and are likely to affect shopping habits.

c Interviewers might choose respondents who were easily accessible or appeared willing to answer the questions. In addition, they might fill in their quota incorrectly or make up the data.

7.7 a Either snowball sampling as it would be difficult to identify members of the desired population or, possibly, convenience sampling because of initial difficulties in finding members of the desired population.

b Quota sampling to ensure that the variability in the population as a whole is represented.

c Purposive sampling to ensure that the full variety of responses are obtained from a range of respondents from the population.

d Self-selection sampling as it requires people who are interested in the topic.

e Convenience sampling owing to the very short timescales available and the need to have at least some idea of members’ opinions.
LEARNING OUTCOMES

By the end of this chapter you should be able to:

➔ identify the full variety of secondary data that are available;
➔ appreciate ways in which secondary data can be utilised to help to answer research question(s) and to meet objectives;
➔ understand the advantages and disadvantages of using secondary data in research projects;
➔ use a range of techniques, including published guides and the Internet, to locate secondary data;
➔ evaluate the suitability of secondary data for answering research question(s) and meeting objectives in terms of coverage, validity, reliability and measurement bias;
➔ apply the knowledge, skills and understanding gained to your own research project.

8.1 Introduction

When first considering how to answer their research question(s) or meet their objectives, few of our students consider initially the possibility of reanalysing data that have already been collected for some other purpose. Such data are known as secondary data. Most automatically think in terms of collecting new (primary) data specifically for that purpose. Yet, despite this, such secondary data can provide a useful source from which to answer, or partially to answer, your research question(s).

Secondary data include both raw data and published summaries. Most organisations collect and store a variety of data to support their operations: for example, payroll details, copies of letters, minutes of meetings and accounts of sales of goods or services. Quality daily newspapers contain a wealth of data, including reports about takeover bids and companies’ share prices. Government departments undertake surveys and publish official statistics covering social, demographic and economic topics. Consumer research organis-
Trade organisations collect data from their members on topics such as sales that are subsequently aggregated and published. Some of these data, in particular documents such as company minutes, are available only from the organisations that produce them, and so access will need to be negotiated (Section 6.3). Others, including government surveys such as a census of population, are widely available in published form as well as via the Internet and on CD-ROM in university libraries. A growing variety have been deposited in, and are available from, data archives. In addition, the vast majority of companies and professional organisations have their own Internet sites from which data may be obtained. Online computer databases containing company information can be accessed via the Internet through information gateways such as Biz/Ed (Table 3.5).

For certain types of research project, such as those requiring national or international comparisons, secondary data will probably provide the main source to answer your research question(s) and to address your objectives. However, if you are undertaking your research project as part of a course of study, we recommend that you check the assessment regulations before deciding to rely entirely on secondary data. You may be required to collect primary data for your research project. Most research questions are answered using some combination of secondary and primary data. Where limited appropriate secondary data are available, you will have to rely mainly on data you collect yourself.

You, like all of us, probably receive ‘junk mail’ through the post almost every week. Such letters are clearly derived from computer mailing lists and so your name and address must be stored on a computer somewhere. However, this is only the tip of all the data that is likely to be stored about every one of us. In addition to private organisations, public sector organisations such as central and local government, the police, the Inland Revenue and the health service all hold data about us electronically. Such data are obtained every time we interact directly or indirectly with these organisations’ electronic systems. Your supermarket loyalty card allows every purchase you make to be recorded against your name, allowing the supermarket to predict your purchasing patterns as well as target special offers; your passport has a computer readable code that links to a central database and means that your travel movements across borders can be recorded. These data are often reused for purposes other than that for which they were originally collected. They are aggregated to provide information about, for example, different geographical regions or social groups. They are merged with other data to form new data sets, the creation of these secondary data sets allowing new relationships to be explored. They are also made available or sold to other people and organisations for new purposes as secondary data, resulting perhaps in the creation of new mailing lists and more junk mail!
In this chapter we examine the different types of secondary data that are likely to be available to help you to answer your research question(s) and meet your objectives, how you might use them (Section 8.2), and a range of methods, including published guides, for locating these data (Section 8.3). We then consider the advantages and disadvantages of using secondary data (Section 8.4) and discuss ways of evaluating their validity and reliability (Section 8.5). We do not attempt to provide a comprehensive list of secondary data sources, as this would be an impossible task within the space available.

8.2 Types of secondary data and uses in research

Secondary data include both quantitative and qualitative data (Section 5.4), and they are used principally in both descriptive and explanatory research. The data you use may be raw data, where there has been little if any processing, or compiled data that have received some form of selection or summarising (Kervin, 1999). Within business and management research such data are used most frequently as part of a case study or survey research strategy. However, there is no reason not to include secondary data in other research strategies, including archival research, action research and experimental research.

Different researchers (for example, Bryman, 1989; Dale et al., 1988; Hakim, 1982, 2000; Robson, 2002) have generated a variety of classifications for secondary data. These classifications do not, however, capture the full variety of data. We have therefore built on their ideas to create three main subgroups of secondary data: documentary data, survey-based data, and those compiled from multiple sources (Figure 8.1).

Documentary secondary data

Documentary secondary data are often used in research projects that also use primary data collection methods. However, you can also use them on their own or with other sources of secondary data, for example for business history research within an archival research strategy (Box 5.6). Documentary secondary data include written materials such as notices, correspondence, minutes of meetings, reports to shareholders, diaries, transcripts of speeches and administrative and public records (Box 8.1). Written documents can also include books, journal and magazine articles and newspapers. These can be important raw data sources in their own right, as well as a storage medium for compiled data. You could use written documents to provide qualitative data such as managers’ espoused reasons for decisions. They could also be used to generate statistical measures such as data on absenteeism and profitability derived from company records (Bryman, 1989).

Documentary secondary data also include non-written materials (Figure 8.2) such as voice and video recordings, pictures, drawings, films and television programmes (Robson, 2002), DVDs (digital versatile disks) and CD-ROMs as well as organisations’ databases. These data can be analysed both quantitatively and qualitatively. In addition, they can be used to help to triangulate findings based on other data such as written documents and primary data collected through observation, interviews or questionnaires (Chapters 9, 10 and 11).

For your research project the documentary sources you have available will depend on whether you have been granted access to an organisation’s records as well as on your success in locating library, data archive and commercial sources (Section 8.3). Access to
an organisation’s data will be dependent on gatekeepers within that organisation (Section 6.3). In our experience, those research projects that make use of documentary secondary data often do so as part of a within-company action research project or a case study of a particular organisation.

Survey-based secondary data

Survey-based secondary data refers to data collected using a survey strategy, usually by questionnaires (Chapter 11) that have already been analysed for their original purpose. Such data normally refer to organisations, people or households. They are made available as compiled data tables or, increasingly frequently, as a downloadable matrix of raw data (Section 12.2) for secondary analysis.

Survey-based secondary data will have been collected through one of three distinct subtypes of survey strategy: censuses, continuous/regular surveys or ad hoc surveys (Figure 8.1). Censuses are usually carried out by governments and are unique because, unlike surveys, participation is obligatory (Hakim, 2000). Consequently, they provide very good coverage of the population surveyed. They include censuses of population, which have been carried out in many countries since the 18th century and in the UK since 1801 (Office for National Statistics, 2001), and other surveys such as the UK Annual Survey of Hours and Earnings. Published tabulations are available via the Internet for more recent UK censuses, but it is now also possible to obtain the raw data 100 years after census via the Internet (see Table 8.3 on page 258). In contrast, the UK Annual Survey of
BOX 8.1 WORKED EXAMPLE

Using documentary secondary data

Sasha was interested in how her work placement organisation dealt with complaints by customers. Her mentor within the organisation arranged for her to have access to the paper-based files containing customers’ letters of complaint and the replies sent by the organisation’s customer relations team (written documentary secondary data). Reading through the customer’s letters, Sasha soon realised that many of these customers wrote to complain because they had not received a satisfactory response when they had complained earlier by telephone. She therefore asked her mentor if records were kept of complaints made by customers by telephone. Her mentor said that summary details of all telephone conversations by the customer relations team, including complaints, were kept in their database (written documentary secondary data) and offered to find out precisely what data were held. Her mentor was, however, doubtful as to whether these data would be as detailed as the customers’ letters.

On receiving details of the data held in the customer relations database, Sasha realised that the next stage would be to match the complaints data from the paper-based files with telephone complaints data. The latter, she hoped, would enable her to obtain a complete list of all complaints and set the written complaints in context of all complaints received by the organisation.
organisation within the context of its industry group or division using the Census of Employment. Aggregated results of the Census of Employment can be found in Labour Market Trends as well as via the UK government’s official statistics information gateway national statistics. Alternatively, you might explore issues already highlighted by data from an organisation survey through in-depth interviews.

Survey secondary data may be available in sufficient detail to provide the main data set from which to answer your research question(s) and to meet your objectives. Alternatively, they may be the only way in which you can obtain the required data. If your research question is concerned with national variations in consumer spending it is unlikely that you will be able to collect sufficient data. You will therefore need to rely on secondary data such as those contained in Family Spending (formerly the Family Expenditure Survey; Gibbins, 2005). This reports findings from the Expenditure and Foods Survey. For some research questions and objectives suitable data will be available in published form. For others, you may need more disaggregated data. This may be available via the Internet (Section 3.4), on CD-ROM, or from archives (Section 8.3). We have found that for most business and management research involving secondary data you are unlikely to find all the data you require from one source. Rather, your research project is likely to involve detective work in which you build your own multiple-source data set using different data items from a variety of secondary data sources and perhaps linking these to primary data you have collected yourself (Box 8.2). Like all detective work, finding data that help to answer a research question or meet an objective is immensely satisfying.

Ad hoc surveys are usually one-off surveys and are far more specific in their subject matter. They include data from questionnaires that have been undertaken by independent researchers as well as interviews undertaken by organisations and governments. Because of their ad hoc nature, you will probably find it more difficult to discover relevant surveys. However, it may be that an organisation in which you are undertaking research has conducted its own questionnaire, on an issue related to your research. Some organisations will provide you with a report containing aggregated data; others may be willing to let you reanalyse the raw data from this ad hoc survey. Alternatively, you may be able to gain access to and use raw data from an ad hoc survey that has been deposited in an archive (Section 8.3).

Multiple-source secondary data

Multiple-source secondary data can be based entirely on documentary or on survey secondary data, or can be an amalgam of the two. The key factor is that different data sets have been combined to form another data set prior to your accessing the data. One of the more common types of multiple-source data that you are likely to come across in document form is various compilations of company information such as Europe’s 15,000 Largest Companies (ELC International, 2006). This contains comparable data on the top 15,000 European companies ranked by sales, profits and number of employees as well as alphabetical listings. Other multiple-source secondary data include the various shares price listings for different stock markets in the financial pages of quality newspapers. These are available in most university libraries, including back copies on microfilm or CD-ROM. However, you need to beware of relying on CD-ROM copies for tabular data or diagrams as some still contain only the text of articles.

The way in which a multiple-source data set has been compiled will dictate the sorts of research question(s) or objectives with which you can use it. One method of compilation is to extract and combine selected comparable variables from a number of surveys
or from the same survey that has been repeated a number of times to provide a time series of data. For many undergraduate and taught masters courses’ research projects, this is one of the few ways in which you will be able to get data over a long period to undertake a longitudinal study. Other ways of obtaining time-series data are to use a series of company documents such as appointment letters or public and administrative records to create your own longitudinal secondary data set. Examples include the UK Employment Department’s stoppages at work data held by the Data Archive based at the University of Essex and those derived by researchers from 19th-century population census returns, which, in the UK, are accessible to the public after 100 years.

Data can also be compiled for the same population over time using a series of ‘snapshots’ to form cohort studies. Such studies are relatively rare, owing to the difficulty of maintaining contact with members of the cohort from year to year. An example is the television series Seven Up (already mentioned in Section 5.5), which has followed a cohort since they were schoolchildren at seven-year intervals for over 40 years.

Secondary data from different sources can also be combined, if they have the same geographical basis, to form area-based data sets (Hakim, 2000). Such data sets usually draw together quantifiable information and statistics, and are commonly produced by

BOX 8.2 FOCUS ON MANAGEMENT RESEARCH

Combining secondary and primary data

Supplier branded products sold by major supermarkets have, in recent years, faced increased competition from supermarkets’ own brands. One consequence of this has been that ostensibly similar products often sell at very different prices. Research by Davies and Brito (2004) published in the *European Journal of Marketing* sought to answer the question ‘why?’ using the concept of value systems.

Davies and Brito selected five product types for their research: washing-up liquids, cornflakes, margarine, mayonnaise, and cream crackers. Data were then gathered on the cost structure of the various supply chains for each product type. Selling prices were obtained at each stage in the value system: retail selling prices to customers for individual retailers were obtained from secondary data held by two market research companies. These were combined with primary data on purchase prices of retailers from manufacturers, obtained from interviews with managers working for both the retailers and their suppliers.

Data on raw materials were derived from each product’s ‘ingredients’. These secondary data were obtained from a variety of sources, including manufacturers, retailers (in the case of own brands) and from the declared list of ingredients. Costs of these raw materials were then obtained from the manufacturers and their suppliers. When combined with estimates of manufacturing costs, based on details of the manufacturing processes obtained from manufacturers and university departments, Davies and Brito were able to calculate the raw material cost per tonne of finished product. They verified all these data by checking each statistic with at least one other source.

Based on their analyses of these secondary and primary data Davies and Brito concluded that the main reason for differences in selling prices between supplier branded products and supermarkets’ own brands was the internal costs (such as research and development) of individual value system members (for example, manufacturers and retailers). In particular, the internal costs of brand manufacturers were found to be the main source of their products’ price differences when compared with supermarkets’ own brands. The only product type where the price differential between the branded good and the supermarkets’ own brand could be justified in terms of quality was washing-up liquid.
governments for their country. Area-based multiple-source data sets are usually available in published form for the countries and their component standard economic planning regions. The more widely used by our students include the UK’s *Annual Abstract of Statistics* (Penny, 2005), *Europe in figures: Eurostat yearbook 2005* (Eurostat, 2005a) and the journal *Labour Market Trends*. Area-based multiple-source data sets are also available from data archives. These include data such as the Labour Force Survey (UK Data Archive, 2006) and Eurostat’s statistical data collections for member countries (Eurostat, 2005b).

8.3 Locating secondary data

Unless you are approaching your research project with the intention of analysing one specific secondary data set that you already know well, your first step will be to ascertain whether the data you need are available. Your research question(s), objectives and the literature you have reviewed will guide this. For many research projects you are likely to be unsure as to whether the data you require are available as secondary data. Fortunately, there are a number of pointers to the sorts of data that are likely to be available.

The breadth of data discussed in the previous sections serves only to emphasise the variety of possible locations in which such data may be found. Finding relevant secondary data requires detective work, which has two interlinked stages:

1. establishing that the sort of data you require are likely to be available as secondary data;
2. locating the precise data you require.

The availability of secondary data

There are a number of clues to whether the secondary data you require are likely to be available. As part of your literature review you will have already read books and journal articles on your chosen topic. Where these have made use of secondary data, they will provide you with an idea of the sort of data that are available. In addition, these books and articles should contain full references to the sources of the data. Where these refer to published secondary data such as multiple-source or survey reports it is usually relatively easy to track down the original source. Quality national newspapers are also often a good source as they often report summary findings of recent government reports (Box 8.3). Your tutors have probably already suggested that you read a quality national newspaper on a regular basis, advice we would fully endorse as it is an excellent way of keeping up to date with recent events in the business world.

References for unpublished and documentary secondary data are often less specific, referring to ‘unpublished survey results’ or an ‘in-house company survey’. Although these may be insufficient to locate or access the actual secondary data, they still provide useful clues about the sort of data that might be found within organisations and which might prove useful. Subject-specific textbooks such as Curran and Blackburn’s (2001) *Researching the Small Enterprise* can provide a clear indication of the secondary sources available in your research area, in this instance small enterprises. Other textbooks, such as Kingsbury’s (1997) *IT Answers to HR Questions*, can provide you with valuable clues about the sort of documentary secondary data that are likely to exist within organisations’ management information systems.

Tertiary literature such as indexes and catalogues can also help you to locate secondary data (Sections 3.2–3.4). Data archive catalogue, such as for the UK Data Archive at the
University of Essex, may prove a useful source of the sorts of secondary data available. This archive holds the UK’s largest collection of qualitative and quantitative digital social science and humanities data sets for use by the research community (UK Data Archive, 2006). These data have been acquired from academic, commercial and government sources, and relate mainly to post-war Britain. The complete catalogue of these can be accessed and searched via the Internet (Section 3.5) through the Archive’s home page (see Table 8.2 on page 257). However, it should be remembered that the supply of data and documentation for all of the UK Data Archive’s data sets is charged at cost, and there may be additional administrative and royalty charges.

More recently, online indexes and catalogues have become available with direct linkages to downloadable files, often in spreadsheet format. Government websites such as the UK Government’s Directgov and the European Union’s Europa provide useful gateways to a wide range of statistical data, reports and legislative documents. However, although data from such government sources are usually of good quality, those from other sources are not.

There are numerous other data archives in Europe and the USA. The UK Data Archive can provide access to international data through cooperative agreements and memberships of data archives throughout the world. It also provides a useful gateway to other data archives’ websites such as the Danish Data Archive, DDA, and the Dutch Data Archive, Steinmetz (UK Data Archive, 2006).
may be neither valid nor reliable. It is therefore important that you evaluate the suitability of such secondary data for your research (Section 8.5).

Informal discussions are also often a useful source. Acknowledged experts, colleagues, librarians or your project tutor may well have knowledge of the sorts of data that might be available. In addition, there is a range of published guides to secondary data sources. Those business and management guides that we, and our students, have found most useful are outlined in Table 8.1. However, there are also guides that provide more detail on sources for specific subject areas such as marketing and finance.

Finding secondary data

Once you have ascertained that secondary data are likely to exist, you need to find their precise location. For secondary data published by governments this will be quite easy. Precise references are often given in published guides (Table 8.1) and, where other researchers have made use of them, a full reference should exist. Locating published secondary data that are likely to be held by libraries or secondary data held in archives is relatively straightforward (Box 8.4). Specialist libraries with specific subject collections such as market research reports can usually be located using the Library Association’s (2005) publication or guides by Dale (2004) and McKenzie (2003) (Table 8.1). If you are unsure where to start, confess your ignorance and ask a librarian. This will usually result in a great deal of helpful advice, as well as saving you time. Once the appropriate abstracting tool or catalogue has been located and its use demonstrated, it can be searched using similar techniques to those employed in your literature search (Section 3.5).

Data that are held by organisations are more difficult to locate. For within-organisation data we have found that the information or data manager within the appropriate

<table>
<thead>
<tr>
<th>Table 8.1 Published guides to possible secondary data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guide</td>
</tr>
<tr>
<td>Patzer, G.L. (1996) Using Secondary Data in Marketing Research: United States and World-wide, Westport, CT, Quorum Books</td>
</tr>
</tbody>
</table>
Establishing that the secondary data you require are available

Dunkerley (1988) undertook a three-year historical research project on the naval dockyard in the Devonport area of the city of Plymouth, UK. The proposed research strategy used interviews with dockyard workers as well as secondary data sources, including:

- enumerators’ books for population censuses from 1851;
- records relating to dockyard employment, labour relations and skills;
- Admiralty and Treasury papers;
- Poor Law records;
- a sample of local newspapers.

Initially it had been assumed that these secondary data would be readily available. Unfortunately, much of the secondary data that it had been assumed were available locally had been destroyed during enemy action in the Second World War. In addition, data that still existed had been obscurely catalogued in the Public Records Office at Kew, London. This made these data difficult to find.

Although copies of enumerators’ books for the population censuses were available locally, the use of census material ‘proved more difficult than had been imagined’ (Dunkerley, 1988:86). Data collected differed between successive censuses. In addition, the 100-year confidentiality rule meant that the enumerators’ books were not available for more recent censuses.

Because of these and other problems, a rethink of the aims and methods of the research was undertaken prior to proceeding further.
tation that describes how the data were collected. This evaluation process is discussed in Section 8.5.

Table 8.2 Selected information gateways to secondary data on the Internet

<table>
<thead>
<tr>
<th>Name</th>
<th>Internet address</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biz/ed</td>
<td>http://www.bized.ac.uk</td>
<td>Gateway for primary and secondary business and management information. UK focus</td>
</tr>
<tr>
<td>Directgov</td>
<td>http://www.direct.gov.uk/</td>
<td>UK government information service with links to government departments, official statistics, etc.</td>
</tr>
<tr>
<td>Europa</td>
<td>http://europa.eu.int</td>
<td>Information (including press releases, legislation, fact sheets) published by European Union. Links include Eurostat statistics information gateway</td>
</tr>
<tr>
<td>RBA Information Services</td>
<td>http://www.rba.co.uk/</td>
<td>Business information gateway with links to business, statistical, government and country sites</td>
</tr>
<tr>
<td>SOSIG</td>
<td>http://www.sosig.ac.uk</td>
<td>Evaluates and describes social science sites including those with statistical data. UK focus</td>
</tr>
<tr>
<td>UK Data Archive</td>
<td>http://www.data-archive.ac.uk</td>
<td>Collection of UK digital data in the social science and humanities fields. Links to data archives worldwide</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>http://www.lib.umich.edu/govdocs/</td>
<td>Although predominantly American in focus, has excellent annotated links to international agencies, non-American governments’ websites and their statistical agencies</td>
</tr>
</tbody>
</table>

8.4 Advantages and disadvantages of secondary data

Advantages

May have fewer resource requirements

For many research questions and objectives the main advantage of using secondary data is the enormous saving in resources, in particular your time and money (Ghauri and
Table 8.3 Selected secondary data sites on the Internet

<table>
<thead>
<tr>
<th>Name</th>
<th>Internet address</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and Social Data Service (ESDS)</td>
<td>http://www.esds.ac.uk</td>
<td>Access to and support for economic and social data, both quantitative and qualitative for both the UK and other countries</td>
</tr>
<tr>
<td>FT Info</td>
<td>http://news.ft.com/</td>
<td>Company information on 11 000 companies, including financial performance</td>
</tr>
<tr>
<td>Global Market Information Database</td>
<td>http://www.gmid.euromonitor.com</td>
<td>Produced by Euromonitor. Key business intelligence on countries, companies, markets, and consumers</td>
</tr>
<tr>
<td>Hemscott</td>
<td>http://www.hemscott.net</td>
<td>Hemmington Scott’s guide to companies and investment trusts, report service and market activity analysis</td>
</tr>
<tr>
<td>Hoover’s Online</td>
<td>http://www.hoovers.com</td>
<td>Company information on 12 000 US and international companies</td>
</tr>
<tr>
<td>MiMAS</td>
<td>http://www.mimas.ac.uk</td>
<td>National data centre for UK higher education institutions providing access to key data such as UK census. NB: For some data sets you will need to register through your university</td>
</tr>
<tr>
<td>Countries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Union</td>
<td>http://europa.eu.int/comm/eurostat/</td>
<td>Site of European Union’s statistical information service. This site is available in English as well as other languages</td>
</tr>
<tr>
<td>France</td>
<td>http://www.insee.fr</td>
<td>Site of France’s National Institute for Statistics including both statistics and government publications. Much of this website is available in English</td>
</tr>
<tr>
<td>Germany</td>
<td>http://www.destatis.de</td>
<td>Site of Germany’s Federal Statistical Office with a number of useful links. Much of this website is available in English</td>
</tr>
<tr>
<td>Ireland (Eire)</td>
<td>http://www.cso.ie</td>
<td>Site of the Irish Central Statistical Office (CSO), the government body responsible for compiling Irish official statistics</td>
</tr>
<tr>
<td>Netherlands</td>
<td>http://www.cbs.nl</td>
<td>Site of Holland’s Central Bureau of Statistics (CBS). Much of this website is available in English. Provides access to StatLine, which contains statistical data that can be downloaded free of charge</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>http://www.statistics.gov.uk</td>
<td>The official UK statistics site containing official UK statistics and information about statistics, which can be accessed and downloaded free of charge</td>
</tr>
<tr>
<td>Organisations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advertising Association</td>
<td>http://www.adassoc.org.uk</td>
<td></td>
</tr>
<tr>
<td>Advertising Standards Authority</td>
<td>http://www.asa.org.uk</td>
<td></td>
</tr>
<tr>
<td>Advisory, Conciliation and Arbitration Service</td>
<td>http://www.acas.org.uk</td>
<td></td>
</tr>
<tr>
<td>American Marketing Association</td>
<td>http://www.marketingpower.com</td>
<td></td>
</tr>
<tr>
<td>Association of Chartered Certified Accountants</td>
<td>http://www.accaglobal.com</td>
<td></td>
</tr>
<tr>
<td>British Market Research Association</td>
<td>http://www.bmra.org.uk</td>
<td></td>
</tr>
<tr>
<td>Chartered Institute of Management Accountants</td>
<td>http://www.cimaglobal.com</td>
<td></td>
</tr>
<tr>
<td>Chartered Institute of Marketing (CIM)</td>
<td>http://www.cirm.co.uk</td>
<td></td>
</tr>
<tr>
<td>Chartered Institute of Personnel and Development</td>
<td>http://www.cipd.co.uk</td>
<td></td>
</tr>
<tr>
<td>Chartered Management Institute</td>
<td>http://www.managers.org.uk</td>
<td></td>
</tr>
<tr>
<td>Confederation of British Industry (CBI)</td>
<td>http://www.cbi.org.uk</td>
<td></td>
</tr>
<tr>
<td>Department of Trade and Industry (UK)</td>
<td>http://www.dti.gov.uk</td>
<td></td>
</tr>
<tr>
<td>Institute of Directors</td>
<td>http://www.iocd.com</td>
<td></td>
</tr>
<tr>
<td>Institute of Financial Services</td>
<td>http://www.ifislearning.com</td>
<td></td>
</tr>
<tr>
<td>Institute of Practitioners in Advertising (IPA)</td>
<td>http://www.ipa.co.uk</td>
<td></td>
</tr>
<tr>
<td>KPMG UK</td>
<td>http://www.kpmg.co.uk</td>
<td></td>
</tr>
<tr>
<td>London Stock Exchange</td>
<td>http://www.londonstockexchange.com</td>
<td></td>
</tr>
<tr>
<td>Organisation for Economic Cooperation and Development (OECD)</td>
<td>http://www.oecd.org</td>
<td></td>
</tr>
<tr>
<td>Public Record Office (UK)</td>
<td>http://www.nationalarchives.gov.uk</td>
<td></td>
</tr>
<tr>
<td>Trades Union Congress (TUC)</td>
<td>http://www.tuc.org.uk</td>
<td></td>
</tr>
<tr>
<td>United Nations (UN)</td>
<td>http://www.un.org</td>
<td></td>
</tr>
</tbody>
</table>
Grønhaug, 2005). In general, it is much less expensive to use secondary data than to collect the data yourself. Consequently, you may be able to analyse far larger data sets such as those collected by government surveys. You will also have more time to think about theoretical aims and substantive issues, as your data will already be collected, and subsequently you will be able to spend more time and effort analysing and interpreting the data.

Unobtrusive

If you need your data quickly, secondary data may be the only viable alternative. In addition, they are likely to be higher-quality data than could be obtained by collecting your own (Stewart and Kamins, 1993). Using secondary data within organisations may also have the advantage that, because they have already been collected, they provide an unobtrusive measure. Cowton (1998) refers to this advantage as *eavesdropping*, emphasising its benefits for sensitive situations.

Longitudinal studies may be feasible

For many research projects time constraints mean that secondary data provide the only possibility of undertaking longitudinal studies. This is possible either by creating your own or by using an existing multiple-source data set (Section 8.2). Comparative research may also be possible if comparable data are available. You may find this to be of particular use for research questions and objectives that require regional or international comparisons. However, you need to ensure that the data you are comparing were collected and recorded using methods that are comparable. Comparisons relying on unpublished data or data that are currently unavailable in that format, such as the creation of new tables from existing census data, are likely to be expensive, as such tabulations will have to be specially prepared. In addition, your research is dependent on access being granted by the owners of the data, principally governments (Dale et al., 1988), although this appears to becoming easier as more data is made available via the Internet. In addition, many countries are enshrining increased rights of access to information held by public authorities through freedom of information legislation such as the UK’s Freedom of Information Act 2005. This gives you a general right to access to recorded information held by public authorities, although a charge may be payable (Information Commissioner’s Office, 2005). However, this is dependent upon your request not being contrary to relevant data protection legislation or agreements (Chapter 6.4).

Can provide comparative and contextual data

Often it can be useful to compare data that you have collected with secondary data. This means that you can place your own findings within a more general context or, alternatively, triangulate your findings (Section 5.3). If you have undertaken a sample survey, perhaps of potential customers, secondary data such as the Census can be used to assess the generalisability of findings, in other words how representative these data are of the total population (Section 7.2).

Can result in unforeseen discoveries

Reanalysing secondary data can also lead to unforeseen or unexpected new discoveries. Dale et al. (1988) cite establishing the link between smoking and lung cancer as an example of such a serendipitous discovery. In this example the link was established through secondary analysis of medical records that had not been collected with the intention of exploring any such relationship.
Permanence of data

Unlike data that you collect yourself, secondary data generally provide a source of data that is both permanent and available in a form that may be checked relatively easily by others (Denscombe, 1998). This means that the data and your research findings are more open to public scrutiny.

Disadvantages

May be collected for a purpose that does not match your need

Data that you collect yourself will be collected with a specific purpose in mind: to answer your research question(s) and to meet your objectives. Unfortunately, secondary data will have been collected for a specific purpose that differs from your research question(s) or objectives (Denscombe, 1998). Consequently, the data you are considering may be inappropriate to your research question. If this is the case then you need to find an alternative source, or collect the data yourself! More probably, you will be able to answer your research question or address your objective only partially. Common reasons for this include the data being collected a few years earlier and so not being current, or the methods of collection differing between the original data sources which have been amalgamated subsequently to form the secondary data set you intend to use (Box 8.5). Where the data are non-current and you have access to primary data, such as in a research project that is examining an issue within an organisation, you are likely to have to combine secondary and primary data.

BOX 8.5 FOCUS ON MANAGEMENT RESEARCH

Making international comparisons

An article in *Labour Market Trends* (Davies, 2001) outlines the differences in definitions and coverage of labour dispute statistics for the 23 Organisation for Economic Cooperation and Development (OECD) countries. In this article, Davies argues that international comparisons need to be made with care and that apparent differences between countries may not be significant when the method of data collection and the coverage of the data are taken into account. The differences she highlights in her article’s technical note are outlined for selected countries in the table below:

<table>
<thead>
<tr>
<th>Country</th>
<th>How data collected</th>
<th>Threshold for inclusion</th>
<th>Sectors/types of dispute excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>From Industrial Relations Department, employers, trades unions and newspapers</td>
<td>10 workdays not worked</td>
<td>None mentioned</td>
</tr>
<tr>
<td>Belgium</td>
<td>Questionnaires to employers following police or media coverage</td>
<td>None</td>
<td>Public sector stoppages, indirectly affected workers</td>
</tr>
<tr>
<td>France</td>
<td>From labour inspectors’ reports</td>
<td>1 workday not worked</td>
<td>None mentioned</td>
</tr>
</tbody>
</table>
ADVANTAGES AND DISADVANTAGES OF SECONDARY DATA

<table>
<thead>
<tr>
<th>Country</th>
<th>How data collected</th>
<th>Threshold for inclusion</th>
<th>Sectors/types of dispute excluded</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Compulsory notification by employers to local employment offices. Pre-1993 data</td>
<td>10 workers involved and of 1 day duration unless 100 workdays not worked</td>
<td>Public administration, indirectly affected workers</td>
</tr>
<tr>
<td></td>
<td>represents West Germany only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Not known</td>
<td>None</td>
<td>Indirectly affected workers</td>
</tr>
<tr>
<td>Japan</td>
<td>Legal requirement to report to Labour Commission</td>
<td>¼ day duration</td>
<td>Unofficial disputes, indirectly affected workers</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Questionnaires to employers following a strike report news item</td>
<td>None</td>
<td>None mentioned</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Initially from press reports, then contacts with employers and trades unions directly</td>
<td>10 workers involved and of 1 day duration unless 100 workdays not worked</td>
<td>Political stoppages</td>
</tr>
<tr>
<td>United States</td>
<td>Reports from newspapers, employers, trades unions and agencies</td>
<td>1 day or 1 shift duration and 1000 workers involved</td>
<td>Political stoppages</td>
</tr>
</tbody>
</table>

Based upon such differences, direct comparisons are in some instances not possible. For example, although some countries, including Germany, Italy and Japan, exclude workers indirectly affected by stoppages (that is, those who are unable to work because others at their workplace are on strike), others such as the UK, France, Belgium and the Netherlands include these workers in their statistics. Consequently, even though a country such as Germany has a similar threshold for inclusion, the recorded number of workers involved in any one stoppage is likely to be lower than in the UK.

Davies highlights the fact that, although the article covers data for a 10-year period, there have been changes in the way the statistics have been collected and calculated and in their coverage over time. For example, prior to 1993, data for Germany covered only West Germany as opposed to the Federal Republic. In addition, she warns readers to be careful when comparing data in her article with that reported in earlier articles, as data on ‘working days lost’ or ‘employment’ are often revised, resulting in significant changes.

Access may be difficult or costly

Where data have been collected for commercial reasons, gaining access may be difficult or costly. Market research reports, such as those produced by Mintel or KeyNote, may cost a great deal. If the report(s) that you require are not available in your library, they can rarely be accessed free of charge via the Internet or borrowed on inter-library loan and you will need to identify (Section 8.3) and visit the library that holds that collection.

Aggregations and definitions may be unsuitable

The fact that secondary data were collected for a particular purpose may result in other, including ethical (Section 6.4), problems. Much of the secondary data you use is likely to
be in published reports. As part of the compilation, process data will have been aggregated in some way. These aggregations, while meeting the requirements of the original research, may not be quite so suitable for your research (Box 8.6). The definitions of data variables may not be the most appropriate for your research question(s) or objectives. In addition, where you are intending to combine data sets, definitions may differ markedly or have been revised over time. Alternatively, the documents you are using may represent the interpretations of those who produced them, rather than offer an objective picture of reality.

BOX 8.6 WORKED EXAMPLE

Changing definitions

As part of his research, Jeremy wished to use longitudinal data on the numbers of males and females disaggregated by some form of social grouping. Using the UK government’s national statistics website (Table 8.3), he quickly found and downloaded data which classified males and females using the National Statistics Socio-economic Classification (NS-SEC). However, this classification appeared to have been used only from 2001. Prior to this date, two separate classifications had been used: social class (SC) and socio-economic group (SEG), for which much longer time series of data were available. Before arranging an appointment with his project tutor to discuss this potential problem, Jeremy made a note of the two classifications:

<table>
<thead>
<tr>
<th>NS-SEC</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Higher managerial and professional occupations</td>
<td>I Professional</td>
</tr>
<tr>
<td>2 Lower managerial and professional occupations</td>
<td>II Managerial and technical</td>
</tr>
<tr>
<td>3 Intermediate occupations</td>
<td>Ila Skilled non-manual</td>
</tr>
<tr>
<td>4 Small employers and own account workers</td>
<td>IIb Skilled manual</td>
</tr>
<tr>
<td>5 Lower supervisory and technical occupations</td>
<td>IV Semi-skilled</td>
</tr>
<tr>
<td>6 Semi-routine occupations</td>
<td>V Unskilled</td>
</tr>
<tr>
<td>7 Routine occupations</td>
<td></td>
</tr>
</tbody>
</table>

During their meeting later that week, Jeremy’s tutor referred him to research on the NS-SEC which compared this with the old measures of SC and SEG and made suggestions regarding the continuity of the measures. Jeremy noted down the reference:

No real control over data quality

Although many of the secondary data sets available from governments and data archives are of higher quality than you could ever collect yourself, this is not always the case. For this reason care must be taken and data sources must be evaluated carefully, as outlined in Section 8.5.

Initial purpose may affect how data are presented

When using data that are presented as part of a report you also need to be aware of the purpose of that report and the impact that this will have on the way the data are presented. This is especially so for internal organisational documents and external documents such as published company reports and newspaper reports. Reichman (1962;
cited by Stewart and Kamins, 1993) emphasises this point referring to newspapers, although the sentiments apply to many documents. He argues that newspapers select what they consider to be the most significant points and emphasise these at the expense of supporting data. This, Reichman states, is not a criticism as the purpose of the reporting is to bring these points to the attention of readers rather than to provide a full and detailed account. However, if we generalise from these ideas, we can see that the culture, predispositions and ideals of those who originally collected and collated the secondary data will have influenced the nature of these data at least to some extent. For these reasons you must evaluate carefully any secondary data you intend to use. Possible ways of doing this are discussed in the next section.

8.5 Evaluating secondary data sources

Secondary data must be viewed with the same caution as any primary data that you collect. You need to be sure that:

- they will enable you to answer your research question(s) and to meet your objectives;
- the benefits associated with their use will be greater than the costs;
- you will be allowed access to the data (Section 6.3).

Secondary sources that appear relevant at first may not on closer examination be appropriate to your research question(s) or objectives. It is therefore important to evaluate the suitability of secondary data sources for your research.

Stewart and Kamins (1993) argue that, if you are using secondary data, you are at an advantage compared with researchers using primary data. Because the data already exist you can evaluate them prior to use. The time you spend evaluating any potential secondary data source is time well spent, as rejecting unsuitable data earlier can save much wasted time later! Such investigations are even more important when you have a number of possible secondary data sources you could use. Most authors suggest a range of validity and reliability (Section 5.6) criteria against which you can evaluate potential secondary data. These, we believe, can be incorporated into a three-stage process (Figure 8.2).

Alongside this process you need also to consider the accessibility of the secondary data. For some secondary data sources, in particular those available via the Internet or in your library, this will not be a problem. It may, however, still necessitate long hours working in the library if the sources are ‘for reference only’. For other data sources, such as those within organisations, you need to obtain permission prior to gaining access. This will be necessary even if you are working for the organisation. These issues are discussed in Section 6.3, so we can now consider the evaluation process in more detail.

Overall suitability

Measurement validity

One of the most important criteria for the suitability of any data set is measurement validity. Secondary data that fail to provide you with the information that you need to answer your research question(s) or meet your objectives will result in invalid answers (Kervin, 1999). Often when you are using secondary survey data you will find that the measures used do not quite match those that you need (Jacob, 1994). For example, a manufacturing organisation may record monthly sales whereas you are interested in
monthly orders. This may cause you a problem when you undertake your analyses believing that you have found a relationship with sales whereas in fact your relationship is with the number of orders. Alternatively, you may be using minutes of company meetings as a proxy for what actually happened in those meetings. These are likely to reflect a particular interpretation of what happened, the events being recorded from a particular viewpoint, often the chairperson’s. You therefore need to be cautious before accepting such records at face value (Denscombe, 1998).

Unfortunately, there are no clear solutions to problems of measurement invalidity. All you can do is try to evaluate the extent of the data’s validity and make your own decision. A common way of doing this is to examine how other researchers have coped with this problem for a similar secondary data set in a similar context. If they found that the measures, while not exact, were suitable then you can be more certain that they will be suitable for your research question(s) and objectives. If they had problems then you may be able to incorporate their suggestions as to how to overcome them. Your literature search (Sections 3.4 and 3.5) will probably have identified other such studies already.

Coverage and unmeasured variables

The other important suitability criterion is **coverage**. You need to be sure that the secondary data cover the population about which you need data, for the time period you need, and contain data variables that will enable you to answer your research question(s) and to meet your objectives. For all secondary data sets coverage will be concerned with two issues:

- ensuring that unwanted data are or can be excluded;
- ensuring that sufficient data remain for analyses to be undertaken once unwanted data have been excluded (Hakim, 2000).
When analysing secondary survey data you will need to exclude those data that are not relevant to your research question(s) or objectives. Service companies, for example, need to be excluded if you are concerned only with manufacturing companies. However, in doing this it may be that insufficient data remain for you to undertake the quantitative analyses you require (Sections 12.4 and 12.5). For documentary sources you will need to ensure that the data contained relate to the population identified in your research. For example, check that the minutes are of board meetings and that they cover the required time period. Where you are intending to undertake a longitudinal study, you also need to ensure that the data are available for the entire period in which you are interested.

Some secondary data sets, in particular those collected using a survey strategy, may not include variables you have identified as necessary for your analysis. These are termed unmeasured variables. Their absence may not be particularly important if you are undertaking descriptive research. However, it could drastically affect the outcome of explanatory research as a potentially important variable has been excluded.

Precise suitability

Reliability and validity
The reliability and validity (Section 5.6) you ascribe to secondary data are functions of the method by which the data were collected and the source. You can make a quick assessment of these by looking at the source of the data. Dochartaigh (2002) and others refer to this as assessing the authority or reputation of the source. Survey data from large, well-known organisations such as those found in Mintel and Key Note market research reports are likely to be reliable and trustworthy. The continued existence of such organisations is dependent on the credibility of their data. Consequently, their procedures for collecting and compiling the data are likely to be well thought through and accurate. Survey data from government organisations are also likely to be reliable, although they may not always be perceived as such (Box 8.7). However, you will probably find the validity of documentary data such as organisations’ records more difficult to assess. While organisations may argue that their records are reliable, there are often inconsistencies and inaccuracies. You therefore need also to examine the method by which the data were collected and try to ascertain the precision needed by the original (primary) user.

Dochartaigh (2002) suggests a number of areas for initial assessment of the authority of documents available via the Internet. These, we believe, can be adapted to assess the authority of all types of secondary data. First, as suggested in the previous paragraph, it is important to discover the person or organisation responsible for the data and to be able to obtain additional information through which you can assess the reliability of the source. For data in printed publications this is usually reasonably straightforward (Section 3.6). However, for secondary data obtained via the Internet it may be more difficult. Although organisation names such as the ‘Center for Research into . . .’ or ‘Institute for the Study of . . .’ may appear initially to be credible, publication via the Internet is not controlled, and such names are sometimes used to suggest pseudo-academic credibility. Dochartaigh (2002) therefore suggests that you look also for a copyright statement and the existence of published documents relating to the data to help validation. The former of these, when it exists, can provide an indication of who is responsible for the data. The latter, he argues, reinforces the data’s authority, as printed publications are regarded as more reliable. In addition, Internet sources often contain an email address or other means of contacting the author for comments and questions about the Internet site and its contents (Dees, 2000). However, beware of applying these criteria too rigidly as
Gordon Brown announced this week that he would introduce legislation to make the Office for National Statistics independent. That is no small change. Analogies with the Bank of England are misleading; the last remotely comparable government body to have been given statutory independence was the National Audit Office more than 20 years ago. The ONS is as integral to the weft and weave of government as the NAO ever was, if not more so. The chancellor went further, saying that he would make the governance of official statistics the responsibility of this new, “wholly separate” ONS.

That word “governance” is crucial. While the ONS produces most of the key economic aggregates and a mass of other data, many politically explosive figures come out of Whitehall’s big battalions – crime statistics from the Home Office, hospital waiting lists from the health department and so on. Also, the administrations in Scotland, Wales and Northern Ireland increasingly run their own statistical shows.

Getting a grip on the governance of all these statistics is needed both for good management and to give the rest of us some reassurance that the whole statistical system is being developed in the public interest, not just on behalf of today’s departmental ministers. At present, no one is in overall charge. The chancellor now seems to have reached the welcome view that it is time this was put right. In doing so he will need not only to take a firm hand in Whitehall but also find a way of respecting the independence, and needs, of devolved administrations while ensuring that all parts of the UK co-operate in fields such as health statistics where comparable data are needed.

Somehow, Monday’s announcement managed to skirt the uncomfortable topic of trust, referring instead to “entrenching long-term stability”. But trust is what this is about. In the government’s view, our official statistics are at least as good as anybody else’s: it is just that they have become a political football. While the rest of us might have a few quibbles, there is some truth in this.

In February, the independent Statistics Commission published a report, Official Statistics: Perceptions and Trust. Two conclusions shone through. First, people who use the data – from businessmen to journalists and politicians – already have considerable regard for the ONS’s honesty and professionalism. Of course, statistics are complex and things sometimes go wrong. Yet no one doubted the values that underpin the work. But, second, there was huge cynicism about the use and abuse of statistics by government, both among the general public and those closer to policy. Only 17 per cent of the public thought figures were produced without political interference.

Statistics are now the currency of policymaking. This government, in particular, has embraced evidence-based decisions and target setting for public policy, so that progress can be monitored. But, if the currency is debased, then policies will not be rooted in reality. Trust in government, let alone statistics, will be compromised.

The commission was set up after political controversies during the previous government over, for example, unemployment statistics. It was something of an experiment, a non-statutory body, reporting to the Treasury and charged with recommending how National Statistics might develop. It has done good work, including proposals for legislation of the kind to which the chancellor is now committed, and recent reports on Managing the Quality of Official Statistics and a statistical assessment of public service agreement (or PSA) targets: things such as hospital waiting lists. The growth of the target culture puts a premium on data that are real and used sensibly.

The commission does not attempt to police political debate. Rather, it tackles concern that, as the use of statistics increases, so too does the scope to mislead rather than inform. In all the excitement about changes to the ONS, the value of this complementary audit and oversight role must not be ignored.

Indeed, it needs strengthening. It cannot remain dependent on individuals who come and go and could, therefore, be subject to political appointment. Rather, the commission should become, or be replaced by, a body whose authority and independence, like that of the new ONS, is rooted in statute and guaranteed by its ability to report directly to parliament. The small print of the chancellor’s announcement seems to point to such a change. But we must wait on the details and not let the opportunity slip past.

The writer, a founder member of the Statistics Commission, is just completing her term of office.

sometimes the most authoritative web pages do not include the information outlined above. Dochartaigh (2002) suggests that this is because those with most authority often feel the least need to proclaim it!

For all secondary data a detailed assessment of the validity and reliability will involve you in an assessment of the method or methods used to collect the data (Dale et al., 1988). These may be provided by hyperlinks for Internet-based data sets. Alternatively, they may be discussed in the methodology section of an associated report. Your assessment will involve looking at who were responsible for collecting or recording the information and examining the context in which the data were collected. From this you should gain some feeling regarding the likelihood of potential errors or biases. In addition, you need to look at the process by which the data were selected and collected or recorded. Where sampling has been used to select cases (usually for surveys) the sampling procedure adopted and the associated sampling error and response rates (Section 7.2) will give clues to validity. Secondary data collected through a survey with a high response rate are also likely to be more reliable than from that with a low response rate. However, commercial providers of high-quality, reliable data sets may be unwilling to disclose details about how data were collected. This is particularly the case where these organisations see the methodology as important to their competitive advantage.

For some documentary sources, such as diaries, transcripts of interviews or meetings, it is unlikely that there will be a formal methodology describing how the data were collected. The reliability of these data will therefore be difficult to assess, although you may be able to discover the context in which the data were collected. For example, letters and memos contain no formal obligation for the writer to give a full and accurate portrayal of events. Rather they are written from a personal point of view and expect the recipient to be aware of the context (Denscombe, 1998). This means that these data are more likely to be useful as a source of the writer’s perceptions and views than as an objective account of reality. The fact that you did not collect and were not present when these data were collected will also affect your analyses. Dale et al. (1988) argue that full analyses of in-depth interview data require an understanding derived from participating in social interactions that cannot be fully recorded on tape or by transcript.

The validity and reliability of collection methods for survey data will be easier to assess where you have a clear explanation of the techniques used to collect the data. This needs to include a clear explanation of any sampling techniques used and response rates (discussed earlier) as well as a copy of the survey instrument, which will usually be a questionnaire. By examining the questions by which data were collected, you will gain a further indication of the validity.

Where data have been compiled, as in a report, you need to pay careful attention to how these data were analysed and how the results are reported. Where percentages (or proportions) are used without actually giving the totals on which these figures are based, you need to examine the data very carefully. For example, a 50 per cent increase in the number of clients from two to three for a small company may be of less relevance than the 20 per cent increase in the number of clients from 1000 to 1200 for a larger company in the same market! Similarly, where quotations appear to be used selectively without other supporting evidence you should beware, as the data may be unreliable. Remember, the further away you are from the original data, the more difficult it will be to judge their quality (Patzer, 1996).

Measurement bias

Measurement bias can occur for two reasons (Kervin, 1999):
DELIBERATE OR INTENTIONAL DISTORTION OF DATA;

- Changes in the way data are collected.

Deliberate distortion occurs when data are recorded inaccurately on purpose, and is most common for secondary data sources such as organisational records. Managers may deliberately fail to record minor accidents to improve safety reports for their departments. Data that have been collected to further a particular cause or the interests of a particular group are more likely to be suspect as the purpose of the study may be to reach a predetermined conclusion (Jacob, 1994). Reports of consumer satisfaction surveys may deliberately play down negative comments to make the service appear better to their target audience of senior managers and shareholders, and graphs may deliberately be distorted to show an organisation in a more favourable light (Box 8.8).

BOX 8.8 FOCUS ON MANAGEMENT RESEARCH

Measurement distortion of graphs

Graphs are widely used in organisations’ annual reports to portray financial information, over time. Research by Beattie and Jones (2002) used an experimental strategy to establish the level of measurement distortion that was noticeable to graph readers. In their article published in the *Accounting, Auditing and Accountability Journal* they addressed the research question ‘What is the level of distortion that would trigger a change in the user’s perception of a company’s performance?’ (p. 553). Pairs of abstract bar charts presenting data for a five-year time series were shown in random order to undergraduate students for three seconds. Each pair consisted of a graph with no distortion and a graph with either 5, 10, 20, 30, 40 or 50 per cent distortion. Scale values were omitted from these graphs and all were coloured blue. The graphs looked similar to the pair below in which graph Y shows a 20 per cent distortion of graph X:

Other distortion may be deliberate but not intended for any advantage. Employees keeping time diaries may record only the approximate time spent on their main duties rather than accounting precisely for every minute. People responding to a structured interview (questionnaire) may adjust their responses to please the interviewer (Section 11.2).

Unfortunately, measurement bias resulting from deliberate distortion is difficult to detect. While we believe that you should adopt a neutral stance about the possibility of bias, you still need to look for pressures on the original source that might have biased the
Assessing the suitability of data available via the Internet

As part of a research project on changing consumer spending patterns in Europe, Jocelyn wished to establish how the cost of living had altered in the European Union since the accession of the 10 new Member States in 2004. Other research that she had read as part of her literature review had utilised the European Union’s Harmonized Index of Consumer Prices (HICPs). She therefore decided to see whether this information was available via the Internet from the European Union’s Europa information gateway. On accessing the Eurostat home page she noticed that there was a link to a report on ‘Harmonized Indices of Consumer Prices’ (see screen shot [Eurostat, 2005b]).

Jocelyn clicked on this link and downloaded the report (Mejer, 2005), saving it onto her USB mass storage device. The report contained the monthly HICPs for each of the 15 Member States between January 2003 and April 2004 and, in addition, for the 10 new Member States from May 2004. A brief look at these data suggested that it would be suitable in terms of coverage for her research. It also contained a link to the Eurostat (2004) publication: Harmonized Indices of Consumer Prices (HICPs): A short guide for users. She decided to download this publication to assess the precise suitability of these data.

Initial examination of this document to assess the data’s overall suitability revealed that the source was credible, having been compiled for the European Union using data collected in each of the Member States. She also discovered that the actual data collected were governed by a series of European Union regulations.

In order to be certain about the precise suitability of the HICPs, Jocelyn needed to find out exactly how the index had been calculated and how the data on which it was based had been collected. The Eurostat publication provided an overview of how the index was calculated, summarising the nature of goods and services that were included. The data for the HICPs were collected in each Member State using a combination of visits to local retailers and service providers and central collection (via mail, telephone, email and the Internet), over 1 million price observations being used each month! One potential problem was also highlighted: there was no uniform basket of goods and services applying to all Member States. Rather, the precise
nature of some goods and services included in the HICPs varied from country to country, reflecting the reality of expenditure in each of the countries. Jocelyn decided that this would not present too great a problem as she was going to use these data only to contextualise her research.

The Eurostat publication emphasised that the HICP was a price rather than a cost of living index. However, it also emphasised that, despite conceptual differences between price and the cost of living, there were unlikely to be substantial differences in practice. Jocelyn therefore decided to use the HICPs as a surrogate for the cost of living.

BOX 8.10 CHECKLIST

Evaluating your secondary data sources

Overall suitability
- Does the data set contain the information you require to answer your research question(s) and meet your objectives?
- Do the measures used match those you require?
- Is the data set a proxy for the data you really need?
- Does the data set cover the population that is the subject of your research?
- Does the data set cover the geographical area that is the subject of your research?
- Can data about the population that is the subject of your research be separated from unwanted data?
- Are the data for the right time period or sufficiently up to date?
- Are data available for all the variables you require to answer your research question(s) and meet your objectives?

Precise suitability
- How reliable is the data set you are thinking of using?
- How credible is the data source?
- Is it clear what the source of the data is?
- Do the credentials of the source of the data (author, institution or organisation sponsoring the data) suggest it is likely to be reliable?
- Do the data have an associated copyright statement?
- Do associated published documents exist?
- Does the source contain contact details for obtaining further information about the data?
- Is the method clearly described?
- If sampling was used, what was the procedure and what were the associated sampling errors and response rates?
- Who were responsible for collecting or recording the data?
- (For surveys) Is a copy of the questionnaire or interview checklist included?
(For compiled data) Are you clear how the data were analysed and compiled?
Are the data likely to contain measurement bias?
What was the original purpose for which the data were collected?
Who was the target audience and what was their relationship to the data collector or compiler (were there any vested interests)?
Have there been any documented changes in the way the data are measured or recorded including definition changes?
How consistent are the data obtained from this source when compared with data from other sources?
Are you happy that the data have been recorded accurately?

Costs and benefits
What are the financial and time costs of obtaining these data?
Can the data be downloaded into a spreadsheet, statistical analysis software or word processor?
Do the overall benefits of using these secondary data sources outweigh the associated costs?

Sources: Authors’ experience; Blumberg et al. (2005); Dale et al. (1988); Dochartaigh (2002); Jacob (1994); Kervin (1999); Stewart and Kamins (1993)

data. For written documents such as minutes, reports and memos the intended target audience may suggest possible bias, as indicated earlier in this section. Therefore, where possible you will need to triangulate the findings with other independent data sources. This is sometimes referred to as a cross-check verification (Patzer, 1996). Where data from two or more independent sources suggest similar conclusions, you can have more confidence that the data on which they are based are not distorted. Conversely, where data suggest different conclusions you need to be more wary of the results.

Changes in the way in which data were collected can also introduce changes in measurement bias. Provided that the method of collecting data remains constant in terms of the people collecting it and the procedures used, the measurement biases should remain constant. Once the method is altered, perhaps through a new procedure of taking minutes or a new data collection form, then the bias also changes. This is very important for longitudinal data sets such as the UK’s Retail Price Index where you are interested in trends rather than actual numbers. Your detection of biases is dependent on discovering that the way data are recorded has changed. Within-company sources are less likely to have documented these changes than government-sponsored sources.

Costs and benefits
Kervin (1999) argues that the final criterion for assessing secondary data is a comparison of the costs of acquiring them with the benefits they will bring. Costs include both time and financial resources that you will need to devote to obtaining the data. Some data will be available in your local library and so will be free, although you will have to pay for any photocopying you need. Other data will require lengthy negotiations before access is granted (Section 6.3). Even then, the granting of access may not be certain (Stewart and
Kamins, 1993). Data from market research companies or special tabulations from government surveys will have to be ordered specially and will normally be charged for; consequently, these will be relatively costly.

Benefits from data can be assessed in terms of the extent to which they will enable you to answer your research question(s) and meet your objectives. You will be able to form a judgement on the benefits from your assessment of the data set's overall and precise suitability (discussed earlier in this section). This assessment is summarised as a checklist of questions in Box 8.10. An important additional benefit is the form in which you receive the data. If the data are already in computer-readable form this will save you considerable time as you will not need to re-enter the data prior to analysis (Sections 12.2 and 13.3). However, when assessing the costs and benefits you must remember that data that are not completely reliable and contain some bias are better than no data at all, if they enable you to start to answer your research question(s) and achieve your objectives.

8.6 Summary

- Data that have already been collected for some other purpose, perhaps processed and subsequently stored, are termed secondary data. There are three main types of secondary data: documentary, survey and those from multiple sources.

- Most research projects require some combination of secondary and primary data to answer your research question(s) and to meet your objectives. You can use secondary data in a variety of ways. These include:
 - to provide your main data set;
 - to provide longitudinal (time-series) data;
 - to provide area-based data;
 - to compare with, or set in context, your own research findings.

- Any secondary data you use will have been collected for a specific purpose. This purpose may not match that of your research. In addition, the secondary data are likely to be less current than any data you collect yourself.

- Finding the secondary data you require is a matter of detective work. This will involve you in:
 - establishing whether the sort of data that you require are likely to be available;
 - locating the precise data.

- Once located, you must assess secondary data sources to ensure their overall suitability for your research question(s) and objectives. In particular, you need to pay attention to the measurement validity and coverage of the data.

- You must also evaluate the precise suitability of the secondary data. Your evaluation should include both reliability and any likely measurement bias. You can then make a judgement on the basis of the costs and benefits of using the data in comparison with alternative sources.

- When assessing costs and benefits you need to be mindful that secondary data that are not completely reliable and contain some bias are better than no data at all if they enable you partially to answer your research question(s) and to meet your objectives.
REVIEW AND DISCUSSION QUESTIONS

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

8.1 Give three examples of different situations where you might use secondary data as part of your research.

8.2 You are undertaking a research project as part of your course. Your initial research question is ‘How has the UK’s import and export trade with other countries altered since its entry into the European Union?’

List the arguments that you would use to convince someone of the suitability of using secondary data to answer this research question.

8.3 Suggest possible secondary data that would help you answer the following research questions. How would you locate these secondary data?

a To what extent do organisations’ employee relocation policies meet the needs of employees?
b How have consumer-spending patterns in your home country altered in the last 10 years?
c How have governments’ attitudes to the public sector altered since 1979?

8.4 As part of case study research based in a manufacturing company with over 500 customers you have been given access to an internal market research report. This was undertaken by the company’s marketing department. The report presents the results of a recent customer survey as percentages. The section in the report that describes how the data were collected and analysed is reproduced below:

Data were collected from a sample of current customers selected from our customer database. The data were collected using an Internet-mediated questionnaire designed and administered via the online software tool SurveyMonkey™. Twenty-five customers responded, resulting in a 12.5 per cent response rate. These data were analysed using the SNAP™ computer software. Additional qualitative data based on in-depth interviews with customers were also included.

a Do you consider these data are likely to be reliable?
b Give reasons for your answer.

8.5 With a friend revisit Figure 8.1, types of secondary data, and reread the accompanying text in Section 8.2. Agree to find and, where possible, make copies (either electronic or photocopy) of at least two examples of secondary data for each of the seven sub-headings:

a written materials,
b non-written materials,
c area based,
d time series based,
e censuses,
f continuous and regular surveys,
g ad hoc surveys.

Compare and contrast the different examples of secondary data you have found.

8.6 Choose an appropriate information gateway from Table 8.2 to search the Internet for secondary data on a topic which you are currently studying as part of your course.

a ‘Add to favourites’ (bookmark) those sites which you think appear most relevant.
b Make notes regarding any secondary data that are likely to prove useful to either seminars for which you have to prepare or coursework you have still to undertake.
CHAPTER 8 · USING SECONDARY DATA

8.7 Agree with a friend to each evaluate the same secondary data set obtained via the Internet. This could be one of the data sets you found when undertaking question 8.6. Evaluate independently your secondary data set with regard to its overall and precise suitability using the checklist in Box 8.10. Do not forget to make notes regarding your answers to each of the points raised in the checklist. Discuss your answers with your friend.

PROGRESSING YOUR RESEARCH PROJECT

Assessing the suitability of secondary data for your research

- Consider your research question(s) and objectives. Decide whether you need to use secondary data or a combination of primary and secondary data to answer your research question. (If you decide that you need only use secondary data and you are undertaking this research as part of a course of study, check your course's assessment regulations to ensure that this is permissible.)

- If you decide that you need to use secondary data, make sure that you are clear why and how you intend to use these data.

- Locate the secondary data that you require and make sure that permission for them to be used for your research is likely to be granted. Evaluate the suitability of the data for answering your research question and make your judgement based on assessment of its suitability, other benefits and the associated costs.

- Note down the reasons for your choices, including the possibilities and limitations of the data. You will need to justify your choices when you write about your research methods.

References

Further reading

Small firms internationalisation

Alan was a part-time student who wanted to investigate some aspect of small firm internationalisation, as there was relatively little existing research on the effects of globalisation and falling trade barriers on small firms, and little was known about how they related to a globalised economy. From his studies he was aware that until the mid-1990s small firms were regarded as only minor players in international markets because of their size and limited resources (Zaheer, 1995), but that these views were changing.

From conducting a literature review Alan had discovered that a particularly interesting type of small firm had emerged which was active globally, often from or close to inception (Coviello and McAuley, 1999). Many of these small firms did not conform to the received wisdom of internationalisation 'stage' theories (Knight and Cavusgil, 1996). He felt he had discovered an emerging stream of research, where rapidly internationalising small firms were the subject of increased academic and public policy interest. Alan decided to focus his research project on exploring how such firms overcame their perceived liabilities of age, size and scarce resources to compete successfully internationally.

One of the most interesting developments in Alan’s work life had been the continuing advances in information communications technology (ICT). From his literature review he was aware that web technology and the Internet allowed firms in different locations to interact with ease, often in real time, and to adopt new business models and practices (Hoffman and Novak, 1995; Indermaur, 1997). He also observed that a website could give a small firm global reach, allowing them to serve even the narrowest of niche markets internationally. It appeared that the Internet was an indispensable technology that governments around the world were encouraging small firms to adopt.

Alan decided that his research would examine the internationalisation processes of small Internet-enabled firms. However, as prior enquiries in this area had tended to concentrate on single country studies, particularly the United States or the United Kingdom, he wanted to compare countries. He decided to focus on Canada and Ireland. This presented him with some difficulties, as he was a part-time student with no flexibility to travel or the funds to do so.

Alan decided that he needed a purposive sample of Internet-enabled small firms for his study, but as no easily identifiable databases existed he had to construct his own sampling frame. From studying country and industry reports obtained on the Internet (Table 1) he discovered that there was a cluster of potentially suitable firms in the ‘Canadian Technology Triangle’ close to Waterloo, Ontario, and also around the Greater Dublin and Belfast areas of Ireland. He therefore concentrated his search in those locations.

Once Alan established that there were sufficient online resources from which he could build a sample, he established the criteria each small firm would have to meet in order to be included. In particular, he was concerned that they were independent. He then designed an information sheet, with headings for each piece of information he required. This contained sections on the profile of the firm, its founding history, what funding had been received, its export activities, its foreign market entry modes, partnerships and alliances, market spread, and other relevant information.

A lot of information was obtained initially from firms’ websites, but Alan continued his searching and found additional data on firms on export promotion agency websites (for example, http://strategis.ic.gc.ca), features in the business press, industry-specific reports and lists of exporters (for example, http://www.garywill.com/digest/companies.htm). He explored each of these links and then searched backwards for details on customers’ or suppliers’ websites, media releases, personal websites of the firms’ chief executive.
Chapter 8 · Using Secondary Data

Table 1 Indicative sources of country/regional information

<table>
<thead>
<tr>
<th>Canada</th>
<th>Ireland</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canadian Technology Triangle technology report www.cttechnologyguide.com</td>
<td>National Reports Ireland www.telework-mirti.org</td>
</tr>
<tr>
<td>Canada’s Export E business portal http://www.export.ca</td>
<td>Technology Ireland http://www.technologyireland.ie</td>
</tr>
</tbody>
</table>

Officers and so on. Altogether, he screened almost 200 firms, in order to find 50 in each location that met his selection criteria. All of the data were collated onto his information sheet and, by this stage, he had 80–90 per cent of the data he needed for his study. However, some data gaps remained. For example, he rarely found sales revenue figures for firms and often could not find the year of entry into the first export market. Despite this, he knew that they had internationalised rapidly as they were active in several countries by the time they were two years old.

In the second stage of his research, Alan contacted the firms’ chief executive officers by telephone and explained the purpose of his study. Chief executives were asked if they would complete the information sheet on their small firm, which was then e-mailed to them. The chief executives corroborated the information already on the sheet, addressed specific highlighted information gaps and commented on various aspects of the firm’s internationalisation behaviour and strategy. In addition, some maintained an ongoing email dialogue with Alan during the research period.

A total of 66 usable replies were obtained, resulting in a response rate of 66 per cent, evenly distributed across the two research locations. The additional information gathered during this stage were incorporated into Alan’s database and analysed, generating profiles of the firms and establishing patterns of internationalisation behaviour. From these analyses he demonstrated the crucial role the Internet played in the internationalisation of these Canadian and Irish firms.

References

Questions

1 What advantages do you think this method of collecting data gave Alan when he was trying to get chief executive officers to participate in his study?
2 How else could Alan have accessed a suitable sample of firms for his research?

3 Can you think of any potential pitfalls of using the Internet to conduct research?

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:
- The involvement of auditors in preliminary profit announcements
- Research and development in the UK pharmaceutical industry.

8.1 Although it would be impossible to list all possible situations, the key features that should appear in your examples are listed below:
- to compare findings from your primary data;
- to place findings from your primary data in a wider context;
- to triangulate findings from other data sources;
- to provide the main data set where you wish to undertake research over a long period, to undertake historical research or to undertake comparative research on a national or international scale with limited resources.

8.2 The arguments you have listed should focus on the following issues:
- The study suggested by the research question requires historical data so that changes that have already happened can be explored. These data will, by definition, have already been collected.
- The timescale of the research (if part of a course) will be relatively short term. One solution for longitudinal studies in a short time frame is to use secondary data.
- The research question suggests an international comparative study. Given your likely limited resources, secondary data will provide the only feasible data sources.

8.3 a The secondary data required for this research question relate to organisations’ employee relocation policies. The research question assumes that these sorts of data are likely to be available from organisations. Textbooks, research papers and informal discussions would enable you to confirm that these data were likely to be available. Informal discussions with individuals responsible for the personnel function in organisations would also confirm the existence and availability for research of such data.

b The secondary data required for this research question relate to consumer spending patterns in your home country. As these appear to be the sort of data in which the government would be interested, they may well be available via the Internet or in published form. For the UK, examination of various published guides (both governmental and non-governmental sources) would reveal that these data were collected by the annual Family Expenditure Survey, summary results of which are published (for example, Gibbins, 2005). Summary data could then be downloaded via the UK government’s statistics information gateway (Table 8.2). In addition, reports could be borrowed either from your university library or by using inter-library loan.

c The secondary data required for this research question are less clear. What you require is some source from which you can infer past and present government attitudes. Transcripts of ministers’ speeches and newspaper reports might prove useful. However, to establish suitable secondary sources for this research question you would need to pay careful attention to those used by other researchers. These would be outlined in research papers and textbooks. Informal discussions could also prove useful.

8.4 a The data are unlikely to be reliable.

b Your judgement should be based on a combination of the following reasons:
- Initial examination of the report reveals that it is an internally conducted survey. As this has been undertaken by the marketing department of a large manufacturing company, you might assume that those undertaking the research had considerable expertise. Consequently, you might conclude the report contains credible data. However:
The methodology is not clearly described. In particular:
- The sampling procedure and associated sampling errors are not given.
- It does not appear to contain a copy of the questionnaire. This means that it is impossible to check for bias in the way that questions were worded.
- The methodology for the qualitative in-depth interviews is not described.

In addition, the information provided in the methodology suggests that the data may be unreliable:
- The reported response rate of 12.5 per cent is very low for a telephone survey (Section 7.2).
- Responses from 25 people means that all tables and statistical analyses in the report are based on a maximum of 25 people. This may be too few for reliable results (Sections 7.2 and 12.5).
Collecting primary data through observation

LEARNING OUTCOMES

By the end of this chapter you should be able to:

➔ understand the role that observation may play as a data collection method in your research design;
➔ identify two types of observation, participant observation and structured observation, and their differing origins and applications;
➔ adopt particular approaches to data collection and analysis for both participant observation and structured observation;
➔ identify threats to validity and reliability faced by the two types of observation.

9.1 Introduction

Observation is a somewhat neglected aspect of research. Yet it can be rewarding and enlightening to pursue and, what is more, add considerably to the richness of your research data. It can even be fun, as the introductory example illustrates. If your research question(s) and objectives are concerned with what people do, an obvious way in which to discover this is to watch them do it. This is essentially what observation involves: the systematic observation, recording, description, analysis and interpretation of people’s behaviour.

The two types of observation examined in this chapter are very different. Participant observation (Sections 9.2–9.4) is qualitative and derives from the work of social anthropology earlier in the 20th century. Its emphasis is on discovering the meanings that people attach to their actions. By contrast, structured observation (Sections 9.5–9.6) is quantitative and is more concerned with the frequency of those actions.

A common theme in this book is our effort to discourage you from thinking of the various research methods as the sole means you should employ in your study. This is also true of observation methods. It may meet the demands of your research question(s) and objectives to use both participant and structured observation in your study either as the main methods of data collection or to supplement other methods.
9.2 Participant observation: an introduction

What is participant observation?

If you have studied sociology or anthropology in the past you are certain to be familiar with participant observation. This is where ‘the researcher attempts to participate fully in the lives and activities of subjects and thus becomes a member of their group, organisation or community. This enables researchers to share their experiences by not merely

Sociologist Roger Penn (2005) has been examining the behaviour of football spectators in England and Italy. His research method makes considerable use of photographs of football matches in both countries. Such a method is both innovative and based upon wider traditions of observation within sociology. The recent advent of digital camera technology has encouraged a burgeoning use of visual data as evidence. Such an approach is particularly appropriate for an understanding of differences between spectators in English and Italian football stadia, since both the game and spectating are central elements within the spectacle of modern football.

The data formed part of a wider comparative approach to football in England and Italy. None of the photographs were staged: all were taken ‘in situ’ as matches unfolded. Penn presents them both as illustrative of much wider structures and, in the opinion of the author, as typical of patterns of behaviour at major football matches in the two countries.

Penn concluded that behaviour of fans in English and Italian football stadia is radically different. Nowadays the main complaints about English football are the price of tickets and the lack of ‘atmosphere’ in the new stadia rather than the behaviour of the fans. This represents a major change since the dark days of hooliganism in the 1970s and 1980s. Atmosphere is certainly not lacking in Italian stadia but also there is no shortage of major problems with spectators. Penn’s paper attempts to delineate and explain this difference in national forms of spectator behaviour.

Clearly there are major differences in the organisation of football matches between England and Italy which have a significant impact upon crowd behaviour. Italian football matches have a strong flavour of carnival and transgression. Games in the English Premier League are more akin to opera or theatre. Each has its own set of assumptions and each produces very different kinds of crowd behaviour. There was considerable irony – and not a little paradox – in the reaction of the Italian sporting press to crowd problems in Italy in the spring of 2005. The English ‘model’ was held up as an example for Italian football. This reveals the distance that English football has travelled since the dark days of the 1980s.
observing what is happening but also feeling it’ (Gill and Johnson, 2002:144). It has been used extensively in these disciplines to attempt to get to the root of ‘what is going on’ in a wide range of social settings.

Participant observation has its roots in social anthropology, but it was the Chicago school of social research that encouraged its students to study by observation the constantly changing social phenomena of Chicago in the 1920s and 1930s.

Participant observation has been used much less in management and business research. However, this does not mean to say that it has limited value for management and business researchers. Indeed, it can be a very valuable tool, usually as the principal research method, but possibly in combination with other methods.

Delbridge and Kirkpatrick (1994:37) note that participant observation implies a research strategy of ‘immersion [by the researcher] in the research setting, with the objective of sharing in peoples’ lives while attempting to learn their symbolic world’. It is worth dwelling on this explanation. Whichever role you adopt as the participant observer (the choices open to you will be discussed later), there will be a high level of immersion. This is quite different from data collection by means of questionnaire, where you probably will know little of the context in which the respondents’ comments are set or the delicate nuances of meaning with which the respondents garnish their responses. In participant observation the purpose is to discover those delicate nuances of meaning. As Delbridge and Kirkpatrick (1994:39) state: ‘in the social sciences we cannot hope to adequately explain the behaviour of social actors unless we at least try to understand their meanings’.

This last comment gives a clue to the point that Delbridge and Kirkpatrick make about ‘attempting to learn the [respondents’] symbolic world’. Some understanding of this point is vital if you are to convince yourself and others of the value of using participant observation.

The symbolic frame of reference is located within the school of sociology known as symbolic interactionism. In symbolic interactionism the individual derives a sense of identity from interaction and communication with others. Through this process of interaction and communication the individual responds to others and adjusts his or her understandings and behaviour as a shared sense of order and reality is ‘negotiated’ with others. Central to this process is the notion that people continually change in the light of the social circumstances in which they find themselves. The transition from full-time student to career employee is one example of this. (How often have you heard people say ‘she’s so different since she’s worked at that new place’?) The individual’s sense of identity is constantly being constructed and reconstructed as he or she moves through differing social contexts and encounters different situations and different people.

This is a necessarily brief explanation of symbolic interactionism. However, we hope that you can see why Delbridge and Kirkpatrick (1994:37) think that participant observation is about ‘attempting to learn the [respondents’] symbolic world’. It is a quest for understanding the identity of the individual, but, more importantly, it is about trying to get to the bottom of the processes by which the individual constantly constructs and reconstructs his or her identity. Examples of such processes which formed the basis of research studies are illustrated in Boxes 9.1 and 9.2.

Situations in which participant observation has been used

One of the most famous examples of participant observation is that of Whyte (1955), who lived among a poor American-Italian community in order to understand ‘street corner society’. A celebrated business example is the work of Roy (1952). Roy worked in
a machine shop for 10 months as an employee. He wanted to understand how and why his ‘fellow workers’ operated the piecework bonus system. Rather more colourfully, Rosen (1991) worked as a participant observer in a Philadelphia advertising agency. Rosen was working within the theoretical domain of dramaturgy. He wanted to understand how organisations used social drama to create and sustain power relationships and social structures.

These may strike you as rather elaborate examples that suggest little relevance to you as you contemplate your own research project. Yet this would be a disappointing conclusion. Box 9.2 contains an example of participant observation research which you will find a little more familiar.

You may already be a member of an organisation that promises a fertile territory for research. This may be your employing organisation or a social body of which you are a member. One of Phil’s students undertook research in his church community. He was a member of the church council and conducted observational research on the way in which decisions were reached in council meetings. A more specific focus was adopted by another of our students. She was a member of a school governing body. Her specific hypothesis was that the focus of decision-making power was the head teacher. Her study confirmed this hypothesis. All the significant decisions were in effect taken prior to governors’ meetings as a consequence of the head teacher canvassing the support of those committee members whom he defined as ‘influential’.
So, adopting the participant observer role as an existing member of an organisation does present opportunities to you. However, it also has its dangers. We shall deal with these later.

BOX 9.2 FOCUS ON MANAGEMENT RESEARCH

A participant observation study of software developers as an occupational community

A typical participant observation study was carried out by Marschall (2001) at a US software development firm which specialises in working in partnership with Internet start-up companies. The purpose of the study was to establish the extent to which a group of skilled software workers in the company constitute an ‘occupational community’.

Marschall made 34 visits to the company in a 13-month period. Data collected included random observations which were recorded in field notes; observation of company meetings which were attended by the staff being studied; numerous informal conversations with staff; and perusal of internal documents and news publications.

Among the data collected Marschall found that the technologists:

- were strongly encouraged to join the region’s technology community – ‘to get out and shake some hands’; tell people why we’re cool and why they would want to work for us or hire us;
- work hard and long hours and interact little with the rest of the firm;
- need to fit into a tense and aggressive environment;
- use language such as ‘our collective goal is ever more beauty, both a deeper beauty in everything we do, and a greater volume of beauty delivered to the world’; ‘nurture the heart’; and ‘chump-free zones’ (to depict those not in tune with Internet technologies, etc.);
- name their workstations after characters from the X-Men comic book series;
- dress in casual shirts and blue jeans.

Marschall concluded that the Internet technologists at the company share collaborative work practices, identify closely with one another, adopt a distinctive use of language and dress, and possess other characteristics indicating their participation in an occupational community.

9.3 Participant observation: researcher roles

We have explained what participant observation is, but we have not explained clearly what participant observers do. A number of questions may have occurred to you. For example, should the participant observer keep his or her purpose concealed? Does the participant observer need to be an employee or an organisational member, albeit temporarily? Can the participant observer just observe? The answers here are not straightforward. The role you play as participant observer will be determined by a number of factors. However, before examining those factors, we need to look at the different roles in which the participant observer may be cast.

Gill and Johnson (2002) develop a fourfold categorisation (Figure 9.1) of the role the participant observer can adopt. The roles are:

- complete participant;
- complete observer;
observer as participant;

participant as observer.

The first two of these roles, the complete participant and the complete observer, involve you as the researcher in concealing your identity. This has the significant advantage of your not conditioning the behaviour of the research subjects you are studying. The second two, observer as participant and participant as observer, entail you revealing your purpose to those with whom you are mixing in the research setting. Ethically, the latter two roles are less problematic.

Complete participant

The complete participant role sees you as the researcher attempting to become a member of the group in which you are performing research. You do not reveal your true purpose to the group members. You may be able to justify this role on pure research grounds in the light of your research questions and objectives. For example, you may be interested to know the extent of lunchtime drinking in a particular work setting. You would probably be keen to discover which particular employees drink at lunchtimes, what they drink, how much they drink, and how they explain their drinking. Were you to explain your research objectives to the group you wished to study, it is rather unlikely that they would cooperate since employers would usually discourage lunchtime drinking. In addition, they might see your research activity as prying.

This example raises questions of ethics. You are in a position where you are ‘spying’ on people who have probably become your friends as well as colleagues. They may have learned to trust you with information that they would not share were they to know your true purpose. On these grounds alone you may agree with us that this is a role that the researcher should not adopt.

There are also objections on pure research grounds. You may work so hard at gaining the trust of your ‘colleagues’, and value that trust when it is gained, that you lose sight of your research purpose. The objective, detached perspective that all researchers need will be lost.

![Figure 9.1 Typology of participant observation researcher roles](image-url)
Complete observer

Here too you would not reveal the purpose of your activity to those you were observing. However, unlike the complete participant role, you do not take part in the activities of the group. For example, the complete observer role may be used in studying consumer behaviour in supermarkets. Your research question may concern your wish to observe consumers at the checkout. Which checkouts do they choose? How much interaction is there with fellow shoppers and the cashier? How do they appear to be influenced by the attitude of the cashier? What level of impatience is displayed when delays are experienced? This behaviour may be observed by the researcher being located near the checkout in an unobtrusive way. The patterns of behaviour displayed may be the precursor to research by structured observation (Section 9.5). This would be the exploratory stage of this research.

Observer as participant

You might adopt the role of observer as participant in an outward-bound course to assist team building if you were attending to observe without taking part in the activities in the same way as the ‘real’ candidates (Box 9.3). In other words, you would be a ‘spectator’. However, your identity as a researcher would be clear to all concerned. They would know your purpose, as would the trainers running the course. This would present the advantage of you being able to focus on your researcher role. For example, you would be able to jot down insights as they occurred to you. You would be able to concentrate on your discussions with the participants. What you would lose, of course, would be the emotional involvement: really knowing what it feels like to be on the receiving end of the experience.

Participant as observer

In the role of participant as observer you reveal your purpose as a researcher. Both you and the subjects are aware of the fact that it is a fieldwork relationship (Ackroyd and Hughes, 1992). You are particularly interested to gain the trust of the group. This was the role adopted by the sociologist Punch (1993) in his study of police work in Amsterdam. Because of the trust developed by Punch with police officers whom he was researching he was able to gain admission to activities that otherwise would have been ‘out of bounds’ to him. Because his identity as researcher was clear he could ask questions of his subjects to enhance his understanding. Robson (2002) argues that this leads to another advantage of this role. This is that key informants are likely to adopt a perspective of analytic reflection on the processes in which they are involved.

Factors that will determine the choice of participant observer role

The purpose of your research

You should always be guided by the appropriateness of the method for your research question(s) and objectives. A research question about developing an understanding of a phenomenon about which the research subjects would be naturally defensive is one that lends itself to the complete participant role. Discovering what it is like to be a participant on a particular training course is more appropriate to the participant as observer role.
The time you have to devote to your research

Some of the roles covered above may be very time consuming. If you are really to develop a rich and deep understanding of an organisational phenomenon it will need much careful study. A period of attachment to the organisation will often be necessary. However, many full-time courses have placement opportunities that may be used for this purpose. In addition, most full-time students now have part-time jobs, which provide wonderful opportunities to understand the ‘meanings’ that their fellow employees, for whom the work is their main occupation, attach to a variety of organisational processes. What is needed is a creative perspective on what constitutes research and research opportunities. The possibilities are endless.

The degree to which you feel suited to participant observation

Delbridge and Kirkpatrick (1994) note that not everybody is suited to this type of research. Much of it relies on the building of relationships with others. A certain amount of personal flexibility is also needed. As the participant observer you have to be ‘all things to all people’. Your own personality must be suppressed to a greater extent. This is not something with which you may feel comfortable.

Organisational access

This may present a problem for some researchers. It is obviously a key issue. More is said about gaining access to organisations for research in Section 6.3.

Ethical considerations

The degree to which you reveal your identity as the researcher will be dictated by ethical considerations. The topic of ethics in research is dealt with in detail in Section 6.4.

9.4 Participant observation: data collection and analysis

Delbridge and Kirkpatrick (1994) categorise the types of data generated by participant observation as ‘primary’, ‘secondary’ and ‘experiential’.
Primary observations are those where you would note what happened or what was said at the time. Keeping a diary is a good way of doing this.

Secondary observations are statements by observers of what happened or was said. This necessarily involves those observers’ interpretations.

Experiential data are those data on your perceptions and feelings as you experience the process you are researching. Keeping a diary of these perceptions proves a valuable source of data when the time comes to write up your research (Box 9.4). This may also include notes on how you feel that your values have intervened, or changed, over the research process.

Finally, you will also collect data on factors material to the research setting: for example, roles played by key participants and how these may have changed; organisational structures and communication patterns.

Box 9.4 Focus on Management Research

A diary account

For a period of ten months between 1944 and 1945 Donald Roy worked on the factory floor as a production operative in order to study how workers restricted production. He kept a diary, an extract of which is reproduced below as an example of a narrative account. The ‘technical’ content of the piece is irrelevant. What is important is to get a feel for narrative account.

On April 7 I was able to enjoy four hours of ‘free time’. I turned out 43 pieces in the four hours from 3 to 7, averaging nearly 11 an hour (or $2.085 per hour). At 7 o’clock there were only 23 pieces left in the lot, and I knew there would be no point in building up a kitty for Monday if Joe punched off the job before I got to work. I could not go ahead with the next order . . . because the new ruling made presentation of a work order to the stock-chaser necessary before material could be brought up. So I was stymied and could do nothing for the rest of the day. I had 43 pieces plus 11 from yesterday’s kitty to turn in for a total of 54.

Source: Roy (1952:432)

Data collection

What will be clear from the types of data you will collect as the participant observer is that formal set-piece interviewing is unlikely to take place. Such ‘interviewing’ as does take place is likely to be informal discussion. It will be part of the overall approach of asking questions that should be adopted in this research method. These questions are of two types (Robson, 2002): first, to informants to clarify the situations you have observed and, second, to yourself to clarify the situation and the accounts given of the situation.

Of course, the data that you collect depend on your research question(s) and objectives which have given a particular focus to your observation. Robson (2002:320) suggests that your data may well be classed as ‘descriptive observation’ and ‘narrative account’. In descriptive observation you may concentrate on observing the physical setting, the key participants and their activities, particular events and their sequence and the attendant processes and emotions involved. This description may be the basis for your writing of a narrative account, in much the same way as an investigative journalist would write one. However, Robson (2002) makes the point forcefully that the researcher must go much further than the journalist. Your job as the researcher is to go on and
develop a framework of theory that will help you to understand, and to explain to others, what is going on in the research setting you are studying.

How you record your data will depend to a great extent on the role you play as the participant observer. The more ‘open’ you are the more possible it will be for you to make notes at the time the event is being observed or reported. In any event, there is one golden rule: recording must take place on the same day as the fieldwork in order that you do not forget valuable data. The importance placed on this by one complete participant observer, working in a bakery, is evident from the following quotation:

Right from the start I found it impossible to keep everything I wanted in my head until the end of the day . . . and had to take rough notes as I was going along. But I was ‘stuck on the line’, and had nowhere to retire to privately to note things down. Eventually, the wheeze of using innocently provided lavatory cubicles occurred to me. Looking back, all my notes for that third summer were on Bronco toilet paper! Apart from the awkward tendency for pencilled notes to be self-erasing from hard toilet paper . . . my frequent requests for ‘time out’ after interesting happenings or conversations in the bakehouse and the amount of time that I was spending in the lavatory began to get noticed . . .

Data analysis

We deal with this in more depth in Chapters 12 and 13. However, you should bear in mind that in participant observation research your data collection and analysis activity may be part of the same process. That is, you will be carrying out analysis and collection of data simultaneously. Let us say you were acting as the complete participant observer in attempting to establish ‘what is going on’ in terms of sex discrimination at the workplace in which you were researching. You would observe informal banter, hear conversations of a discriminatory nature, talk to those who ‘approved’ and ‘disapproved’ of the activity. All this would be part of your everyday work. You might mix socially with colleagues in situations where discriminatory attitudes and behaviour might be evident. All these events would yield data that you would record, as far as possible, on the spot, or at least write up soon afterwards. You would turn these rough notes into something rather more systematic along the lines of the procedures suggested in Section 13.4. What would be emerging is what the investigative journalist might call ‘promising lines of enquiry’ that you might wish to follow up in your continued observation. However, remember that the journalist is interested in the story, while you are interested in generating a theory to help you understand ‘what is going on’. This will lead you to adopt the researcher’s equivalent of ‘promising lines of enquiry’. A common approach to this is what is called analytic induction (Box 9.5).

Threats to reliability and validity

Participant observation is very high on ecological validity because it involves studying social phenomena in their natural contexts. Nonetheless, participant observation is subject to the same threats to validity as noted in Section 5.6 (for example, history and maturation), although the fact that your study is likely to be over an extended time period will overcome most of these.

The greatest threat to the reliability of your research conclusions produced as a result of a participant observation study is that of observer bias. As Delbridge and Kirkpatrick (1994:43) note, ‘because we are part of the social world we are studying we cannot detach ourselves from it, or for that matter avoid relying on our common sense knowledge and life experiences when we try to interpret it’.
The propensity that we all have for our own perceptions to colour our interpretation of what we believe to be ‘true’ is well known. What we advocate here is that we cannot avoid observer bias. All we can do is to be aware of the threat to reliability it poses and seek to control it.

The first way this may be done is to revert to the process of asking yourself questions about your conclusions: Did she really mean that? What other interpretations could I have put on this? The second way is that adopted by our student who was researching decision-making power in a school governing body. Her approach was to use informant verification. After each of her informal discussions with fellow Parent Teacher Association members she wrote these up, including her own conclusions as to the meanings of the discussions in the light of her research hypothesis. She then presented the written accounts to her informants for them to verify the content. Not only is this a form of triangulation, but it can be a source of new interpretations that have not occurred to the researcher. This method of triangulation is also one that can be used with more formal interview results. The advantages and disadvantages of participant observation are summarised in Table 9.1.

The propensity that we all have for our own perceptions to colour our interpretation of what we believe to be ‘true’ is well known. What we advocate here is that we cannot avoid observer bias. All we can do is to be aware of the threat to reliability it poses and seek to control it.

The first way this may be done is to revert to the process of asking yourself questions about your conclusions: Did she really mean that? What other interpretations could I have put on this? The second way is that adopted by our student who was researching decision-making power in a school governing body. Her approach was to use informant verification. After each of her informal discussions with fellow Parent Teacher Association members she wrote these up, including her own conclusions as to the meanings of the discussions in the light of her research hypothesis. She then presented the written accounts to her informants for them to verify the content. Not only is this a form of triangulation, but it can be a source of new interpretations that have not occurred to the researcher. This method of triangulation is also one that can be used with more formal interview results. The advantages and disadvantages of participant observation are summarised in Table 9.1.
So far this chapter might have given you the impression that research using observational techniques is unsystematic and unstructured. This need not be the case. A sound research design based on clear research questions and objectives using participant observation should be highly systematic. However, it would be true to say that the degree of predetermined structure in participant observation may not be that high. After all, one of the strengths of this method is its responsiveness.

In contrast, structured observation is systematic and has a high level of predetermined structure (Box 9.6). If you use this method in your data collection strategy you will be adopting a more detached stance. Your concern would be in quantifying behaviour. As such, structured observation may form only a part of your data collection approach because its function is to tell you how often things happen rather than why they happen. Once again we see that all research methods have their place in an overall research strategy. What is important is choosing the method that meets the research questions and objectives.

Situations in which structured observation may be used

The most powerful image that occurs to many people when they think of structured observation is that of the ‘time-and-motion’ study expert. This inscrutable figure stalked the factory floor, complete with clipboard and pencil, making notes on what tasks machine operators were performing and how long these tasks took. This may seem to you a long way from the definition of ‘research’ that we have assumed in this book. Is it not simply fact-finding? Yes it is, but establishing straightforward facts may play an important role in answering your research questions and meeting your objectives. This is straightforward descriptive research, as we noted in Section 5.2. In recent years the call

<table>
<thead>
<tr>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is good at explaining ‘what is going on’ in particular social situations</td>
<td>It can be very time consuming</td>
</tr>
<tr>
<td>It heightens the researcher’s awareness of significant social processes</td>
<td>It can pose difficult ethical dilemmas for the researcher</td>
</tr>
<tr>
<td>It is particularly useful for researchers working within their own organisations</td>
<td>There can be high levels of role conflict for the researcher (e.g. ‘colleague’ versus researcher)</td>
</tr>
<tr>
<td>Some participant observation affords the opportunity for the researcher to experience ‘for real’ the emotions of those who are being researched</td>
<td>The closeness of the researcher to the situation being observed can lead to significant observer bias</td>
</tr>
<tr>
<td>Virtually all data collected are useful</td>
<td>The participant observer role is a very demanding one, to which not all researchers will be suited</td>
</tr>
<tr>
<td></td>
<td>Access to organisations may be difficult</td>
</tr>
<tr>
<td></td>
<td>Data recording is often very difficult for the researcher</td>
</tr>
</tbody>
</table>

Table 9.1 Advantages and disadvantages of participant observation
CHAPTER 9 · COLLECTING PRIMARY DATA THROUGH OBSERVATION

BOX 9.6 WORKED EXAMPLE

Observing staff behaviours at Fastfoodchain

Fastfoodchain has restaurants all over the world. Central to its marketing strategy is that the customer experience should be the same in every restaurant in every country of the world. An important part of this strategy is ensuring that customer-facing staff observe the same behavioural standards in every restaurant. This is achieved by the defining of standards of behaviour that customers should experience in every transaction undertaken. These standards are used in the training of staff and assessment of their performance. Reproduced below is part of the section of the standards schedule concerned with dealing with the customer. (There are also sections which deal with the behaviours needed to prepare for work, e.g. till readiness, and general issues, e.g. hygiene.)

The standards schedule is as an observation document by trainers in order to evaluate the degree to which their training is effective with individual employees. It is also used by managers in their assessment of the performance of employees.

Section 2: Delighting the customer

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Was the behaviour observed?</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smiles and makes eye contact with the customer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greets the customer in a friendly manner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gives the customer undivided attention throughout the transaction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suggests extra items that have not been ordered by the customer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Places items on clean tray with trayliner facing customer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensures customer is told where all relevant extras (e.g. cream, sugar) are located</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explains to customer reasons for any delays and indicates likely duration of delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neatly double-folds bags containing items with the Fastfoodchain logo facing the customer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Price of order is stated and customer thanked for payment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lays all money notes across till drawer until change is given and clearly states the appropriate amount of change</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer is finally thanked for transaction, hope expressed that the meal will be enjoyed, and an invitation to return to the restaurant issued</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There has been much debate in recent years about the effects of the various forms of work observation of call centre staff. This may take two forms. First, electronic performance monitoring involving the automatic and remote collection of quantitative data (e.g. call times, number of sales, call type, time available to take calls) and the continuous monitoring of performance through the IT system. The second form of observation may be traditional forms of monitoring involving listening to calls. This can be conducted remotely (with or without the operator’s knowledge) or side-by-side. New technologies now permit the continuous recording of all calls. Holman et al. (2002) conducted a study to investigate the relationship between performance monitoring and staff well-being. They also:

- examined a mechanism, namely emotional labour, that might mediate the relationship between performance monitoring and staff well-being;
- assessed the effect of the work context on the relationship between performance monitoring and staff well-being; and
- examined the relative effects of performance monitoring and work context on staff well-being.

Their research covered three aspects of performance monitoring: its performance-related content (e.g. clarity of performance criteria), its beneficial purpose (i.e., developmental rather than punitive aims), and its perceived intensity. The participants were 347 customer service agents in two UK call centres who completed a battery of questionnaire scales. Holman et al. found that the performance-related content and the beneficial purpose of monitoring were positively related to well-being, while perceived intensity had a strong negative association with well-being. Emotional labour did not mediate the relationship between monitoring and well-being in the form hypothesised, although it was related to these two factors. Work context (job control, problem-solving demand, supervisory support) did not mediate the relationship between monitoring and well-being, but job control and supervisory support did moderate the relationship between perceived intensity and well-being. Relative to other study variables, perceived intensity showed stronger associations with emotional exhaustion, while job control and supervisory support tended to show stronger associations with depression and job satisfaction.

These findings tend to support the fears of critics of call centres. Such critics argue that performance monitoring is intrinsically threatening to employees because the information gained may affect employees’ remuneration or their relationship with their colleagues and supervisor. Monitoring is also considered to intensify employees’ workload and to increase the level of work demands. The net result is to reduce employee well-being.

One of the best-known examples of managerial research that used structured observation as part of its data collection approach was the study of the work of senior managers by Mintzberg (1973). This led to Mintzberg casting doubt on the long-held theory that managerial work was a rational process of planning, controlling and directing. Mintzberg studied what five chief executives actually did during one of each of the executives’ working weeks. He did this by direct observation and the recording of events on three predetermined coding schedules. This followed a period of ‘unstructured’
observation in which the categories of activity that formed the basis of the coding schedules he used were developed. So Mintzberg ‘grounded’ (grounded theory is explained in Section 13.7) his structured observation on data collected in the period of participant observation.

Of course, studying what job-holders of the type not normally ‘observed’ actually do in their everyday lives lends itself to approaches other than observation. Self-completion of diaries is one approach that is often used. However, involvement of the researcher in the process is one that lends a degree of impartiality and thoroughness. This has benefits for reliability and validity that may not be evident when the job-holder is the ‘observer’.

Another well-known setting for structured observation is the large retail store, as Box 9.8 illustrates. This is not what we would think of as the sort of research which would necessarily be the major focus of a student dissertation. The same could be said of the research reported in Box 9.9. However, the data generated by both studies is useful for the management of a variety of organisations.

BOX 9.8 RESEARCH IN THE NEWS

Supermarket observational research is garbage!

We all know that supermarkets lead the way when it comes to observing our shopping habits but perhaps did not appreciate the lengths to which they go to learn about what we buy in order that they can tailor their marketing to our needs.

A recent BBC *Money Programme* revealed that the observation tactics adopted extend to searching our rubbish in the search for clues as to how we shop. Garbology is a pseudo-science that focuses on the analysis of waste packaging, left-over bits of food and other rubbish in order to come up with a profile of the shopper concerned.

Do you think it would take long to work out your habits, your likes and dislikes just by looking at your rubbish? It wouldn’t take as long as you think.

You may think that sifting through people’s rubbish is at least unethical and may even be illegal. But according to the programme, the legal position is clear – we have no real rights. As the ‘garbologist’ states, ‘once your bin goes outside your boundary, it’s public property’.

In addition, the UK High Street chains are using ‘observational market researchers’ who spend their lives assessing how products and brands fit into people’s lives by living and shopping with families to see how they use them. These researchers draw on household behaviour and video observations of the most ordinary moments in people’s lives to come up with new money-spinning product lines. The types of product range enormously, from cosmetics, household cleaners and baby care items to food, drinks and even telecoms.

The proliferation of the Internet has the potential for widening the scope for structured observation. Hewson *et al.* (2003:46) note that at present this may be restricted to what they call ‘indirect observation’ by which they mean observation of the traces of behaviour. The example which Hewson *et al.* use is observations of the traces of behaviour such as postings to newsgroups. Online retailers similarly use a form of indirect observation of the buying behaviour of their customers (Box 14.6) and search engines such as Google regularly do research on the search behaviour of their users. Hewson *et al.* (2003) point out that using the Internet for structured observation offers researchers the advantage of non-intrusiveness and the removal of possible observer bias. They also mention the potential for observation of webcam technology, though note that the use of this is very limited at present. The advantages and disadvantages of structured observation are summarised in Table 9.2.
The management of hygiene in hospitals has become a major concern for health services as the incidence of Methicillin Resistant Staphylococcus Aureus (MRSA) has spread in recent years.

Some worrying observational research has come from a 2005 Harris Interactive survey, conducted for the American Society for Microbiology and the Soap and Detergent Association. The researchers argue that the number of infections passed by unwashed hands is probably much higher outside the hospital setting. Infectious diseases, many caused by unclean hands, are the leading causes of death and disease worldwide and the third leading cause of death in the United States. They report that the Center for Disease Control and Prevention (CDC) says that ‘hand washing is the single most important means of preventing the spread of infection’.

The researchers note that the evidence on whether things have changed for the better over the last few years is not clear. On the one hand, the observation of people using public restrooms suggests a five percentage point increase on hand washing (from 78% in 2003 to 83% in 2005). However, in four surveys conducted between 1996 and 2005, the proportions of adults who claim always to wash their hands have either remained virtually unchanged or have declined slightly.

The 2005 research is based on a nationwide survey of 1,013 US adults surveyed by telephone in August 2005 and observation of 6,336 adults in public restrooms in Atlanta, Chicago, New York City and San Francisco observed in August 2005.

The key findings of the research are:

- The 91 percent of adults who claim that they always wash their hands after using public restrooms is higher than the numbers of people (83%) who were actually observed to do so.
- Men are slightly less likely to claim that they always wash their hands after using public restrooms than are women (88% vs. 94%). They were also less likely to be observed washing their hands (74% vs. 83%).

Those who claim always to wash their hands before or after various other activities vary substantially. The activities were: after using the bathroom at home (83%); before handling or eating food (77%); after changing a diaper (73%); after petting a cat or dog (42%); after coughing or sneezing (32%); after handling money (21%).

9.6 Structured observation: data collection and analysis

Using coding schedules to collect data

One of the key decisions you will need to make before undertaking structured observation is whether you use an ‘off-the-shelf’ coding schedule or design your own. You will hardly be surprised to hear us say that this should depend on your research questions and objectives. What follows are two sets of guidelines for assessing the suitability of existing tailor-made coding schedules.

Choosing an ‘off-the-shelf’ coding schedule

There are a number of questions you should ask yourself when choosing an ‘off-the-shelf’ coding schedule. These are detailed in Box 9.10.

One of the most frequent uses of established coding schedules in management and business is for recording interpersonal interactions in social situations such as meetings or negotiations. This lends itself to structured observation particularly well. Figure 9.2 is
Table 9.2 Advantages and disadvantages of structured observation

<table>
<thead>
<tr>
<th>Advantages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>■ It can be used by anyone after suitable training in the use of the measuring instrument. Therefore you could delegate this extremely time-consuming task. In addition, structured observation may be carried out simultaneously in different locations. This would present the opportunity of comparison between locations.</td>
<td></td>
</tr>
<tr>
<td>■ It should yield highly reliable results by virtue of its replicability. We deal with threats to reliability in Section 9.6 but suffice it to say here that the easier the observation instrument to use and understand, the more reliable the results will be.</td>
<td></td>
</tr>
<tr>
<td>■ Structured observation is capable of more than simply observing the frequency of events. It is also possible to record the relationship between events. For example, is the visit to the retail chemist’s counter to present a prescription preceded by an examination of merchandise unrelated to the prescription transaction?</td>
<td></td>
</tr>
<tr>
<td>■ The method allows the collection of data at the time they occur in their natural setting. Therefore there is no need to depend on ‘second-hand’ accounts of phenomena from respondents who put their own interpretation on events.</td>
<td></td>
</tr>
<tr>
<td>■ Structured observation secures information that most participants would ignore because to them it was too mundane or irrelevant.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disadvantages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>■ The observer must be in the research setting when the phenomena under study are taking place.</td>
<td></td>
</tr>
<tr>
<td>■ Research results are limited to overt action or surface indicators from which the observer must make inferences.</td>
<td></td>
</tr>
<tr>
<td>■ Data are slow and expensive to collect.</td>
<td></td>
</tr>
</tbody>
</table>

BOX 9.10 CHECKLIST

Questions to ask when choosing an ‘off-the-shelf’ coding schedule

- For what purpose was the coding schedule developed? Is it consistent with your research question(s) and objectives? (It should be.)
- Is there overlap between the behaviours to be observed? (There should not be.)
- Are all behaviours in which you are interested covered by the schedule? (They should be.)
- Are the behaviours sufficiently clearly specified so that all observers will place behaviours in the same category? (They should be.)
- Is any observer interpretation necessary? (It should not be.)
- Are codes to be used indicated on the recording form to avoid the necessity for memorisation by the observer? (They should be.)
- Will the behaviours to be observed be relevant to the inferences you make? (They should be.)
- Have all sources of observer bias been eliminated? (They should have been.)

<table>
<thead>
<tr>
<th>Name of group members (or reference letters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
</tbody>
</table>

Taking initiative – e.g. attempted leadership, seeking suggestions, offering directions

Brainstorming – e.g. offering ideas or suggestions, however valid

Offering positive ideas – e.g. making helpful suggestions, attempting to problem-solve

Drawing in others – e.g. encouraging contributions, seeking ideas and opinions

Being responsive to others – e.g. giving encouragement and support, building on ideas

Harmonising – e.g. acting as peacemaker, calming things down, compromising

Challenging – e.g. seeking justification, showing disagreement in a constructive way

Being obstructive – e.g. criticising, putting others down, blocking contributions

Clarifying/summarising – e.g. linking ideas, checking progress, clarifying objectives/proposals

Performing group roles – e.g. spokesperson, recorder, time-keeper, humorist

Other comments

Figure 9.2 Recording sheet for observing behaviour in groups

an example of just such an ‘off-the-shelf’ coding schedule that may be used for this purpose.

We would encourage you to use an ‘off-the-shelf’ coding schedule if you can find one that is suitable. Not only will it save you a lot of time, but it will be tried and tested. Therefore it should make your results and conclusions more reliable and valid.

However, you may decide that no ‘off-the-shelf’ coding schedule is suitable for your purposes. In this case you will need to develop your own schedule. Table 9.3 contains useful guidelines for this activity. The observation categories in your schedule should be devised to be consistent with your research question(s) and objectives. To ensure ease of use and reliability the categories should reflect the attributes shown in Table 9.3.

An alternative to the use of an ‘off-the-shelf’ coding schedule or the development of your own may be a combination of the two. If this is the option that seems most appropriate in the light of your research question(s) and objectives, we recommend that you still use the checklist in Box 9.10 and the guidelines in Table 9.3 to ensure that your schedule is as valid and reliable as possible.

Data analysis

The complexity of your analysis will depend on your research question(s) and objectives. It may be that you are using Figure 9.2 to establish the number of interactions by category in order to relate the result to the output of the meeting. This may enable you to conclude that ‘positive’ behaviours (e.g. brainstorming) may be more strongly associated with meetings that make clear decisions than ‘negative’ behaviours (e.g. being obstructive). Simple manual analysis may be sufficient for this purpose.

Alternatively, you may be using Figure 9.2 to see what patterns emerge. It may be that the amount of interactions varies by the nature of the group or its activity, or that seating position is associated with the number of contributions. Patterns reflecting relationships

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focused</td>
<td>Do not observe and record all that is going on. Concern yourself only with what is strictly relevant</td>
</tr>
<tr>
<td>Unambiguous</td>
<td>Therefore requiring the absolute minimum of observer interpretation</td>
</tr>
<tr>
<td>Non-context dependent</td>
<td>The observer’s job is more difficult if the coding of behaviours is dependent on the context in which the behaviour occurs. It may be essential for your research question(s) and objectives to record contextual data, but this should be kept to a minimum</td>
</tr>
<tr>
<td>Explicitly defined</td>
<td>Provide examples for the observer (even if this is you) of behaviours that fall into each category and those that do not</td>
</tr>
<tr>
<td>Exhaustive</td>
<td>Ensure that it is always possible to make a coding for those behaviours you wish to observe</td>
</tr>
<tr>
<td>Mutually exclusive</td>
<td>Ensure that there is no overlap between behaviour categories</td>
</tr>
<tr>
<td>Easy to record</td>
<td>The observer must be able to tick the correct box quickly without having to memorise appropriate categories</td>
</tr>
</tbody>
</table>

between numbers of interaction categories may become evident (for example, when ‘drawing in others’ was high ‘clarifying/summarising’ was also high). This level of analysis is obviously more complex and will need computer software to calculate the cross-classifications. Section 12.2 contains guidance on preparing data for quantitative analysis by computer.

Threats to validity and reliability

The main threats here are ones of reliability. This section deals with three of these: subject error, time error and observer effects.

Subject error

Subject error may cause your data to be unreliable. You may be concerned with observing the output of sales administrators as measured by the amount of orders they process in a day. Subject error may be evident if you chose administrators in a section that was short-staffed owing to illness. This may mean that they were having to spend more time answering telephones, and less time processing orders, as there were fewer people available to handle telephone calls. The message here is clear: choose subjects who in as many respects as possible are ‘normal’ examples of the population under study.

Time error

Closely related to the issue of subject error is that of time error. It is essential that the time at which you conduct the observation does not provide data that are untypical of the total time period in which you are interested. So the output of the sales administrators may be less in the immediate hour before lunch as their energy levels are lower. If you were interested in the number of customers using a retail store you would need to conduct observations at different times of the day and week to provide a valid picture of total customer flow.

Observer effect

One of the most powerful threats to the validity and reliability of data collected through observation is that of observer effect. This is quite simply that the process of the observer’s observation of behaviour changes the nature of that behaviour owing to the fact that the subject is conscious of being observed. The simplest way to overcome this effect is for the observation to take place in secret. However, this is often not possible, even if it were ethically sound to do so.

Robson (2002) notes two strategies for overcoming observer effect. The first, minimal interaction, means that the observer tries as much as possible to ‘melt into the background’ – having as little interaction as possible with the subjects of the observation. This may involve sitting in an unobtrusive position in the room and avoiding eye contact with those being observed. The second strategy is habituation, where the subjects being observed become familiar with the process of observation so that they take it for granted. Those of you who use a tape-recorder to record discussions may notice that initially the respondent is very wary of the machine, but after a short period this apprehension wears off and the machine is not noticed.

Adopting a strategy of habituation to reduce observer effect may mean that several observation sessions are necessary in the same research setting with the same subjects. As the observer effect diminishes, so the pattern of interaction will settle down into a predictable pattern.
SUMMARY

Participant observation is a method in which the researcher participates in the lives and activities of those whom they are studying. It is used to attempt to get to the root of ‘what is going on’ in a wide range of social settings.

You may use the participant observation method in a student placement or you may already be a member of an organisation that will enable you to adopt the role of the practitioner–researcher.

Participant observation means that you adopt a number of potential roles differentiated by the degree to which your identity is concealed from the subjects of the research and the degree to which you participate in the events you are studying.

Participant observation must avoid the trap of mere storytelling. The purpose is to develop theory.

A prevalent form of data analysis used in participant observation is analytic induction. This may lead to an initial hypothesis being redeveloped more than once.

Structured observation is concerned with the frequency of events. It is characterised by a high level of predetermined structure and quantitative analysis.

A choice may be made between ‘off-the-shelf’ coding schedules and a schedule that you design for your own purpose. Alternatively, you may decide to use a ‘hybrid’.

The main threats to reliability and validity inherent in structured observation are subject error, time error and observer effects.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

9.1 You are a project manager responsible for the overall management of a large project to introduce your company’s technology into the development of a new hospital. Most of the members of your team and from UK, France and Germany. However, several of the engineers are from the newest EU states, principally Poland. You notice at project meetings that the Polish engineers tend to be far more reticent than the other team members in volunteering ideas for solving problems.

This issue has coincided with the arrival on the scene of a management student from the local university who is keen to study a real-life management problem for her final-year undergraduate dissertation. You have asked her to study the assimilation experience of ‘new EU member state’ engineers into your company with a view to recommending any changes that may be necessary to change the programme designed to effect the assimilation process.

You ask her to start the research by sitting in on the project team meetings and, in particular, observing the behaviour of the ‘new EU member state’ engineers. What suggestions would you make to your student to help her structure her observation of the meetings?

9.2 You have been asked to give a presentation to a group of managers at the accountancy firm in which you are hoping to negotiate access for research. You wish to pursue the research question, ‘What are the informal rules that govern the way in which trainee accountants work, and how do they learn these rules?’

You realise that talk of ‘attempting to learn the trainee accountants’ symbolic world’ would do little to help your cause with this group of non-research-minded business people. However, you wish to point out some of the benefits to the organisation that your research may yield. Outline what you believe these would be.
9.3 You are a building society branch manager. You feel your staff are too reluctant to generate sales ‘leads’ from ordinary investors and borrowers, which may be passed on to the society’s consultants in order that they can attempt to sell life insurance policies, pensions and unit trusts. You would like to understand the reasons for their reluctance. As the participant observer, how would you go about this? How would you record your observations?

9.4 Look again at Box 9.10. Ask the questions contained in Box 9.10 in relation to the coding schedule in Figure 9.2. How well does it match?

9.5 Compile a behaviour observation sheet similar to that in Box 9.6 in respect of either your job or that of a friend. Use this to compile a record of the behaviours observed.

9.6 Choose an everyday example of social behaviour, such as the way that motorists park their cars in ‘open’ (not multi-storey) car parks. Observe this behaviour (for example, the distance from the entrance/exit that they park) and draw general conclusions about observed behaviour patterns.

9.7 Video record a current affairs (or similar) discussion on television. Use the recording sheet in Figure 9.2 to record the interactions and then assess interaction patterns.

PROGRESSING YOUR RESEARCH PROJECT

Deciding on the appropriateness of observation

- Return to your research question(s) and objectives. Decide on how appropriate it would be to use observation as part of your research strategy.
- If you decide that this is appropriate, explain the relationship between your research question(s) and objectives and observation. If you decide that using observation is not appropriate, justify your decision.
- Look again at the previous paragraph and ensure that you have responded for both participant observation and structured observation separately.
- If you decide that participant observation is appropriate, what practical problems do you foresee? Are you likely to be faced with any moral dilemmas? How might you overcome both sets of problems?
- If you decide that participant observation is appropriate, what threats to validity and reliability are you likely to encounter? How might you overcome these?
- If you decide that structured observation is appropriate, what practical problems do you foresee? How might you overcome these?
- If you decide that structured observation is appropriate, what threats to validity and reliability are you likely to encounter? How might you overcome these?
- If you decide that structured observation is appropriate, design your own research instrument.
CHAPTER 9 · COLLECTING PRIMARY DATA THROUGH OBSERVATION

References

Further reading

FURTHER READING

Mintzberg, H. (1973) *The Nature of Managerial Work*, New York, Harper & Row. Appendix C has a full account of the methodology that Mintzberg employed. You will be struck by how such a seemingly simple methodology can lead to such important conclusions.

Robson, C. (2002) *Real World Research* (2nd edn), Oxford, Blackwell. Chapter 11 is a most thorough and practical guide to observational methods. There is an interesting section at the end of the chapter on inter-observer reliability that you should look at if you intend to use a number of observers.

Hannah became interested in the concept of the quality of customer service during her marketing degree. In thinking about her research project she was hoping to link this idea with marketing. Hannah wanted to explore the extent to which the service quality experience encouraged customers to use the bank branch. She also felt that as the bank branch was still in existence, there must be some positive experience or the customers would entirely migrate to other forms of distribution such as online banking, with the result that branches would disappear entirely from the High Street.

Her initial research question asked: ‘to what extent is service quality instrumental in determining the customer’s face to face experience in UK bank branches?’

She felt this question would allow her to apply her research method preferences, in particular the chance to use observation as the initial stage of multi-method data collection approach.

From her initial research question Hannah developed the following objectives:

- to establish how the customer views the branch experience;
- to understand the customer experience of service quality in bank branches;
- to establish those elements of service quality that are likely to be instrumental in the face-to-face customer experience;
- to understand the likely affects of service quality delivery on the face-to-face customer experience;
- to draw conclusions of the probable results from this interaction.

Having read the relevant research methods literature, Hannah decided structured observations would be an appropriate starting point for her data collection. The systematic and structured approach would enable her to be consistent about the data collected. She also felt she would take the role of a complete observer; as this would allow her to observe customer behaviour in an unobtrusive way. She was unclear whether she was also adopting the role of observer as participant, so made a diary note to discuss these concerns with her supervisor at their next meeting. Data from her observations would inform the second phase of her research in which she planned to use semi-structured interviews.

Hannah discussed her thoughts on the use of observation as part of a multi-method approach with Arafet, her supervisor. She also discussed her role as complete observer and justified her approach to him. Hannah was observing only customers and not staff. She understood her presence in the branch might have some effect on the staff but not on the customers as they were not conscious of being observed. She argued the observations would give her an insightful and obvious way of observing what customers do in branches and that observing their behaviour would inform the contents of subsequent semi-structured interviews.

Hannah knew that observation would be time consuming and felt she needed to be clear about the specific activities she needed to observe. In particular, she needed to know how much time the observation stage would consume and the appropriate number of observations in each branch. She decided to undertake six one-hour observations in six different branches in a variety of towns. To avoid the complication of time error the observations would be carried out at the different times during the day.

Hannah wrote to a bank's regional director requesting access and was delighted to receive a positive response inviting her to a preliminary meeting. As part of this she was requested to bring a structure of the observations and full background details of her research. The meeting went well and Hannah discovered that the regional director was already promoting service quality in the branches using a variation of the SERVQUAL service quality measurement (Parasuraman, 1995). He requested that Hannah wrote a short report as feedback for him when her observations were complete.
The introduction letters to the branches would be organised by the regional director, but Hannah wanted to ensure that the staff would not be uneasy about her presence in their branch. She therefore offered to write a letter to each of the branch managers introducing herself and setting out the purpose of the observations. In her letter she also offered to meet the branch manager and staff at the branch prior to the visit in order to clarify any points of concern.

The academic literature Hannah had read on service quality measurement suggested there were several approaches she could adopt as the structure and framework for her observations. In particular, she was interested in the frameworks offered by the work of Shostack (1977), Clark (2002) and Bitner (1992).

Using these journal articles and the work of Parasuraman (1995) Hannah designed a form to record her observations. The recording form took two weeks to design as it needed to be flexible enough to account for the different customer behaviours that were likely to occur during the observation. The form’s headings were derived from the literature she had read. Hannah wanted the form to serve as a guide. She did not want the form to be too prescriptive.

The recording form prior to pilot testing

<table>
<thead>
<tr>
<th>Floor plan:</th>
<th>Branch name:</th>
<th>Date of observation:</th>
<th>Time of observation:</th>
</tr>
</thead>
</table>

Environmental conditions and perceived servicescape

<table>
<thead>
<tr>
<th>Ambient conditions</th>
<th>Space/Function</th>
<th>Sign, symbols, cues and artefacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Layout</td>
<td>Signage</td>
</tr>
<tr>
<td>Air quality</td>
<td>Equipment</td>
<td>Personal artefacts</td>
</tr>
<tr>
<td>Noise</td>
<td>Furnishings</td>
<td>Style and decor</td>
</tr>
<tr>
<td>Music</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Customer response

<table>
<thead>
<tr>
<th>Cognitive</th>
<th>Emotional</th>
<th>Physiological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief</td>
<td>Mood</td>
<td>Pain</td>
</tr>
<tr>
<td>Categorisation</td>
<td>Attitude</td>
<td>Comfort</td>
</tr>
<tr>
<td>Symbolic meaning</td>
<td></td>
<td>Movement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical fitness</td>
</tr>
</tbody>
</table>

Customer behaviour

<table>
<thead>
<tr>
<th>Approach</th>
<th>Avoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attraction</td>
<td>Not attracted</td>
</tr>
<tr>
<td>Stay/explore</td>
<td>Walk</td>
</tr>
<tr>
<td>Spend purchase</td>
<td>Not purchase</td>
</tr>
<tr>
<td>Return attraction</td>
<td>Leave and not return</td>
</tr>
</tbody>
</table>

The recording form prior to pilot testing
In designing her recording form, Hannah constantly referred back to the research objectives to make sure the headings and structure of the form would help in the collection of the relevant data. She was particularly concerned that it allowed her to measure the tangible and intangible elements of service quality. The form also included a floor plan and indicated where Hannah would sit in the bank branch. She also decided to take photographs as documentary evidence. These would provide a visual reminder of each branch visit when interpreting the data. Prior to using the form Hannah decided to pilot test it.

References

QUESTIONS
1 How should Hannah justify to Arafet, her supervisor, her role as a complete observer?
2 Imagine you are Arafet. How would you respond to the question, ‘Do you think I am adopting the role of observer as participant?’ Give reasons for your response.
3 How do you think Hannah’s presence as an observer might impact upon the data she collected?
4 Examine Hannah’s recording form (above). Outline how you feel it could be improved.

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:
■ Manufacturing in a textile company
■ Customer satisfaction on a long-haul tour holiday

SELF-CHECK ANSWERS
9.1 It may be as well to suggest to her that she start her attendance at meetings with an unstructured approach in order to simply get the ‘feel’ of what is happening. She should make notes of her general impressions of the ‘new EU member states’ team members’ general participation in meetings. She could then analyse these data and develop an observational instrument which could be used in further meetings she attends. This instrument would be based on a coding schedule that allowed her to record, among other things, the amount of contribution by each person at the meeting and the content of that contribution.

Data collection at the meetings does, of course, raise questions of research ethics. In our view, you, as the project manager, should explain to the team the role that the researcher is playing at the meetings. It would be quite truthful to say that the meeting participation of all team members is being observed with the overall purpose of making the meetings more effective, although it need not be emphasised what gave rise to the project manager’s initial concern.

9.2 The research question is very broad. It allows you plenty of scope to discover a host of interesting things about the world of the trainee accountant. Without doubt, one of the things you will emerge with a clear understanding of is what they like about their work and what they do not like. This has practical implications for the sort of people that the firm ought to recruit, how they should be trained and rewarded. You may learn about some of the short cuts practised by all occupations that may not be in the interest of the client. By the same token you will probably discover aspects of good practice that managers can disseminate to other accountants. The list of practical implications is endless.
All this assumes, of course, that you will supply the managers with some post-research feedback. This does raise issues of confidentiality, which you must have thought through beforehand.

9.3 This is a difficult one. The question of status may be a factor. However, this would depend on your relationship with the staff. If you are, say, of similar age and have an open, friendly, 'one of the team' relationship with them, then it may not be too difficult. The element of threat that would attend a less open relationship would not be present.

You could set aside a time each day to work on the counter in order really to get to know what life is like for them. Even if you have done their job, you may have forgotten what it is like! It may have changed since your day. Direct conversations about lead generation would probably not feature in your research times. However, you would need to have a period of reflection after each 'research session' to think about the implications for your research question of what you have just experienced.

9.4 Clearly there are some question marks about the coding schedule in Figure 9.2. There does appear to be some overlap in the behavioural categories covered in the schedule. For example, it could be difficult to distinguish between what is 'offering directions' (taking initiative) and 'offering ideas' (brainstorming). It might be even more difficult to draw a distinction between 'offering suggestions' (brainstorming) and 'making helpful suggestions' (offering positive ideas). Similarly, there does not appear to be much difference between the behaviours in 'drawing in others' and 'being responsive to others'. You may argue that the first is defined by invitation, the second by response. But making the distinction when the interactions are coming thick and fast in the research setting will be much less easy.

The point about all these potential confusions is that different observers may make different estimations. This obviously has potentially harmful implications for the reliability of the coding schedule.

A much smaller point is: How does the observer indicate on the schedule the occurrence of a particular interaction?

Get ahead using resources on the Companion Website at:
www.pearsoned.co.uk/saunders

- Improve your SPSS and NVivo research analysis with practice tutorials.
- Save time researching on the Internet with the Smarter Online Searching Guide.
- Test your progress using self-assessment questions.
- Follow live links to useful websites.
LEARNING OUTCOMES

By the end of this chapter you should be:

➔ able to classify research interviews in order to help you to understand the purpose of each type;
➔ aware of research situations favouring the use of semi-structured and in-depth interviews, and their limitations;
➔ able to analyse potential data quality issues and evaluate how to overcome these;
➔ able to consider the development of your competence to undertake semi-structured and in-depth interviews, and the logistical and resource issues that affect their use;
➔ aware of the relative advantages of using one-to-one and group interviews, including focus groups, in particular contexts;
➔ aware of the issues and advantages of conducting interviews by telephone and via the Internet or intranet.

10.1 Introduction

An interview is a purposeful discussion between two or more people (Kahn and Cannell, 1957). The use of interviews can help you to gather valid and reliable data that are relevant to your research question(s) and objectives. Where you have not yet formulated such a research question and objectives, an interview or interviews may help you to achieve this. In reality, the research interview is a general term for several types of interview. This fact is significant since the nature of any interview should be consistent with your research question(s) and objectives, the purpose of your research and the research strategy that you have adopted. We provide an overview of types of interview in the next section of this chapter (Section 10.2) and show how these are related to particular research purposes. However, as indicated by this chapter's title, our main focus is semi-structured, in-depth and group interviews, structured interviews (interviewer administered questionnaires) being discussed in Chapter 11.
Section 10.3 considers situations favouring the use of semi-structured and in-depth interviews. The following three sections examine issues associated with the use of these types of interview. Section 10.4 identifies data quality issues associated with their use and discusses how to overcome them. Section 10.5 considers the areas of competence that you will need to develop. Section 10.6 discusses logistical and resource issues and how to manage these. Throughout the discussion of issues related to the use of semi-structured and in-depth interviews our focus is on what you will need to think about in order to be able to conduct these interviews. Section 10.7 considers the particular advantages and issues associated with the use of group interviews and focus groups. Finally, Section 10.8 explores the advantages and issues associated with telephone, Internet and intranet-mediated (electronic) interviews.

10.2 Types of interview and their link to the purposes of research and research strategy

Types of interview

Interviews may be highly formalised and structured, using standardised questions for each respondent (Section 11.2), or they may be informal and unstructured conversations. In between there are intermediate positions. One typology that is commonly used is thus related to the level of formality and structure, whereby interviews may be categorised as one of:

- Highly formalised and structured interviews, using standardised questions for each respondent (Section 11.2).
- Informal and unstructured conversations.
- Intermediate positions.

Types of interview and their link to the purposes of research and research strategy

Jeremy Paxman on Newsnight

There is probably not a day that goes by without you reading about, listening to and watching interviews. We read interviews such as those given by business leaders in quality newspapers, listen to interviews such as those with celebrities on radio programmes and watch interviews such as those with politicians on television programmes. However, despite the seeming ease with which they are conducted, using the interview to collect research data requires considerable skills.

Interviewer skills are regularly demonstrated by presenters such as the BBC’s Jeremy Paxman. His interview with the UK government’s Home Secretary, Michael Howard, on 13 May 1997 is still remembered as one of the toughest political interviews ever conducted (BBC, 2005) and resulted subsequently in Paxman winning the 1998 Interviewer of the Year award. During the interview, Paxman was questioning Howard about the management of the UK Prison Service and, in particular, his account of the recent dismissal of the Head of the Prison Service at that time, Derek Lewis. During the interview Paxman asked the former Home Secretary the question ‘Did you threaten to overrule him [i.e. Lewis]?’ twelve times, the question relating to a decision about a particular prison. Before moving on to the next part of the interview Paxman commented: ‘With respect, you have not answered the question of whether you threatened to overrule him.’ At the time, this interview and, in particular, Howard’s responses to this question were thought likely to have contributed to the stalling of Howard’s political career.
structured interviews;

semi-structured interviews;

unstructured or in-depth interviews.

Another typology (Healey, 1991; Healey and Rawlinson, 1993, 1994) differentiates between:

standardised interviews;

non-standardised interviews.

Robson (2002), based on the work of Powney and Watts (1987), refers to a different typology:

respondent interviews;

informant interviews.

There is overlap between these different typologies, although consideration of each typology adds to our overall understanding of the nature of research interviews.

Structured interviews use questionnaires based on a predetermined and standardised or identical set of questions and we refer to them as interviewer-administered questionnaires (Section 11.2). You read out each question and then record the response on a standardised schedule, usually with pre-coded answers (Sections 11.4 and 12.2). While there is social interaction between you and the respondent, such as the preliminary explanations that you will need to provide, you should read out the questions exactly as written and in the same tone of voice so that you do not indicate any bias. As structured interviews are used to collect quantifiable data they are also referred to as quantitative research interviews.

By comparison, semi-structured and in-depth (unstructured) interviews are non-standardised. These are often referred to as qualitative research interviews (King, 2004). In semi-structured interviews the researcher will have a list of themes and questions to be covered, although these may vary from interview to interview. This means that you may omit some questions in particular interviews, given a specific organisational context that is encountered in relation to the research topic. The order of questions may also be varied depending on the flow of the conversation. On the other hand, additional questions may be required to explore your research question and objectives given the nature of events within particular organisations. The nature of the questions and the ensuing discussion mean that data will be recorded by audio-recording the conversation or perhaps note taking (Section 10.5).

Unstructured interviews are informal. You would use these to explore in depth a general area in which you are interested. We therefore refer to these as in-depth interviews in this chapter and elsewhere in this book. There is no predetermined list of questions to work through in this situation, although you need to have a clear idea about the aspect or aspects that you want to explore. The interviewee is given the opportunity to talk freely about events, behaviour and beliefs in relation to the topic area, so that this type of interaction is sometimes called non-directive. It has been labelled as an informant interview since it is the interviewee's perceptions that guide the conduct of the interview. In comparison, a respondent interview is one where the interviewer directs the interview and the interviewee responds to the questions of the researcher (Easterby-Smith et al., 2002; Ghauri and Gronhaug, 2005; Healey and Rawlinson, 1994; Robson, 2002).

We can also differentiate between types of interview related to the nature of interaction between the researcher and those who participate in this process. Interviews may be
conducted on a one-to-one basis, between you and a single participant. Such interviews are most commonly conducted by meeting your participant ‘face to face’, but there may be some situations where you conduct an interview by telephone or electronically via the Internet or an organisation’s intranet. There may be other situations where you conduct a semi-structured or in-depth interview on a group basis, where you meet with a small number of participants to explore an aspect of your research through a group discussion that you facilitate. These forms of interview are summarised in Figure 10.1. The discussion throughout most of this chapter applies to each of these forms. However, the final two sections (10.7 and 10.8) include specific consideration of the issues and advantages related to the use of group interviews and focus groups and to the use of a telephone and Internet-mediated interviews as an alternative to a ‘face-to-face’ meeting, respectively.

Links to the purpose of research and research strategy

Each form of interview outlined above has a distinct purpose. Standardised interviews are normally used to gather data, which will then be the subject of quantitative analysis (Sections 12.3–12.5), for example as part of a survey strategy. Non-standardised (semi-structured and in-depth) interviews are used to gather data, which are normally analysed qualitatively (Sections 13.2–13.6), for example as part of a case study strategy. These data are likely to be used not only to reveal and understand the ‘what’ and the ‘how’ but also to place more emphasis on exploring the ‘why’.

In Chapter 5 we outlined how the purpose of your research could be classified as exploratory, descriptive and explanatory studies (Section 5.2). By examining these categories we can see how the various types of interview may be used to gather information for, and assist the progress of, each kind of study:

- In an exploratory study, in-depth interviews can be very helpful to ‘find out what is happening [and] to seek new insights’ (Robson, 2002:59) (Box 10.1). Semi-structured interviews may also be used in relation to an exploratory study.
- In descriptive studies, structured interviews (Section 11.2) can be used as a means to identify general patterns.

![Figure 10.1 Forms of interview](image-url)
In an explanatory study, semi-structured interviews may be used in order to under-
stand the relationships between variables, such as those revealed from a descriptive
study (Section 5.2). Structured interviews may also be used in relation to an explana-
tory study, in a statistical sense (Section 12.5).

This is summarised in Table 10.1.

Your research may incorporate more than one type of interview. As part of a survey
strategy, for example, you may decide to use in-depth or semi-structured interviews
initially to help identify the questions that should be asked in your questionnaire. The
data that you gather from such exploratory interviews will be used in the design of your
questionnaire or structured interview. Semi-structured interviews may be used to explore
and explain themes that have emerged from the use of your questionnaire (Wass and
Wells, 1994). In addition to this staged approach, Healey and Rawlinson (1994:130) state
that a combination of styles may be used within one interview: ‘one section of an inter-
view may ask a common set of factual questions . . . while in another section a
semi-structured qualitative approach may be used to explore [responses]’. Wass and Wells
(1994) make the point that interviews, presumably semi-structured or in-depth ones,
may also be used as a means to validate findings from the use of questionnaires. We can
therefore see that the various types of interview have a number of potentially valuable
uses in terms of undertaking your research project. The key point for you to consider is
the consistency between your research question and objectives, the strategy you will
employ and the methods of data collection you will use – their fitness for purpose.

10.3 Situations favouring non-standardised
(qualitative) interviews

There are many situations in which the use of non-standardised (qualitative) research
interviews as a method of data collection may be advantageous. These can be grouped
into four aspects related to interview:

- the purpose of the research;
- the significance of establishing personal contact;
- the nature of the data collection questions;
- length of time required and completeness of the process.

We examine each of these in turn.

Table 10.1 Uses of different types of interview in each of the main research categories

<table>
<thead>
<tr>
<th></th>
<th>Exploratory</th>
<th>Descriptive</th>
<th>Explanatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structured</td>
<td></td>
<td>✓✓</td>
<td>✓</td>
</tr>
<tr>
<td>Semi-structured</td>
<td>✓</td>
<td></td>
<td>✓✓</td>
</tr>
<tr>
<td>Unstructured</td>
<td>✓✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✓✓ = more frequent, ✓ = less frequent
The purpose of the research

Where you are undertaking an exploratory study, or a study that includes an exploratory element, it is likely that you will include non-standardised (qualitative) research interviews in your design (Blumberg et al., 2005). Similarly, an explanatory study is also likely to include interviews in order for the researcher to be able to infer causal relationships between variables (Sections 5.2 and 11.4). Essentially, where it is necessary for you to understand the reasons for the decisions that your research participants have taken, or to understand the reasons for their attitudes and opinions, it will be necessary for you to conduct a qualitative interview.

Semi-structured and in-depth interviews provide you with the opportunity to ‘probe’ answers, where you want your interviewees to explain, or build on, their responses. This is important if you are adopting an interpretivist epistemology, where you will be concerned to understand the meanings that respondents ascribe to various phenomena (Section 4.2). Interviewees may use words or ideas in a particular way, and the opportunity to probe these meanings will add significance and depth to the data you obtain. It may also lead the discussion into areas that you had not previously considered but...
which are significant for your understanding, and which help you to address your research question and objectives, or indeed help you formulate such a question. They also afford each interviewee an opportunity to hear herself or himself ‘thinking aloud’ about things she or he may not have previously thought about. The result should be that you are able to collect a rich and detailed set of data.

The significance of establishing personal contact

We have found that managers are more likely to agree to be interviewed, rather than complete a questionnaire, especially where the interview topic is seen to be interesting and relevant to their current work. An interview provides them with an opportunity to reflect on events without needing to write anything down. Other researchers report similar conclusions, where participants prefer to be interviewed rather than fill in a questionnaire (North *et al*., 1983, cited in Healey, 1991). This situation also provides the opportunity for interviewees to receive feedback and personal assurance about the way in which information will be used (Sections 6.2 and 6.4, Box 6.1).

Potential research participants who receive a questionnaire through the post may be reluctant to complete it for a number of reasons. They may feel that it is not appropriate to provide sensitive and confidential information to someone they have never met. They may also not completely trust the way in which the information they provide is used. They may be reluctant to spend time providing written explanatory answers, where these are requested, especially if the meaning of any question is not entirely clear. The use of personal interviews, where appropriate, may therefore achieve a higher response rate than using questionnaires. Healey (1991:206) also makes the point that ‘the interviewer . . . has more control over who answers the questions’ in comparison with a questionnaire, which may be passed from one person to another.

The nature of the questions

An interview will undoubtedly be the most advantageous approach to attempt to obtain data in the following circumstances (Easterby-Smith *et al*., 2002; Healey, 1991; Jankowicz, 2005):

- where there are a large number of questions to be answered;
- where the questions are either complex or open-ended;
- where the order and logic of questioning may need to be varied (Box 10.2).

A semi-structured or in-depth interview will be most appropriate for the latter two types of situation.

Length of time required and completeness of the process

Apart from the difficulty of trying to design a viable questionnaire schedule to cope with issues that are complex, unclear, or large in number, the time needed for the respondent to complete the questionnaire may mean that an interview is in any case the best or only alternative. In our experience, where expectations have been clearly established about the length of time required and participants understand and agree with the objectives of the research interview, they have generally been willing to agree to be interviewed. Some negotiation is, in any case, possible and the interview can be arranged at a time when the interviewee will be under least pressure. We have found that our respondents tend to be
generous with their time, and sometimes when interviews have been arranged to start at mid-morning they often arrange for lunch, which can allow the discussion and exploration of issues to continue. However, for those of you who fancy a free lunch, we do not want to raise your expectations falsely, and the start time for an interview should not be set with this in mind!

Your aim will be to obtain data to enable you to answer all your research questions, allowing for the right of participants to decline to respond to any question you ask. Where you conduct the event skilfully an interview is more likely to achieve this than the use of a self-administered or interviewer-administered questionnaire. Where your respondent does not provide an answer to a particular question or questions in a non-standardised interview, you should be able to form some indication of why a response could not be provided. This may even lead you to modify the question or to compose another where this would be appropriate. Section 6.4 provides a consideration of the ethical issues associated with seeking to obtain answers.

While there are a number of situations favouring the use of non-standardised (qualitative research) interviews, you still need to decide whether or not to use these types of interview and to justify your choice. Box 10.3 provides a checklist to help you in your deliberations.

10.4 Data quality issues and preparing for the interview

Data quality issues

A number of data quality issues can be identified in relation to the use of semi-structured and in-depth interviews, related to:

- reliability;
forms of bias;
validity and generalisability.

These are discussed in turn.

The lack of standardisation in such interviews may lead to concerns about reliability. In relation to qualitative research, reliability is concerned with whether alternative researchers would reveal similar information (Easterby-Smith et al., 2002; Healey and Rawlinson, 1994). The concern about reliability in these types of interview is also related to issues of bias. There are various types of bias to consider. The first of these is related to interviewer bias. This is where the comments, tone or non-verbal behaviour of the interviewer creates bias in the way that interviewees respond to the questions being asked. This may be where you attempt to impose your own beliefs and frame of reference through the questions that you ask. It is also possible that you will demonstrate bias in the way you interpret responses (Easterby-Smith et al., 2002). Where you are unable to develop the trust of the interviewee, or perhaps where your credibility is seen to be lacking, the value of the information given may also be limited, raising doubts about its validity and reliability.

Related to this is interviewee or response bias. This type of bias may be caused by perceptions about the interviewer, as referred to above, or in relation to perceived interviewer bias. However, the cause of this type of bias is not necessarily linked to any perception related to the interviewer. Taking part in an interview is an intrusive process. This is especially true in the case of in-depth or semi-structured interviews, where your aim will be to explore events or to seek explanations. The interviewee may, in principle, be willing to participate but may nevertheless be sensitive to the unstructured exploration of certain themes. Interviewees may therefore choose not to reveal and discuss an aspect of the topic that you wish to explore, because this would lead to probing questions that would intrude on sensitive information that they do not wish, or are not empowered, to discuss with you. The outcome of this may be that the interviewee provides a partial ‘picture’ of the situation that casts himself or herself in a ‘socially desirable’ role, or the organisation for which they work in a positive or even negative fashion.

Bias may also result from the nature of the individuals or organisational participants who agree to be interviewed (Box 10.4). The time-consuming requirements of the inter-

BOX 10.3 CHECKLIST

To help you decide whether to use semi-structured or in-depth interviews

- Does the purpose of your research suggest using semi-structured and/or in-depth interviews?
- Will it help to seek personal contact in terms of gaining access to participants and their data?
- Are your data collection questions large in number, complex or open-ended?
- Will there be a need to vary the order and logic of questioning?
- Will it help to be able to probe interviewees’ responses to build on or seek explanation of their answers?
- Will the data collection process with each individual involve a relatively lengthy period?
view process may result in a reduction in willingness to take part on behalf of some of those to whom you would like to talk. This may bias your sample from whom data are collected (Robson, 2002). This is an issue that you will need to consider carefully and attempt to overcome through the approach taken to sampling (Sections 7.2 and 7.3).

BOX 10.4 WORKED EXAMPLE

Willingness (or otherwise) to be interviewed

Saffron’s research project involved her interviewing people about their perceptions of the real benefits of different hair products. She decided that the best way to conduct these interviews was, with the permission of the owner, to interview customers at her local hairdresser. Saffron discovered that although some of the customers were willing to be interviewed, others were not. A minority of customers, often smartly dressed in business suits, refused outright, saying that they had insufficient time. In contrast, others, particularly pensioners, were happy to answer her questions in considerable detail and appeared to wish to prolong the interview.

There is also likely to be an issue about the generalisability of the findings from qualitatively based interview studies, although the validity of such studies is not raised as an issue. If we consider **validity** first, this refers to the extent to which the researcher gains access to their participants’ knowledge and experience, and is able to infer a meaning that the participant intended from the language that was used by this person. The high level of validity that is possible in relation to non-standardised (qualitative) interviews that are conducted carefully is made clear by the following quotation:

> The main reason for the potential superiority of qualitative approaches for obtaining information is that the flexible and responsive interaction which is possible between interviewer and respondent(s) allows meanings to be probed, topics to be covered from a variety of angles and questions made clear to respondents.

(Sykes, 1991:8, cited in Healey and Rawlinson, 1994:132)

However, qualitative research using semi-structured or in-depth interviews will not be able to be used to make **generalisations** about the entire population (whatever this may be in the context of the research topic) where this is based on a small and unrepresentative number of cases. This is often the situation when adopting a case study strategy (Yin, 2003).

Overcoming data quality issues

Reliability

One response to the issue of reliability is that the findings derived from using non-standardised research methods are not necessarily intended to be repeatable since they reflect reality at the time they were collected, in a situation which may be subject to change (Marshall and Rossman, 1999). The assumption behind this type of research is that the circumstances to be explored are complex and dynamic. The value of using non-standardised interviews is derived from the flexibility that you may use to explore the complexity of the topic. Therefore an attempt to ensure that qualitative, non-standardised research could be replicated by other researchers would not be realistic or feasible without undermining the strength of this type of research. Marshall and Rossman (1999) suggest that researchers using a qualitative, non-standardised approach need to make this
clear – perhaps to transform an aspect perceived to be a weakness by some into a strength based on realistic assumptions about the ability to replicate research findings.

However, they suggest that where you use this approach you should make and retain notes relating to your research design, the reasons underpinning the choice of strategy and methods, and the data obtained. This will be referred to by other researchers in order to understand the processes that you used and your findings and, where appropriate, to enable them to reanalyse the data you collected. The use of non-standardised interviews should not lead to a lack of rigour in relation to the research process – if anything, greater rigour is required to overcome the views of those who may be wedded to the value of quantitative research to the exclusion of any other approach.

Preparation

Like all research methods, the key to a successful interview is careful preparation. When using non-structured interviews the five Ps are a useful mantra: prior planning prevents poor performance. In particular, we believe it is critical that you plan precisely how you are going to demonstrate your credibility and obtain the confidence of the interviewees. Issues associated with this are discussed in the following subsections and summarised in Box 10.12 on page 328 as a checklist.

Level of knowledge

You need to be knowledgeable about the organisational or situational context in which the interview is to take place. A prior search in your university library (Sections 3.4 and 3.5) may reveal journal articles written by senior employees of the organisation that is participating in your research. There may also be other material about the organisation, and this is particularly likely to be found on the Internet, in the ‘trade’ press and the quality newspapers. It may also be appropriate to look at company reports and other publications, or financial data relating to the organisation. The ability to draw on this type of information in the interview should help to demonstrate your credibility and thereby encourage the interviewee to offer a more detailed account of the topic under discussion. A further benefit of this is made clear by Healey and Rawlinson (1994:136): ‘A well informed interviewer has a basis for assessing the accuracy of some of the information offered.’

Your level of knowledge about your research topic should also help to establish your credibility in the view of your research participant. This knowledge may be gleaned through the review of the literature that you undertake. As you undertake a number of interviews, you will also be able to draw on the initial analysis that you make of data previously collected.

Level of information supplied to the interviewee

Credibility may also be promoted through the supply of relevant information to participants before the interview. Providing participants with a list of the interview themes before the event, where this is appropriate, should help this. The list of themes (Boxes 10.1 and 10.5) should also promote validity and reliability by enabling the interviewee to consider the information being requested and allowing them the opportunity to assemble supporting organisational documentation from their files. We can testify to this approach and the value of allowing participants to prepare themselves for the discussion in which they are to engage. Access to organisational documentation also allows for triangulation of the data provided (Sections 8.2 and 8.3). Our experience is that participants are generally willing to supply a photocopy of such material, although of course it will be necessary to conceal any confidential or personal details that this contains.
Interview themes may be derived from the literature that you read, the theories that you consider, your experience of a particular topic, common sense, discussions with co-workers, fellow students, tutors and research participants, or some combination of these approaches. You will need to have some notion of the theme or themes that you wish to discuss with your participants even if you intend to commence with exploratory, in-depth interviews and adopt a grounded theory approach to your research project (Section 13.6). Without at least some focus, your work will clearly lack a sense of direction and purpose. It will be necessary for you to formulate a focus if your work is to make progress. You should therefore start with a set of themes that reflect the variables being studied, or at least one or more general questions related to your research topic that you could use to start your interview. These can be incorporated into your interview guide (Box 10.6). This lists topics that you intend to cover in the interview along with initial question and probes that may be used to follow up initial responses and obtain greater detail from the participants (King, 2004). When creating your guide, you need to try to ensure that the order of questions is likely to be logical to your participants and that the language you use will be comprehensible. Using your guide, you will be able to develop and/or explore research themes through the non-standardised interviews that you conduct to see whether you can identify and test relationships between them (Chapter 13).

Appropriateness of location It is possible that the place you conduct your interviews may influence the data you collect. As we discussed in Section 6.4, you should choose the location for your interviews with regard to your own personal safety. However, it is also important that you think about the impact that the location will have upon your participants and the responses they are likely to give. In particular, you should choose a location which is convenient for your participants, where they will feel comfortable and where the interview is unlikely to be disturbed (Box 10.7). Finally, you need to choose a place that is quiet so that outside noise will not reduce the quality of your audio-recording of the interview. Mark recalls an interview in a room outside which building work was taking place. Although he was able to hear the participant’s responses clearly whilst the interview was taking place, for much of the audio-recording these responses were unintelligible due to the sound of a very loud pneumatic drill!
Appropriateness of the researcher’s appearance at the interview

Your appearance may affect the perception of the interviewee. Where this has an adverse effect on your credibility in the view of interviewees, or results in a failure to gain their confidence, the resulting bias may affect the reliability of the information provided. Robson (2002) advises researchers to adopt a similar style of dress to those to be interviewed. Essentially, you will need to wear clothing that will be generally acceptable for the setting within which the interview is to occur (Box 10.8).

Nature of the opening comments to be made when the interview commences

Where the interviewee has not met you before, the first few minutes of conversation will have a significant impact on the outcome of the interview – again related to the issue of your credibility and the level of the interviewee’s confidence. Often such interviews occur in

BOX 10.6 WORKED EXAMPLE

Extract from an interview guide

Karl was interested in understanding why some employees in his organisation used the IT Help Desk whilst others did not. Using his interview themes (Box 10.5) he began to develop his guide:

Help Desk Support

1. To what extent does the IT Help Desk meet your needs?
 - Probe: In what ways? [ask for real-life examples]
 - Probe: Can you give me an example (if possible) of when you received good support from the IT Help Desk?
 - Probe: Can you give me an example (if possible) of when you received insufficient support from the IT Help Desk?

2. Do you consider you have enough support from the IT Help Desk?
 - Probe: How is this support provided (e.g. telephone, face to face)?
 - Probe: What else (if anything) could usefully be done?

BOX 10.7 WORKED EXAMPLE

Choosing an appropriate location

Anne was pleased that the manufacturing company in which she was undertaking her research had arranged for her to use a room in the Human Resources Department. The room contained a low table and chairs, had an electric plug socket for her audio-recorder and she had been provided with bottled water and glasses as well. However, after her third interview she was beginning to doubt her own interviewing skills. Her participants, the company’s production line workers, seemed unwilling to be open in their responses. She began to wonder if something was wrong with the interview location and decided to ask the next participant about this. At the end of that interview she had her answer. Her participants were unhappy with the interview location. Prior to being interviewed by Anne, the only time they or their colleagues had visited the Human Resources Department was to receive a reprimand. The location was therefore inappropriate!
a setting that is unfamiliar to you. Despite this, it is your responsibility to shape the start of the discussion. You will need to explain your research to the participant and, hopefully, gain their consent (Section 6.4, Box 6.12). As part of this you will need to establish your credibility and gain the interviewee’s confidence. During these initial discussions we have found that the interviewee often has some uncertainties about sharing information, and about the manner in which these data may be used. Alternatively, she or he may still need clarification about the exact nature of the data that you wish to obtain. We have found that a pre-prepared participant information sheet (Section 6.4, Box 6.12) and consent form (Box 6.13) are both extremely helpful in reducing anxieties. There may also be a degree of curiosity on the part of the interviewee and probably a genuine level of interest in the research, related to the reason why the request to participate was accepted. This curiosity and interest will offer an opening for both parties to start a conversation, probably before the ‘intended discussion’ commences. You may find it appropriate to follow the initial discussion by demonstrating interest in the interviewee by asking about their role within the host organisation (Ghauri and Grønhaug, 2005). However, you need to make sure that these opening moves to demonstrate credibility and friendliness, and to relax and develop a positive relationship, are not overstated, so that too much time is used and the interviewee starts to become bored or restive.

The start of the intended discussion therefore needs to be shaped by you. It is your opportunity to allay, wherever possible, the interviewee’s uncertainties about providing information, establish the participant’s rights and, based upon this, hopefully, obtain informed consent. Box 10.9 provides a structure that you can adapt for starting your interviews.

Healey and Rawlinson (1994) say that an assurance from you that confidential information is not being sought should make interviewees more relaxed and open about the information that they are willing to discuss. Combined with assurances about anonymity, this should increase the level of confidence in your trustworthiness and reduce the possibility of interviewee or response bias. You can also demonstrate your commitment to confidentiality by not naming other organisations that have participated in your research, or by talking about the data you obtained from them.
Approach to questioning When conducted appropriately, your approach to questioning should reduce the scope for bias during the interview and increase the reliability of the information obtained. Your questions need to be phrased clearly, so that the interviewee can understand them, and you should ask them in a neutral tone of voice. Easterby-Smith et al. (2002) point out that the use of open questions (Section 10.5) should help to avoid bias. These can then be followed up by the use of appropriately worded probing questions (Section 10.5). The use of these types of question will help you to explore the topic and to produce a fuller account. Conversely, questions that seek to lead the interviewee or which indicate bias on your part should be avoided. Perceived interviewer bias may well lead to interviewee or response bias. Long questions or those that are really made up of two or more questions should also be avoided if you are to obtain a response to each aspect that you are interested to explore (Robson, 2002).

Questions should also avoid too many theoretical concepts or jargon since your understanding of such terms may vary from that of your interviewees. Where theoretical concepts or specific terminology need to be used, you will have to ensure that both you and the interviewee have the same understanding (Box 10.10; Easterby-Smith et al., 2002; Ghauri and Grønhaug, 2005).

When asking questions it is important that wherever possible these are grounded in the real-life experiences of your participants rather than being on an abstract concept. One approach to questioning which makes use of key participant experiences is the

BOX 10.9 WORKED EXAMPLE

Opening a semi-structured interview

As part of her research project Bethan undertook a series of semi-structured interviews with freelance IT consultants working for a range of organisations. She covered the following points at the start of each interview:

- The participant was thanked for considering the request for access and for agreeing to the meeting.
- The purpose of the research and its progress to date were outlined briefly. As part of this, the participant was given an information sheet to keep.
- The previously agreed right to confidentiality and anonymity was reiterated by stating that nothing said by the participant would be attributed to her or him without first seeking and obtaining permission.
- The participant’s right not to answer any question was emphasised and that the interview would be stopped if they wished.
- The participant was told about the nature of the outputs to which the research was intended to lead and what would happen to the data collected during and after the project.
- The offer to provide a summary of the research findings to the interviewee was also restated, as was when this would happen.
- The request to record the interview electronically was restated and, where agreed, this was used subsequently.
- Before the substantive discussion started, Bethan again requested permission to undertake the interview, summarised the themes to be covered, confirmed the amount of time available and requested that the participant read and signed the informed consent form.

All of these points were dealt with within five minutes.
critical incident technique, in which respondents are asked to describe in detail a critical incident or number of incidents that are key to the research question. A critical incident is defined as an activity or event where the consequences were so clear that the respondent has a definite idea regarding the effects (Keaveney, 1995).

BOX 10.10 WORKED EXAMPLE

(Mis)understanding terminology

Sven was conducting an interview with the European sales manager of a large multinational corporation. Throughout the interview the sales manager referred to the European Division. Sven assumed that the sales manager meant continental Europe. However, by chance, later questions revealed that, for this organisation, Europe extended into parts of Asia, including Turkey, the United Arab Emirates, Saudi Arabia, Kuwait and Israel. Until this point in the interview, Sven had assumed that these countries were the responsibility of another sales manager!

Healey and Rawlinson (1994:138) suggest that ‘it is usually best to leave sensitive questions until near the end of an interview because this allows a greater time for the respondent to build up trust and confidence in the researchers’. They report cases where the first part of an interview is used by participants to assess the level of trust that can be placed in the researcher. Others have witnessed this experience, as Box 10.11 illustrates, affecting the nature of the questions that may be asked during the early part of an interview.

BOX 10.11 WORKED EXAMPLE

Establishing trust and asking sensitive questions

Sam recalls an occasion when her treatment by her participants altered as her group interview progressed. For the first hour of a two-hour interview it appeared to her that the participants were convinced that she was really there to sell them a consultancy service. When they accepted that she was not going to try to sell them something, the mood of the interview changed and they became much more relaxed and responsive to the questions that Sam wished to ask. It was at this point that she was able to ask and pursue more sensitive questions that could have led to the interview being terminated during the period when the participants mistrusted her motives.

Once this position of trust has been reached and you wish to seek responses to potentially sensitive questions, Ghauri and Grønhaug (2005) point out that the wording of these deserve very particular attention in order to avoid any negative inferences related to, for example, responsibility for failure or error. Care taken over the exploration of sensitive questions should help towards the compilation of a fuller and more reliable account.

Nature and impact of the interviewer’s behaviour during the course of the interview

Appropriate behaviour by the researcher should also reduce the scope for bias during the interview. Comments or non-verbal behaviour, such as gestures, which indicate any bias in your thinking should be avoided. A neutral (but not an uninterested) response should be projected in relation to the interviewee’s answers in order not to provide any lead that
Chapter 10 - Collecting Primary Data Using Semi-Structured, In-Depth and Group Interviews

May result in bias. Robson (2002) says that you should enjoy the interview opportunity, or at least appear to do so. An appearance of boredom on your part is hardly likely to encourage your interviewee!

Your posture and tone of voice may also encourage or inhibit the flow of the discussion. You should sit slightly inclined towards the interviewee and adopt an open posture, avoiding folded arms. This should provide a signal of attentiveness to your interviewee (Torrington, 1991). Tone of voice can also provide a signal to the interviewee. You need to project interest and enthusiasm through your voice, avoiding any impression of anxiety, disbelief, astonishment or any other negative signal.

Demonstration of attentive listening skills The purpose of a semi-structured or in-depth interview will be to understand the participant’s explanations and meanings. This type of interaction will not be typical of many of the conversations that you normally engage in, where those involved often compete to speak rather than concentrate on listening. You therefore need to recognise that different skills will be emphasised in this kind of interaction. Torrington (1991:43) says that listening involves people being ‘on the lookout for signals and willing to spend the time needed to listen and build understanding, deliberately holding back our own thoughts, which would divert or compete with the other’s’.

It will be necessary for you to explore and probe explanations and meanings, but you must also provide the interviewee with reasonable time to develop their responses, and you must avoid projecting your own views (Easterby-Smith et al., 2002; Ghauri and Gronhaug, 2005; Robson, 2002). Careful listening should allow you to identify comments that are significant to the research topic and to explore these with the interviewee (Torrington, 1991).

Scope to test understanding You may test your understanding by summarising an explanation provided by the interviewee. This will allow the interviewee to ‘evaluate the adequacy of the interpretation and correct where necessary’ (Healey and Rawlinson, 1994:138). This can be a powerful tool for avoiding a biased or incomplete interpretation. It may also act as a means to explore and probe the interviewee’s responses further.

In addition to this opportunity to test understanding at the interview, you may also ask the interviewee to read through the factual account that you produce of the interview. Where the interviewee is prepared to undertake this, it will provide a further opportunity for you to test your understanding and for the interviewee to add any further points of relevance that may occur to them.

Approach to recording data As well as audio-recording your interview (discussed in Section 10.5), we believe it is important to also make notes as the interview progresses. In addition to providing a back-up if your audio-recording does not work, this provides another way for you to show that your participant’s responses are important to you. If possible, immediately after the interview has taken place you should compile a full record of the interview (Healey, 1991; Healey and Rawlinson, 1994; Robson, 2002). Where you do not do this, the exact nature of explanations provided may be lost as well as general points of value. There is also the possibility that you may mix up data from different interviews, where you carry out several of these within a short period of time and you do not complete a record of each one at the time it takes place (Ghauri and Gronhaug, 2005). Either situation will clearly lead to an issue about the trustworthiness of any data. You therefore need to allocate time to write up a full set of notes soon after the event. In addition to your notes from the actual interview, you should also record the following contextual data:
the location of the interview (e.g. the organisation, the place);

■ the date and time;

■ the setting of the interview (e.g. was the room quiet or noisy, could you be overheard, were you interrupted?);

■ background information about the respondent (e.g. their role, post title, gender);

■ your immediate impression of how well (or badly) the interview went (e.g. was the participant reticent, were there aspects about which you felt you did not obtain answers in sufficient depth?).

You are probably wondering how, if you are also recording these data, you can still help ensure confidentiality and anonymity of your participants where this has been promised. As we outlined in Section 6.4, the best course of action is likely to be ensuring that your data are completely and genuinely anonymised. This means that you should store the contextual data separately from your interview transcripts. We suggest that you should be able to link these two sets of data only by using a ‘key’ such as a code number. We also suggest that if a key to identify participants by name which can link them to these data is absolutely necessary, this should not be retained by those who control these data and should, again, be kept separately. In addition, as pointed out in Section 6.4, you will need to take great care in the way you report your findings to help preserve anonymity and confidentiality.

Cultural differences and bias As a final note to this particular discussion, we need to recognise that it is often difficult to attempt to control bias in all cases. Other factors may become significant. For example, there may be misinterpretation of responses because of cultural differences between the interviewee and the interviewer (Marshall and Rossman, 1999). This issue is not exclusively related to interviews and can be associated with a number of data collection methods. For example, we encountered it in relation to the interpretation of the data produced from a cross-national survey. An in-depth interview at least offers the opportunity to explore meanings, including those that may be culturally specific, but you will need to be aware of cultural differences and their implications (see, for example, Hofstede, 2001).

Generalisability

In the first part of this section, which described data quality issues relating to semi-structured and in-depth interviews, we stated that there is likely to be a concern surrounding the generalisability of findings from qualitative research, based on the use of a small and unrepresentative number of cases. However, two arguments have been advanced that seek to clarify and modify the approach often adopted to the generalisability or transferability of qualitative research. The first of these relates to the situation where a single case study is used because of the unstructured nature of the research. Bryman (1988:90) states that ‘within a case study a wide range of different people and activities are invariably examined so that the contrast with survey samples is not as acute as it appears at first glance’. The single case may in fact encompass a number of settings, where for example it involves a study in a large organisation with sites across the country, or even around the world. By contrast, Bryman (1988) points out that many research projects adopting a survey strategy use samples restricted to one particular locality. A well-completed and rigorous case study is thus more likely to be useful in other contexts than one that lacks such rigour.

The second argument with the approach that questions the generalisability of qualitative research or a case study is related to the significance of this type of research to
theoretical propositions (Bryman, 1988; Yin, 2003). Where you are able to relate your research project to existing theory you will be in a position to demonstrate that your findings will have a broader theoretical significance than the case or cases that form the basis of your work (Marshall and Rossman, 1999). It will clearly be up to you to establish this relationship to existing theory in order to be able to demonstrate the broader significance of your particular case study findings.

This relationship will allow your study to test the applicability of existing theory to the setting(s) that you are examining and where this is found wanting to suggest why. It will also allow theoretical propositions to be advanced that can then be tested in another context. However, as Bryman (1988) points out, this also has implications for the relationship between theory and research, since the identification of existing theory and its application will be necessary before the researcher embarks on the collection of data.
10.5 Interviewing competence

There are several areas where you need to develop and demonstrate competence in relation to the conduct of semi-structured and in-depth research interviews. These areas are:

- opening the interview;
- using appropriate language;
- questioning;
- listening;
- testing and summarising understanding;
- recognising and dealing with difficult participants;
- recording data.

Most of these competence areas have already been discussed in relation to overcoming interviewer and interviewee bias in Section 10.4. However, there is scope to discuss further approaches to questioning, recognising and dealing with difficult participants and recording information in order to be able to develop your competence. These are summarised as a checklist in Box 10.14 at the end of this sub-section.

Questioning

Even in an in-depth interview, as well as in a semi-structured one, you will need to consider your approach to questioning. Allowing the interviewee to talk freely throughout an in-depth interview is unlikely to lead to a clearly focused discussion on issues relevant to the research topic (Easterby-Smith et al., 2002; Robson, 2002) unless the purpose is simply to discover important concerns relating to the topic at a given time. It will therefore be necessary to devise relevant interview themes (Section 10.4), even though you can adopt a flexible approach about the way these are dealt with during the interview. The use of this approach demands a significant level of competence on your part. Formulating appropriate questions to explore areas in which you are interested will be critical to achieving success in this type of interviewing. We shall now discuss the types of question that you will use during semi-structured and in-depth interviews.

Open questions

The use of open questions will allow participants to define and describe a situation or event. An open question is designed to encourage the interviewee to provide an extensive and developmental answer, and may be used to reveal attitudes or obtain facts (Grummitt, 1980). It encourages the interviewee to reply as they wish. An open question is likely to start with, or include, one of the following words: ‘what’, ‘how’ or ‘why’. Examples of open questions include:

- ‘Why did the organisation introduce its marketing strategy?’
- ‘What methods have been used to make employees redundant?’
- ‘How has corporate strategy changed over the past five years?’
Probing questions

Probing questions can be used to explore responses that are of significance to the research topic. They may be worded like open questions but request a particular focus or direction. Examples of this type of question include:

‘How would you evaluate the success of this new marketing strategy?’

‘Why did you choose a compulsory method to make redundancies?’

‘What external factors caused the corporate strategy to change?’

and, from Box 10.13:

‘How would you describe David Brent?’

These questions may be prefaced with, for example, ‘That’s interesting . . .’ or ‘Tell me more about . . .’.

Probing questions may also be used to seek an explanation where you do not understand the interviewee’s meaning or where the response does not reveal the reasoning involved. Examples of this type of question include:

‘What do you mean by “bumping” as a means to help to secure volunteers for redundancy?’

‘What is the relationship between the new statutory requirements that you referred to and the organisation’s decision to set up its corporate affairs department?’

The use of reflection may also help you to probe a theme. This is where you will ‘reflect’ a statement made by the interviewee by paraphrasing their words. An example of this might be:

‘Why don’t you think that the employees understand the need for advertising?’

The intention will be to encourage exploration of the point made without offering a view or judgement on your part.

Where an open question does not reveal a relevant response, you may also probe the area of interest by using a supplementary question that finds a way of rephrasing the original question (Torrington, 1991).

Specific and closed questions

These types of question are similar to those used in structured interviews. They can be used to obtain specific information or to confirm a fact or opinion (Section 10.4). Examples of these types of question include:

‘How many people responded to the customer survey?’

This question is designed to obtain a specific piece of data.

‘Did I hear you say that the new warehouse opened on 25 March?’

This, like the following question from Box 10.13, is a closed question seeking a yes or no answer.

‘You’re talking about [collaborator] Stephen Merchant?’

In phrasing questions, remember that you should avoid using leading or proposing types of question in order to control any bias that may result from their use (Section 10.4).
Office outing

Outside Coda, a swanky little Manhattan bar at 34th and Madison, New Yorkers had started lining up more than an hour before show time to get good seats to see Ricky Gervais.

Gervais hasn’t come to do stand-up comedy, which he certainly wouldn’t mind doing in the US at some point, but rather to be interviewed on stage by The New Yorker’s television critic, Nancy Franklin, as part of the magazine’s annual festival of arts talks. The audience (young/youngish, hip, pretty good-looking and overwhelmingly white) has paid $35 each to see (the New Yorker’s annual festival of arts talks. The audience (young/youngish, hip, pretty good-looking and overwhelmingly white) has paid $35 each to see Gervais, a creator of the BBC/HBO sitcom Extras and of the BBC sitcom The Office, the cult series that has made Gervais a transatlantic star. The 170 tickets to his Coda appearance sold out in four minutes.

He has won the crowd over before he walks into the room. They cheer not in prim welcome but warmly, familiarly. His hilariously tragic Office character David Brent – and Gervais’s brilliantly subtle portrayal of him – will be studied, parodied and ripped off, probably, forever, for generations to come. “David Brent is a name that’s become part of the popular culture as a type,” Franklin says as she and Gervais settle into the spotlight. “How would you describe David Brent?”

Gervais gazes into the middle distance and says, “He’s a good-looking guy,” scoring the first of countless big laughs.

He continues: Brent is a bad boss but not a bad man; he tries too hard; he’s a bit wounded because his life hasn’t turned out as he thought it should. “He wants you to think he’s clever, thoughtful, sensitive, a philosopher.” The answer goes on and on, suggesting not just Gervais’s intimate understanding of the character but also his fascination and even regard for him. “He’s one of those people that just really wants to be accepted,” Gervais says. “I’d have a drink with him. I quite like David Brent. There’s a bit of Brent in all of us.”

It is 10pm on a Saturday night and Coda’s drink special is an orangey “orchard martini”, featuring maple syrup. Gervais drinks a bottled beer. He wears a black knit shirt, black trousers, black shoes, and is clean shaven with slicked-back hair.

What everyone wants to know, among other things, is how much of David Brent exists in Ricky Gervais, whether Gervais will exhibit any of the embarrassingly insecure, self-aggrandising, interpersonal tics that made Brent so excruciatingly enjoyable and addictive to watch. But no, for all Brent’s self-consciousness, Gervais is smooth and collected and naturally complements Franklin’s droll interviewing style with sardonic, exquisitely timed comebacks. When Franklin asks about casting and writing, Gervais says, “We like doing everything ourselves.”

“No, I talk about myself like the Queen,” Gervais replies.

“Where is Stephen Merchant now?”

“Exactly,” Gervais responds, and swigs his beer.

On screen, Gervais’s comedic style centres on what he calls “body-language acting”. He demonstrates a look of surprise – a subtle flick of the eyes and silent twitch of the lips, signature David Brent. “We were a slave to realism,” he says.

Americans tend to obsess over origins so Franklin asks about Gervais’s background. He gives the basics – son of a bricklayer and housewife, raised in the industrial city of Reading, went to university followed by knockabout jobs. “In America they tell you, ‘You can be president!’ In England we’re told, ‘Your dad’s got a perfectly good lumberyard.’ The English – we’re scared of failing. It would be embarrassing,” he says. “Americans aren’t embarrassed.”

If the inherent Englishness is a large part of what makes Gervais so funny, his facile wit and unpretentiousness are what makes him so winning before a live audience.

Someone asks if Office cast members ever cracked themselves up on camera. Gervais recalls that one scene – in which Brent tells Tim, “Who knows, in a few years’ time you could be in the hot seat” – required no fewer than 25 takes. Gervais cracks himself and the entire room up just remembering the crack-up. Watching him tell it is like watching the actual blooper.

By the end of the evening I sense that Gervais is enjoying not just his popularity but rather the revelation of having found his way to work that fascinates and energises him – or as Faulkner puts it, having created “out of the materials of the human spirit something which did not exist before”.

Judging by the New York reception, Gervais is the admired, beloved funnyman David Brent always wanted to be.

Recognising and dealing with difficult participants

Inevitably, during the course of your interviews you will meet some participants who are more difficult to interview. Although it is impossible for us to highlight all the possible variations, the most prevalent difficulties are summarised in Table 10.2, along with suggestions regarding how to address them. However, whilst reading Table 10.2 will give you some ideas of what to do, the best advice we can give is to undertake practice interviews in which a colleague introduces one or more of these ‘difficulties’ and you have to deal with it!

BOX 10.14 CHECKLIST

To help you think about the questions you are going to ask in your semi-structured or in-depth interview

- How long will you have to conduct the interview?
- How do you wish to conduct (or structure) the interview?
- How will you use appropriate language and tone of voice, and avoid jargon when asking questions or discussing themes?
- How will you word open questions appropriately to obtain relevant data?
- How will you ask appropriately worded probing questions to build on, clarify or explain your interviewee’s responses?
- How will you avoid asking leading questions that may introduce forms of bias?
- Have you devised an appropriate order for your questions, where the early introduction of sensitive issues may introduce interviewee bias?
- How will you avoid over-zealously asking questions and pressing your interviewee for a response where it should be clear that they do not wish to provide one?
- How will you listen attentively and demonstrate this to your interviewee?
- How will you summarise and test your understanding of the data that are shared with you in order to ensure accuracy in your interpretation?
- How will you allow your interviewee to maintain control over the use of a tape recorder, where used, where they may wish to exercise this?
- Have you practised to ensure you can carry out a number of tasks at the same time, including listening, note taking and the identifying where you need to probe further?
- How might you identify actions and comments made by your interviewee that indicate an aspect of the discussion that should be explored in order to reveal the reason for the response?
- How will you avoid projecting your own views or feelings through your actions or comments?
- How will you maintain a check on the interview that you intend to cover and to steer the discussion where appropriate to raise and explore these aspects?
- How do you plan to draw the interview to a close within the agreed time limit and to thank the interviewee for their time and the data they have shared with you?
Recording information

The need to create a full record of the interview soon after its occurrence was identified in Section 10.4 as one of the means to control bias and to produce reliable data for analysis. This particular discussion and the accompanying checklist (Box 10.15) look briefly at the use of audio-recorders and the need to develop the skill of making notes during the interview. Most interviewers audio-record their interviews, where permission is given, although, as summarised in Table 10.3, this has both advantages and disadvantages. As an interviewer, you will be interested in both what your participants say and the way in which they say it. By audio-recording your interview, you will be able to concentrate more fully and listen attentively to what is being said and the expressions and other non-verbal cues your interviewee is giving when they are responding. However, as we pointed out earlier, we believe it is also helpful to make brief notes as well in order to

<table>
<thead>
<tr>
<th>Recognised difficulty</th>
<th>Suggestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant appears willing only to give monosyllabic answers, these being little</td>
<td>Reasons for this are varied.</td>
</tr>
<tr>
<td>more than ‘yes’ or ‘no’</td>
<td>If it is due to limited time, or worries about anonymity, then this can be minimised by careful opening of the interview (Box 10.9).</td>
</tr>
<tr>
<td></td>
<td>If the participant gives these answers despite such precautions, try phrasing your questions in as open a way as possible; also use long</td>
</tr>
<tr>
<td></td>
<td>pauses to signify that you want to hear more</td>
</tr>
<tr>
<td>Participant repeatedly provides long answers which digress from the focus of your</td>
<td>Although some digression should be tolerated, as it can lead to aspects about which you are interested, you will need to impose more direction.</td>
</tr>
<tr>
<td>interview</td>
<td>This must be done subtly so as not to cause offence such as by referring back to an earlier relevant point and asking them to tell you more, or</td>
</tr>
<tr>
<td>Participant starts interviewing you</td>
<td>requesting that they pause so you can note down what they have just said</td>
</tr>
<tr>
<td>Participant is proud of their status relative to you and wants to show off their</td>
<td>This is extremely difficult and at times like this you will have to listen attentively and be respectful.</td>
</tr>
<tr>
<td>knowledge, criticising what you do</td>
<td>Remember that you are also likely to be knowledgeable about the research topic so be confident and prepared to justify your research and the</td>
</tr>
<tr>
<td>Participant becomes noticeably upset during the interview and,</td>
<td>research design you have chosen</td>
</tr>
<tr>
<td>perhaps, starts to cry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Another difficult one for you.</td>
</tr>
<tr>
<td></td>
<td>You need to give your respondent time to answer your question and, in particular, do not do anything to suggest that you are feeling impatient.</td>
</tr>
<tr>
<td></td>
<td>If your respondent starts crying or is obviously very distressed it is probably a good idea to explain that the question does not have to be</td>
</tr>
<tr>
<td></td>
<td>answered.</td>
</tr>
<tr>
<td></td>
<td>Do not end the interview straight away as this is likely to make them even more upset</td>
</tr>
</tbody>
</table>

Table 10.2 Difficult interview participants and suggestions on how to address them

Sources: King (2004), authors’ experiences
maintain your concentration and focus (Ghauri and Grønhaug, 2005). This is important because, although audio-recordings can capture the tone of voice and hesitation, they do not record facial expressions and other non-verbal cues. Most people have their own means of making notes, which may range from an attempt to create a verbatim account to a diagrammatic style that records key words and phrases, perhaps using mind mapping (Section 2.3). The task of note making in this situation will be a demanding one. As you seek to test your understanding of what your interviewee has told you, this will allow some time to complete your notes concurrently in relation to the particular aspect being discussed. Most interviewees recognise the demands of the task and act accordingly. However, the interview will not be the occasion to perfect your style, and you may be advised to practise in a simulated situation: for example, by watching an interview on television and attempting to produce a set of notes.

Permission should always be sought to audio-record an interview. Healey and Rawlinson (1994) report an earlier study that advises that you should explain why you

| Table 10.3 Advantages and disadvantages of audio-recording the interview |
|---------------------------------|---------------------------------|
| **Advantages** | **Disadvantages** |
| ■ Allows interviewer to concentrate on questioning and listening | ■ May adversely affect the relationship between interviewee and interviewer (possibility of ‘focusing’ on the audio-recorder) |
| ■ Allows questions formulated at an interview to be accurately recorded for use in later interviews where appropriate | ■ May inhibit some interviewee responses and reduce reliability |
| ■ Can re-listen to the interview | ■ Possibility of a technical problem |
| ■ Accurate and unbiased record provided | ■ Time required to transcribe the audio-recording (Section 13.3) |
| ■ Allows direct quotes to be used | |
| ■ Permanent record for others to use | |

Sources: Authors’ experience; Easterby-Smith et al. (2002); Ghauri and Grenhaug (2005); Healey and Rawlinson (1994)

Issues to consider regarding your recording of interview data

- How do you intend to record the data that are shared with you? What rights will your interviewee have in relation to the use of an audio-recorder where they have agreed in principle to let you use one?
- What reference do you need to make about sending your interviewee an output from your data analysis and when this is due to occur?
- How will you prepare your approach to note making so that you may recall the interviewee’s responses for long enough to make an accurate and more permanent record?
- Has your schedule of work been formulated to permit you to find sufficient time in order to write up your notes/transcribe your interview recordings and to analyse them before undertaking further data collection?
- How will you organise your material so that you retain a copy of your original notes and interview recordings, an extended version of your notes after writing them up or a transcript of relevant material, and a set of additional notes or memos relating to the interview and your learning from that particular experience? (Section 13.3)
would prefer to use a recorder rather than simply requesting permission. Where it is likely to have a detrimental effect, it is better not to use a recorder. However, most interviewees adapt quickly to the use of the recorder. It is more ethical to allow your interviewee to maintain control over the recorder so that if you ask a question that they are prepared to respond to, but only if their words are not audio-recorded, they have the option to switch it off (Section 6.4). It will inevitably be necessary to make notes in this situation.

10.6 Managing logistical and resource issues

Logistical and resource issues

Interviewing is a time-consuming process. Where the purpose of the interview is to explore themes or to explain findings, the process may call for a fairly lengthy discussion. In such cases the time required to obtain data is unlikely to be less than one hour and could easily exceed this, perhaps taking two hours or longer. This may have an adverse impact on the number and representativeness of those who are willing to be interview participants, as we discussed earlier. Where managers or other potential participants receive frequent requests to participate in research projects, they will clearly need to consider how much of their time they may be willing to devote to such activities. This issue may arise in relation to either the completion of a questionnaire or participation in an interview. However, there will be more flexibility about when and where to fill in a questionnaire. It is therefore incumbent on you to establish credibility with, and to engender the interest of, potential interviewees.

Your choice of an approach that involves data collection through interviewing will have particular resource issues. Conducting interviews may become a costly process where it is necessary to travel to the location of participants, although this can be kept to a minimum by cluster sampling (Section 7.2) or using the Internet (Section 10.8). Interviews are almost certainly likely to be more expensive than using self-administered or telephone questionnaires to collect data. Choice of method should be determined primarily by the nature of the research question and objectives rather than by cost considerations. This highlights the need to examine the feasibility of the proposed question and research strategy in relation to resource constraints, including time available and expense, before proceeding to the collection of data. Where your research question and objectives require you to undertake semi-structured or in-depth interviews, you need to consider the logistics of scheduling interviews. Thought needs to be given to the number of interviews to be arranged within a given period, and to the time required to compose notes and/or transcribe audio-recordings of each one, and undertake an initial analysis of the data collected (Section 13.3).

Managing logistical and resource issues

In the preceding subsection, the issue of time required to collect data through interviewing was raised. You need to consider very carefully the amount of time that will be required to conduct an interview. In our experience, the time required to undertake qualitative research interviews is usually underestimated. The likely time required should be clearly referred to in any initial contact, and it may be better to suggest that interviews are envisaged to last up to, say, one, one and a half, or two hours, so that a willing participant
sets aside sufficient time. They may then be in a position to recoup time not required from a shorter interview should this be the case. Some negotiation is in any case possible with an interested participant who feels unable to agree to a request for, say, two hours but who is prepared to agree to a briefer meeting. The interview can also be arranged at a time when the interviewee will be under least pressure.

Another possible strategy is to arrange two or more shorter interviews in order to explore a topic thoroughly. This might have the added advantage of allowing participants to reflect on the themes raised and questions being asked, and therefore to provide a fuller account and more accurate set of data. In order to establish this option it may be beneficial to arrange an initial meeting with a potential participant to discuss this request, where you will be able to establish your credibility. A series of exploratory interviews may then be agreed. Consideration also needs to be given to the number of interviews that may be undertaken in a given period. It is easy to overestimate what is practically possible, as Box 10.16 highlights.

These are all factors that need to be considered in the scheduling of semi-structured and in-depth interviews. Where you are involved in a study at one establishment, it may be more practical to undertake a number of interviews in one day, although there is still a need to maintain concentration, to make notes and write up information and to conduct your initial analysis. Phil found that undertaking three interviews per day in this type of study was enough.

BOX 10.16 WORKED EXAMPLE

Calculating the number of non-standardised (qualitative) interviews to be undertaken in one day

Feroz arranged two interviews in a capital city during the course of a day, which involved travelling some miles across the city during the lunch hour. Two interviews appeared to be a reasonable target. However, a number of logistical issues were experienced even in relation to the plan to undertake two such interviews in one day. These issues included the following: the total travelling time to and from the city; the time to find the appropriate buildings; the transfer time during a busy period; the time to conduct the interviews; the need to maintain concentration, to probe responses, to make initial notes and then to write these up without too much time elapsing. Because of his experience, Feroz took a decision not to conduct more than one interview per day where significant travel was involved, even though this necessitated more journeys and greater expense.

The nature of semi-structured or in-depth interviews also has implications for the management of the time available during the meeting. The use of open-ended questions and reliance on informant responses means that, while you must remain responsive to the objectives of the interview and the time constraint, interviewees need the opportunity to provide developmental answers. You should avoid making frequent interruptions but will need to cover the themes and questions indicated and probe responses in the time available (Ghauri and Gronhaug, 2005). The intensive nature of the discussion and the need to optimise one’s understanding of what has been revealed means that time must be found to write up notes as soon as possible after an interview. Where an audio-recorder has been used, time will be required to produce a transcription, and Robson (2002) states that a one-hour recording may take up to ten hours to transcribe.
Group interviews and focus groups

Non-standardised interviews may also be conducted on a group basis, where the interviewer asks questions to a group of participants. Figure 10.1 summarised these variations earlier in this chapter. Currently there are a variety of terms that are used interchangeably to describe group interviews and which are often assumed to have equivalent meanings (Boddy, 2005). These include focus group, group interview, group discussion and various combinations of these words! In this section we use group interview as a general term to describe all non-standardised interviews conducted with two or more people. In contrast, and as suggested by Figure 10.1, the term focus group is used to refer to those group interviews where the topic is defined clearly and precisely and there is a focus on enabling and recording interactive discussion between participants (Carson et al., 2001).

Typically group interviews (and focus groups) involve between four and eight participants, or perhaps even 12, the precise number depending upon the nature of the participants, the topic matter and the skill of the interviewer. Inevitably, the more complex the subject matter the smaller the number of interviewees. Participants are normally chosen using non-probability sampling, often with a specific purpose in mind (Section 7.3). For many group interviews this purpose is because you feel that you can learn a great deal from these individuals. Krueger and Casey (2000:25) refer to such participants as being ‘information rich’.

If you are thinking about using group interviews, or specifically focus groups, consider the following issues may help.

■ Where your research project (or part of it) occurs within an organisation the request to participate in a group interview may be received by individuals as an instruction rather than allowing them a choice about whether to take part. This may be the case where an organisation is acting as a host for your research and the request is sent out on official notepaper or in the name of a manager, or because of your own position in the organisation. Where this is the case it is likely to lead to some level of non-attendance, or to unreliable data. In our experience, participants often welcome the chance to ‘have their say’. However, where any request may be perceived as indicating lack of choice, to gain their confidence and participation you will need to exercise care over the wording to be used in the request that is sent to them to take part. You will also need to exercise similar care in your introduction to the group when the interview occurs in order to provide a clear assurance about confidentiality.

■ Once your sample have been selected, respondents should be grouped so as not to inhibit individuals’ possible contributions. Inhibitions may be related to lack of trust, to perceptions about status differences, or because of the dominance of certain individuals. The nature and selection of each group will affect the first two elements. We would advise using a series of horizontal slices through an organisation so that, within each group, participants have a similar status and similar work experiences. (Using a vertical slice would introduce perceptions about status differences and variations in work experience.) In this way, group interviews can be conducted at a number of levels within an organisation. A reference may be made about the nature of the group to provide reassurance, and you may consider asking people to introduce themselves by their first name only without referring to their exact job.

■ Where one or two people dominate the discussion, you should seek to reduce their contributions carefully and to bring others in. Torrington (1991) suggests that this may be attempted in a general way:
'What do you think, Barry?'

'What do other people think about this?'

Alternatively, more specifically:

'How does Sally’s point relate to the one that you raised, Sheila?'

A question posed to other group members should also have the effect of inhibiting the contribution of a dominant member:

'What do you think about Johan’s suggestion?'

You will need to ensure that participants understand each other’s contributions and that you develop an accurate understanding of the points being made. Asking a participant to clarify the meaning of a particular contribution, where it has not been understood, and testing understanding through summarising should help to ensure this.

You will need to consider the location and setting for a group interview. It is advisable to conduct the interview in a neutral setting rather than, say, in a manager’s office, where participants may not feel relaxed. There should be no likelihood of interruption or being overheard. You should consider the layout of the seating in the room where the interview is to be held. Where possible, arrange the seating in a circular fashion so that everyone will be facing inward and so that they will be an equal distance from the central point of this circle.

Finally, students often ask, ‘When will I know that I have undertaken sufficient group interviews or focus groups?’ Writing about focus groups, Krueger and Casey (2000) suggest that you should plan to undertake three or four group interviews with any one type of participant. If after the third or fourth group interview you are no longer receiving new information, this means that you have heard the full range of ideas and reached saturation.

The demands of conducting all types of group interview, including focus groups, and the potential wealth of ideas that may flow from them mean that it is likely to be difficult to manage the process and note key points at the same time. We have managed to overcome this in two ways: by audio-recording the group interviews or using two interviewers. Where two interviewers are used, one person facilitates the discussion and the other person makes notes. We would recommend that you use two interviewers even if you are audio-recording the group interview as it will allow one interviewer to concentrate fully on managing the process whilst the other ensures the data are recorded. Where you cannot audio-record the group interview, you will need to write up any notes immediately afterwards so as not to lose data. As with one-to-one interviews, your research will benefit from the making of notes about the nature of the interactions that occur in the group interviews that you conduct. We would not advise you to undertake more than one group interview in a day on your own because of the danger of losing or confusing data.

Group interviews

In a group interview your role will be to ensure that all participants have the opportunity to state their points of view and answer your question and that these data are captured. This type of interview can range from being highly structured to unstructured, although it tends to be relatively unstructured and fairly free-flowing (Zikmund, 2000) in
terms of both breadth and depth of topics. The onus will be placed firmly on you to explain its purpose, to encourage participants to relax, and to initiate their comments and, with focus groups, detailed discussion. The use of this method is likely to necessitate a balance between encouraging participants to provide answers to a particular question or questions that you introduce and allowing them to range more freely in discussion where this may reveal data that provide you with important insights. Thus once you have opened the interview (Box 10.9) and the discussion is established, it will need to be managed carefully. Group interactions may lead to a highly productive discussion as interviewees respond to your questions and evaluate points made by the group. However, as your opportunity to develop an individual level of rapport with each participant will not be present (compared with a one-to-one interview), there may also emerge a group effect where certain participants effectively try to dominate the interview. This situation will leave you with the task of trying to encourage involvement by all group members and of maintaining the interview’s exploratory purpose. A high level of skill will therefore be required in order for you to be able to conduct this type of discussion successfully, as well as to try to record its outcomes.

Despite this reference to the potential difficulties of using group interviews, there are distinct advantages arising from their use. Because of the presence of several participants, this type of situation allows a variety of points of view to emerge and for the group to respond to these views. A dynamic group can generate or respond to a number of ideas and evaluate them, thus helping you to explain or explore concepts. You are also likely to benefit from the opportunity that this method provides in terms of allowing your participants to consider points raised by other group members and to challenge one another’s views. In one-to-one interviews, discussion is of course limited to the interviewer and interviewee. The use of group interviews may also provide an efficient way for you to interview a larger number of individuals than would be possible through the use of one-to-one interviews (Box 10.17). Linked to this point, their use may allow you to adopt an interview-based strategy that can more easily be related to a representative sample, particularly where the research project is being conducted within a specific organisation or in relation to a clearly defined population. This may help to establish the credibility of this research where an attempt is made to overcome issues of bias associated with interviews in general and this type in particular.

Group interviews can also be used to identify key themes that will be used to develop items that are included in a survey questionnaire. This particular use of group interviews may inform subsequent parts of your data collection, providing a clearer focus. For example, in an attitude survey the initial use of group interviews can lead to a ‘bottom-up’ generation of concerns and issues, which helps to establish the survey.

Focus groups

Focus groups are well known because of the way they have been used by political parties to test voter reactions to particular policies and election strategies, and through their use in market research to test reactions to products. A focus group, sometimes called a focus group interview, is a group interview that focuses clearly upon a particular issue, product, service or topic and encompasses the need for interactive discussion amongst participants (Carson et al., 2001). This means that, in comparison with other forms of group interview, individual group members’ interactions and responses are both encouraged and more closely controlled to maintain the focus. Participants are selected because they have certain characteristics in common that relate to the topic being discussed and they are encouraged to discuss and share their points of view without any pressure to reach a
consensus (Krueger and Casey, 2000). These discussions are conducted several times, with similar participants, to enable trends and patterns to be identified when the data collected are analysed.

If you are running a focus group, you will probably be referred to as the moderator or facilitator. These labels emphasise the dual role of the person running the focus group, namely to:

■ keep the group within the boundaries of the topic being discussed;
■ generate interest in the topic and encourage discussion, whilst at the same time not leading the group towards certain opinions.

Where focus groups are being used this is likely to be associated with a higher level of interviewer-led structure and intervention to facilitate discussion than where group interviews are being used. The size of groups may also be related to topic. Thus a focus group designed to obtain views about a product range (Box 10.18) is likely to be larger than a group interview that explores a topic related to a more emotionally involved construct, such as attitudes to performance-related pay or the way in which employees rate their treatment by management. You may also choose to design smaller groups as you seek to develop your competence in relation to the use of this interviewing technique to collect qualitative data.

BOX 10.17 FOCUS ON MANAGEMENT RESEARCH

Using group interviews in exploratory research

Research by Gary Packham, David Brooksbank, Christopher Miller and Brychan Thomas (2005) examined how growth-oriented firms in Wales had adopted management practices to build the entrepreneurial capacity necessary to sustain growth. Because of the exploratory nature of their research, they decided to use group interviews to collect data from owner-managers of small to medium-sized enterprises whose firms had achieved consistent growth for the previous five years. These were divided into three broad industrial classifications:

■ manufacturing;
■ construction;
■ services.

In total, 18 firms divided equally between the three industrial classifications participated in the research. Two group interviews were held for each of the three industrial sectors, in which a moderator chaired the meetings. Group interviews were principally unstructured and participants were asked to consider how and why management practices had contributed to their firms’ successes. These included:

■ management development;
■ planning and control;
■ financial management;
■ marketing.

Group interviews were scheduled to last no more than one hour owing to the participants’ time constraints. Each firm was given a pseudonym to preserve confidentiality. Each meeting was video-recorded and transcribed later, participants being sent the transcription of their group interview to confirm validity.
Telephone, Internet- and intranet-mediated interviews

Most non-standardised interviews occur on a face-to-face basis. However, such qualitative interviews may also be conducted by telephone or electronically via the Internet or intranet. These pose particular problems as well as providing advantages in certain circumstances that we discuss in this section.

Telephone interviews

Attempting to conduct non-standardised interviews by telephone may offer potential advantages associated with access, speed and lower cost. This method may allow you to...
make contact with participants with whom it would be impractical to conduct an interview on a face-to-face basis because of the distance and prohibitive costs involved and time required. Even where ‘long-distance’ access is not an issue, conducting interviews by telephone may still offer advantages associated with speed of data collection and lower cost. In other words, this approach may be seen as more convenient.

However, there are a number of significant issues that militate against attempting to collect qualitative data by telephone contact. We have already discussed the importance of establishing personal contact in this type of interviewing. The intention of non-standardised interviewing is to be able to explore the participant’s responses. This is likely to become more feasible once a position of trust has been established, as discussed earlier. This situation, of establishing trust, will become particularly important where you wish to ask sensitive questions. For these reasons, seeking to conduct qualitative interviews by telephone may lead to issues of (reduced) reliability, where your participants are less willing to engage in an exploratory discussion, or even a refusal to take part.

There are also some other practical issues that would need to be managed. These relate to your ability to control the pace of a telephone interview and to record any data that were forthcoming. Conducting an interview by telephone and taking notes is an extremely difficult process and so we would recommend using audio-recording. In addition, the normal visual cues that allow your participant to control the flow of the data that they share with you would be absent. With telephone interviews you lose the opportunity to witness the non-verbal behaviour of your participant, which may adversely affect your interpretation of how far to pursue a particular line of questioning. Your participant may be less willing to provide you with as much time to talk to them in comparison with a face-to-face interview. You may also encounter difficulties in developing more complex questions in comparison with a face-to-face interview situation. Finally, attempting to gain access through a telephone call may lead to ethical issues, as we discussed in Section 6.4.

For these reasons, we believe that non-standardised interviewing by telephone is likely to be appropriate only in particular circumstances. It may be appropriate to conduct a short, follow-up telephone interview to clarify the meaning of some data, where you have already undertaken a face-to-face interview with a participant with whom you have been able to establish your integrity and to demonstrate your competence. It may also be appropriate where access would otherwise be prohibited because of long distance, where you have already been able to establish your credibility through prior contact, perhaps through correspondence, and have made clear that your requirements are reasonable and guided by ethical principles. Where this situation involves a request to undertake a telephone interview with a participant from another country, you will need to be aware of any cultural norms related to the conduct and duration of telephone conversations.

Internet- and intranet-mediated interviewing

Morgan and Symon (2004) use the term *electronic interviews* to refer to interviews held both in real time using the Internet and organisations’ intranets as well as those that are, in effect, undertaken off-line. This subdivision into asynchronous and synchronous (Figure 10.2) offers a useful way of categorising electronic interviews as there are significant differences in electronic interviews dependent upon whether the interview is undertaken in real time (synchronous) or offline (asynchronous).

Using the Internet or an organisation’s intranet has significant advantages where the population you wish to interview are geographically dispersed. In addition, with all forms of electronic interview the software automatically records as they are typed in,
thereby removing problems associated with audio-recording and transcription such as cost, accuracy and participants’ apprehension.

Web conferencing software can be used for both synchronous (real time) and asynchronous one-to-one and group interviews. Where this requires participants to have the software loaded onto their computers this can cause problems, especially where they are unfamiliar with the software or there is incompatibility with hardware or operating systems. Internet forums and emails can be used for asynchronous interviews. In contrast, a chat room is an online forum operating in synchronous mode.

By far the most common form of chat room is instant messaging such as MSN Messenger™. Although some would argue that this is not a true chat room as conversations are restricted to those named in a user’s list, such instant messaging can be used to undertake real-time one-to-one and group interviews, providing netiquette is observed. The considerable debate regarding the suitability of Internet- and intranet-mediated communication for synchronous interviewing has been reviewed by Mann and Stewart (2000). Some researchers argue that interviewing participants online such as through web conferencing or chat rooms is unlikely to achieve the same high levels of interactivity and rich and spontaneous communication that can be obtained with face-to-face interviewing. This is often explained by the relatively narrow bandwidth of these electronic media when compared with face-to-face communication, it being argued that electronic media transmit fewer social cues. Others argue that this is not the case and that, after the initial invitation to participate, it is possible to build up considerable rapport between the interviewer and the interviewee during an online interview. It has also been suggested that the relative anonymity of online interviews facilitates more open and honest responses, in particular with regard to sensitive issues where participants have adopted pseudonyms (Sweet, 2001). Where group interviews or focus groups are being conducted, participants are less likely to be influenced by characteristics such as age, ethnicity or appearance. Overbearing participants are less likely to predominate, although variations in keyboard skills are likely to impact on participation levels.

For asynchronous interviewing, email and Internet forums or discussion groups mean that interviews are normally conducted over an extended time period of weeks. A forum usually deals only with one topic and personal exchanges are discouraged. Forums are commonly referred to as web forums, message boards, discussion boards, discussion forums, discussion groups and bulletin boards. Although forums do not allow people to edit each other’s messages, there is usually a moderator or forum administrator who typically is responsible for netiquette being observed (Section 6.4 and 11.5) and has the ability to edit, delete or modify any content.

An email interview consist of a series of emails each containing a small number of questions rather than one email containing a series of questions (Morgan and Symon, 2004). Although you can send one email containing a series of questions, this is really an Internet- or intranet-mediated questionnaire (Sections 11.2 and 11.5). After making
contact and obtaining agreement to participate, you initially email a small number of questions or introduce a topic to which the participant will (hopefully) reply. You then need to respond to these ideas, specifically asking further questions, raising points of clarification and pursuing ideas that are of further interest. Morgan and Symon (2004) emphasise that, because of the nature of email communications, such interviews may last for some weeks, there being a time delay between a question being asked and its being answered. This, they argue, can be advantageous as it allows both the interviewer and the interviewee to reflect on the questions and responses prior to providing a considered response.

10.9 Summary

- The use of non-standardised (qualitative) research interviews should allow you to collect a rich and detailed set of data, although you will need to develop a sufficient level of competence to conduct these and to be able to gain access to the type of data associated with their use.
- Interviews can be differentiated according to the level of structure and standardisation adopted. Different types of interviews are useful for different research purposes.
- Non-standardised (qualitative) research interviews include two broad types that are generally referred to as in-depth or unstructured interviews and semi-structured interviews. You can use non-standardised interviews to explore topics and explain other findings.
- Your research design may incorporate more than one type of interview.
- In-depth and semi-structured interviews can be used in quantitative as well as qualitative research.
- There are situations favouring non-standardised (qualitative) interviews that will lead you to use this method to collect data. Apart from the nature of your research strategy, these are related to the significance of establishing personal contact, the nature of your data collection questions, and the length of time required from those who provide data.
- Data quality issues, your level of competence and logistical and resource matters will all need to be considered when you use in-depth and semi-structured interviews.
- Apart from one-to-one interviews conducted on a face-to-face basis, you may consider conducting such an interview by telephone or electronically in particular circumstances. In addition, you may consider using group interviews such as focus groups. There may be particular advantages associated with group interviews, but these are considerably more difficult to manage than one-to-one interviews.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

10.1 What type of interview would you use in each of the following situations:
 - a market research project?
 - a research project seeking to understand whether trade union attitudes have changed?
 - following the analysis of a questionnaire?

10.2 What are the advantages of using semi-structured and in-depth interviews?
10.3 During a presentation of your proposal to undertake a research project, which will be based on semi-structured or in-depth interviews, you feel that you have dealt well with the relationship between the purpose of the research and the proposed methodology when one of the panel leans forward and asks you to discuss the trustworthiness and usefulness of your work for other researchers. This is clearly a challenge to see whether you can defend such an approach. How do you respond?

10.4 Having quizzed you about the trustworthiness and usefulness of your work for other researchers, the panel member decides that one more testing question is in order. He explains that qualitatively based work isn’t an easy option. ‘It is not an easier alternative for those who want to avoid statistics’, he says. ‘How can we be sure that you’re competent to get involved in interview work, especially where the external credibility of this organisation may be affected by the impression that you create in the field?’ How will you respond to this concern?

10.5 What are the key issues to consider when planning to use semi-structured or in-depth interviews?

10.6 What are the key areas of competence that you need to develop in order to conduct an interview successfully?

10.7 Watch and, if possible, video-record a television interview such as one that is part of a chat show or a documentary. It does not matter if you only record an interview of 10 to 15 minutes’ duration.

a As you watch the interview, make notes about what the participant is telling the interviewer. After the interview review your notes. How much of what was being said did you manage to record?

b If you were able to video-record the television interview, watch the interview again and compare your notes with what was actually said. What other information would you like to add to your notes?

c Either watch the interview again or another television interview that is part of a chat show or a documentary. This time pay careful attention to the questioning techniques used by the interviewer. How many of the different types of question discussed in Section 10.5 can you identify?

d How important do you think the non-verbal cues given by the interviewer and the interviewee are in understanding the meaning of what is being said?

10.8 With a friend, each decide on a topic about which you think it would be interesting to interview the other person. Separately develop your interview themes and prepare an interview guide for a semi-structured interview. At the same time, decide which one of the ‘difficult’ participants in Table 10.2 you would like to role play when being interviewed.

a Conduct both interviews and, if possible, make an audio-recording. If this is not possible the interviewer should take notes.

b Listen to each of the audio-recordings – what aspects of your interviewing technique do you each need to improve?

c If you were not able to audio-record the interview, how good a record of each interview do you consider the notes to be? How could you improve your interviewing technique further?

10.9 Obtain a transcript of an interview that has already been undertaken. If your university subscribes to online newspapers such as ft.com, these are a good source of business-related transcripts. Alternatively, typing ‘interview transcript’ into a search engine such as Google will generate numerous possibilities on a vast range of topics!
CHAPTER 10 · COLLECTING PRIMARY DATA USING SEMI-STRUCTURED, IN-DEPTH AND GROUP INTERVIEWS

a Examine the transcript, paying careful attention to the questioning techniques used by the interviewer. To what extent do you think that certain questions have led the interviewee to certain answers?
b Now look at the responses given by the interviewer. To what extent do you think these are the actual verbatim responses given by the interviewee? Why do you think this?

PROGRESSING YOUR RESEARCH PROJECT

Using semi-structured or in-depth interviews in your research

- Review your research question(s) and objectives. How appropriate would it be to use non-standardised (qualitative) interviews to collect data? Where it is appropriate, explain the relationship between your research question(s) and objectives, and the use of such interviews. Where this type of interviewing is not appropriate, justify your decision.
- If you decide that semi-structured or in-depth interviews are appropriate, what practical problems do you foresee? How might you attempt to overcome these practical problems?
- What threats to the trustworthiness of the data collected are you likely to encounter? How might you overcome these?
- Draft a list of interview themes to be explored and compare these thoroughly with your research question(s) and objectives.
- Ask your project tutor to comment on your judgement about the use of non-standardised (qualitative) interviews, the issues and threats that you have identified, your suggestions to overcome these, and the fit between your interview themes and your research question(s) and objectives.

References

Boddy, C. (2005) ‘A rose by any other name may smell as sweet but “group discussion” is not another name for “focus group” nor should it be’, Qualitative Market Research 8: 3, 248–55.
REFERENCES

Further reading

CASE 10

Equal opportunities in the publishing industry

Mary was a part-time postgraduate student who was undertaking a research project about equal opportunities in the publishing industry. Mary had worked in the publishing industry for 10 years, and her interest in the area of equal opportunities had arisen partly from her own experiences of work, and partly through her reading some of the literature on women in management as part of the Organisational Behaviour module of her course. Mary knew that many of the skilled women she worked with had given up high-profile jobs in the publishing industry after periods of maternity leave. Anecdotally these women had suggested to her that it was very difficult to combine the demands of a successful career in publishing with those of having a family. Mary had read some of the literature on gender in management, and particularly the work on gendered organisational cultures (e.g. Maddock and Parkin, 1993; Mills, 2002; Wilson, 2000; Liff and Ward, 2001) and was keen to explore these issues in relation to her own industry. She was hoping at some stage in the future to move out of her Editorial Assistant role and take on a post in Human Resource Management in order to progress her career. She had therefore chosen a subject for her research project in which she was wholeheartedly interested and that also tied in with her career plans.

Mary decided to conduct in-depth qualitative interviews as part of her data collection process. She had read about how to analyse qualitative data, and decided that template analysis was the most useful method (King, 2004). Mary designed a fairly structured interview schedule with 15 questions that asked about the interviewee's experience of their work, and whether they felt advantaged or disadvantaged as a result of their gender. She considered that it was important to interview both men and women, to examine the extent to which they may have differences in perspective. Mary was well networked within the publishing industry and had planned to conduct interviews with 10 men and women in her own company, a large one within the trade publishing sector, and 10 men and women in a similar sized company in the educational publishing sector. She had also arranged to interview the Human Resource (HR) Directors of both companies at the end of her research project, after she had undertaken her initial analysis of the data and had some of the findings. This, she felt, would enable her to see whether the HR managers were aware of some of the gendered cultural processes at work in their companies.

When Mary started to conduct the fieldwork for her project she encountered some difficulties that she hadn’t previously anticipated. Given that she was interviewing in her own organisation, Mary had initially selected interviewees that she didn’t know very well, for fear of biasing her findings. In the other organisation, the educational publisher, Mary had asked a friend who worked there to suggest the names of people who would be interesting to interview. However, with regard to both organisations, when trying to organise suitable interview times, Mary found that it was very difficult to pin people down. Although she had emailed them to tell them the title of her research project, and had guaranteed confidentiality, when following up to actually arrange appointments, potential interviewees often declined, explaining that they were far too busy.

As time was moving on swiftly, Mary decided she would ask her super-efficient secretary Marlene to telephone the potential interviewees, persuade them to agree to be interviewed, and then agree an interview time. Marlene successfully managed to arrange all the interviews in both organisations, much to Mary’s relief. However, things still not did progress smoothly. Mary found that in numerous cases, interviewees rearranged their appointments with her. Indeed in a couple of cases, Mary actually turned up for an interview to find a message for her to say that the interviewee had been cancelled due
to the interviewee having to attend a more important meeting. When interviews did go ahead, Mary noticed that there was some hostility from the interviewees, especially the men. She described this to her project tutor: ‘They seem a bit defensive, and clearly think I am not on their side.’

Mary also had concerns about the data she was gathering. Although her questions were structured, she found that the interviewees talked all around the issues and would not keep to the point in question. She had no idea how she would fit all this unstructured data into her nicely structured template, and was concerned that their digression from her questions might somehow taint the outcomes of her research. These concerns were heightened when Mary went to interview the HR Director of her own organisation. The Director expressed some concerns about the research that Mary was doing. She said that she had heard from some of the interviewees that Mary had a specific agenda, and that the publishing company had an excellent record in equal opportunities that she did not want to see sullied. She was also clearly unhappy that Mary had not initially discussed the research with her before commencing data collection. She was equally dismissive about Mary’s data collection approach, suggesting that her research wasn’t objective and that she was uncertain about what use it would have beyond that of enabling Mary to get yet another qualification. Although Mary then progressed with asking the Director the questions on her interview schedule, she felt very uncomfortable throughout the interview. At the end she felt quite miserable about how her research had gone, and wondered whether conducting it in this way might have actually jeopardised her chances of a career move to the HR Department.

References

QUESTIONS

1 What advice would you give to Mary about addressing the issue of people shifting interview appointments, and the hostility she faced from some of the interviewees?

2 Mary thought that interviewees’ not keeping to the questions asked during the interview was a problem in her research. What advice would you give her about this?

3 How do you think Mary could have addressed the following issues about the research presented to her by the HR Director?

- The research isn’t objective
- The research won’t provide anything of use to the firm.

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:

- The practices and styles of public relations practitioners
- Students’ use of work-based learning in their studies.
10.1 The type of interview that is likely to be used in each of these situations is as follows:

 a. A standardised and structured interview where the aim is to develop response patterns from the views of people. The interview schedule might be designed to combine styles so that comments made by interviewees in relation to specific questions could also be recorded.

 b. The situation outlined suggests an exploratory approach to research, and therefore an in-depth interview would be most appropriate.

 c. The situation outlined here suggests that an explanatory approach is required in relation to the data collected, and in this case a semi-structured interview is likely to be appropriate.

10.2 Reasons that suggest the use of interviews include:

 ■ the exploratory or explanatory nature of your research;
 ■ situations where it will be significant to establish personal contact, in relation to interviewee sensitivity about the nature of the information to be provided and the use to be made of this;
 ■ situations where the researcher needs to exercise control over the nature of those who will supply data;
 ■ situations where there are a large number of questions to be answered;
 ■ situations where questions are complex or open ended;
 ■ situations where the order and logic of questioning may need to be varied.

10.3 Certainly politely! Your response needs to show that you are aware of the issues relating to reliability, bias and generalisability that might arise. It would be useful to discuss how these might be overcome through the following: the design of the research; the keeping of records or a diary in relation to the processes and key incidents of the research project as well as the recording of data collected; attempts to control bias through the process of collecting data; the relationship of the research to theory.

10.4 Perhaps it will be wise to say that you understand his position. You realise that any approach to research calls for particular types of competence. Your previous answer touching on interviewee bias has highlighted the need to establish credibility and to gain the interviewee’s confidence. While competence will need to be developed over a period of time, allowing for any classroom simulations and dry runs with colleagues, probably the best approach will be your level of preparation before embarking on interview work. This relates first to the nature of the approach made to those whom you would like to participate in the research project and the information supplied to them, second to your intellectual preparation related to the topic to be explored and the particular context of the organisations participating in the research, and third to your ability to conduct an interview. You also recognise that piloting the interview themes will be a crucial element in building your competence.

10.5 Key issues to consider include the following:

 ■ planning to minimise the occurrence of forms of bias where these are within your control, related to interviewer bias, interviewee bias and sampling bias;
 ■ considering your aim in requesting the research interview and how you can seek to prepare yourself in order to gain access to the data that you hope your participants will be able to share with you;
 ■ devising interview themes that you wish to explore or seek explanations for during the interview;
 ■ sending a list of your interview themes to your interviewee prior to the interview, where this is considered appropriate;
 ■ requesting permission and providing a reason where you would like to use a tape recorder during the interview;
 ■ making sure that your level of preparation and knowledge (in relation to the research context and your research question and objectives) is satisfactory in order to establish your credibility when you meet your interviewee;
 ■ considering how your intended appearance during the interview will affect the willingness of the interviewee to share data.
10.6 There are several areas where you need to develop and demonstrate competence in relation to the conduct of semi-structured and in-depth research interviews. These areas are:

- opening the interview;
- using appropriate language;
- questioning;
- listening;
- testing and summarising understanding;
- behavioural cues;
- recording data.

Get ahead using resources on the Companion Website at:

www.pearsoned.co.uk/saunders

- Improve your SPSS and NVivo research analysis with practice tutorials.
- Save time researching on the Internet with the Smarter Online Searching Guide.
- Test your progress using self-assessment questions.
- Follow live links to useful websites.
LEARNING OUTCOMES

By the end of this chapter you should:

➔ understand the advantages and disadvantages of questionnaires as a data collection method;
➔ be aware of a range of self-administered and interviewer-administered questionnaires;
➔ be aware of the possible need to combine techniques within a research project;
➔ be able to select and justify the use of appropriate questionnaire techniques for a variety of research scenarios;
➔ be able to design, pilot and administer a questionnaire to answer research questions and to meet objectives;
➔ be able to take appropriate action to enhance response rates and to ensure the validity and reliability of the data collected;
➔ be able to apply the knowledge, skills and understanding gained to your own research project.

11.1 Introduction

Within business and management research, the greatest use of questionnaires is made within the survey strategy (Section 5.3). However, both experiment and case study research strategies can make use of these techniques. Although you probably have your own understanding of the term ‘questionnaire’, it is worth noting that there are a variety of definitions in common usage (Oppenheim, 2000). Some authors (for example, Kervin, 1999) reserve it exclusively for questionnaires where the person answering the question actually records their own answers. Others (for example, Bell, 2005) use it as a more general term to include interviews that are administered either face to face or by telephone.

In this book we use questionnaire as a general term to include all techniques of data collection in which each person is asked to respond to the same set of questions in a pre-
determined order (deVaus, 2002). It therefore includes both structured interviews and telephone questionnaires as well as those in which the questions are answered without an interviewer being present, such as TGI Friday’s online questionnaire. The range of techniques that fall under this broad heading are outlined in the next section (11.2), along with their relative advantages and disadvantages.

The use of questionnaires is discussed in many research methods texts. These range from those that devote a few pages to it to those that specify precisely how you should construct and use them, such as Dillman’s (2000) tailored design method. Perhaps not surprisingly, the questionnaire is one of the most widely used data collection techniques within the survey strategy. Because each person (respondent) is asked to respond to the same set of questions, it provides an efficient way of collecting responses from a large sample prior to quantitative analysis (Chapter 12). However, before you decide to use a questionnaire we should like to include a note of caution. Many authors (for example, Bell, 2005; Oppenheim, 2000) argue that it is far harder to produce a good questionnaire than you might think. You need to ensure that it will collect the precise data that you require to answer your research question(s) and achieve your objectives. This is of paramount importance because, like TGI Friday’s, you are unlikely to have more than one opportunity to collect the data. In particular, you will be unable to go back to those individuals who choose to remain anonymous and collect additional data using another questionnaire. These issues are discussed in Section 11.3.

INTRODUCTION

Questionnaires are a part of our everyday lives. For modules in your course, your lecturers have probably asked you and your fellow students to complete module evaluation questionnaires, thereby collecting data on students’ views. Similarly, when we visit a tourist attraction or have a meal in a restaurant there is often the opportunity to complete a comment card. Some restaurants, such as TGI Friday’s, also use online questionnaires administered via their website as a way of collecting data from, and keeping in contact with, customers. As can be seen from the illustration, TGI Friday’s online questionnaire collects details about the restaurant and time of visit, as well as opinions regarding the quality of the food received and perceptions of service quality, atmosphere and the overall experience. In addition to asking for these data, the TGI Friday’s questionnaire provides space for general comments/feedback as well as for customers to ask questions. Andy Rodgers, from TGI Friday’s Consumer Insight Team, says that such questionnaires provide TGI Friday’s with valuable information about customers’ views and help to reinforce the company’s customer service ethos. All people completing the questionnaire are asked to tick a box and provide contact details if they would like the company to respond to their comments. Responding promptly to these, Andy Rodgers argues, helps TGI Friday’s to maintain high levels of customer satisfaction.
The design of your questionnaire will affect the response rate and the reliability and validity of the data you collect. Response rates, validity and reliability can be maximised by:

- careful design of individual questions;
- clear layout of the questionnaire form;
- lucid explanation of the purpose of the questionnaire;
- pilot testing;
- carefully planned and executed administration.

Together these form Sections 11.4 and 11.5. In Section 11.4 we discuss designing your questionnaire. Administering the actual questionnaire is considered in Section 11.5 along with actions to help ensure high response rates.

11.2 An overview of questionnaire techniques

When to use questionnaires

We have found that many people use a questionnaire to collect data without considering other methods such as examination of secondary sources (Chapter 8), observation (Chapter 9), and semi-structured or unstructured interviews (Chapter 10). Our advice is to evaluate all possible data collection methods and to choose those most appropriate to your research question(s) and objectives. Questionnaires are usually not particularly good for exploratory or other research that requires large numbers of open-ended questions (Sections 10.2 and 10.3). They work best with standardised questions that you can be confident will be interpreted the same way by all respondents (Robson, 2002).

Questionnaires can therefore be used for descriptive or explanatory research. Descriptive research, such as that undertaken using attitude and opinion questionnaires and questionnaires of organisational practices, will enable you to identify and describe the variability in different phenomena. In contrast, explanatory or analytical research will enable you to examine and explain relationships between variables, in particular cause-and-effect relationships. These two purposes have different research design requirements (Gill and Johnson, 2002), which we shall discuss later (Section 11.3).

Although questionnaires may be used as the only data collection method, it is usually better to link them with other methods in a multiple-methods research design (Section 5.4). For example, a questionnaire to discover customers’ attitudes can be complemented by in-depth interviews to explore and understand these attitudes (Section 10.3). In addition, questionnaires, if worded correctly, normally require less skill and sensitivity to administer than semi-structured or in-depth interviews (Jankowicz, 2005).

Types of questionnaire

The design of a questionnaire differs according to how it is administered and, in particular, the amount of contact you have with the respondents (Figure 11.1). Self-administered questionnaires are usually completed by the respondents. Such questionnaires are administered electronically using the Internet (Internet-mediated questionnaires) or intranet (intranet-mediated questionnaires), posted to respondents who return them by post after completion (postal or mail questionnaires), or delivered
by hand to each respondent and collected later (delivery and collection questionnaires). Responses to interviewer-administered questionnaires are recorded by the interviewer on the basis of each respondent’s answers. A growing number of surveys, particularly in the area of market research, contact respondents and administer questionnaires using the telephone. These are known as telephone questionnaires. The final category, structured interviews (sometimes known as interview schedules), refers to those questionnaires where interviewers physically meet respondents and ask the questions face to face. These differ from semi-structured and unstructured (in-depth) interviews (Section 10.2), as there is a defined schedule of questions, from which interviewers should not deviate.

The choice of questionnaire

Your choice of questionnaire will be influenced by a variety of factors related to your research question(s) and objectives (Table 11.1), and in particular the:

- characteristics of the respondents from whom you wish to collect data;
- importance of reaching a particular person as respondent;
- importance of respondents’ answers not being contaminated or distorted;
- size of sample you require for your analysis, taking into account the likely response rate;
- types of question you need to ask to collect your data;
- number of questions you need to ask to collect your data.

These factors will not apply equally to your choice of questionnaire, and for some research questions or objectives may not apply at all. The type of questionnaire you choose will dictate how sure you can be that the respondent is the person whom you wish to answer the questions and thus the reliability of responses (Table 11.1). Even if you address a postal questionnaire to a company manager by name, you have no way of ensuring that the manager will be the respondent. The manager’s assistant or someone else could complete it! Internet- and intranet-mediated questionnaires, and in particular those administered in conjunction with email, offer greater control because most users read and respond to their own mail at their personal computer (Witmer et al., 1999). With delivery and collection questionnaires, you can sometimes check who has answered the questions at collection. By contrast, interviewer-administered questionnaires enable you to ensure that the respondent is whom you want. This improves the reliability of your data. In addition, you can record who were non-respondents, thereby avoiding unknown bias caused by refusals.
Table 11.1 Main attributes of questionnaires

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Internet and intranet mediated</th>
<th>Postal</th>
<th>Delivery and collection</th>
<th>Telephone</th>
<th>Structured interview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population’s characteristics for which suitable</td>
<td>Computer-literate individuals who can be contacted by email, Internet or intranet</td>
<td>Literate individuals who can be contacted by post; selected by name, household, organisation etc.</td>
<td>Individuals who can be telephoned; selected by name, household, organisation etc.</td>
<td>Any; selected by name, household, organisation, in the street etc.</td>
<td></td>
</tr>
<tr>
<td>Confidence that right person has responded</td>
<td>High if using email</td>
<td>Low</td>
<td>Low but can be checked at collection</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Likelihood of contamination or distortion of respondent’s answer</td>
<td>Low</td>
<td>May be contaminated by consultation with others</td>
<td>Occasionally distorted or invented by interviewer</td>
<td>Occasionally contaminated by consultation or distorted/invented by interviewer</td>
<td></td>
</tr>
<tr>
<td>Size of sample</td>
<td>Large, can be geographically dispersed</td>
<td>Dependent on number of field workers</td>
<td>Dependent on number of interviewers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Likely response rate*</td>
<td>Variable, 30% reasonable within organisations/via intranet, 11% or lower using Internet</td>
<td>Variable, 30% reasonable</td>
<td>Moderately high, 30–50% reasonable</td>
<td>High, 50–70% reasonable</td>
<td>High, 50–70% reasonable</td>
</tr>
<tr>
<td>Feasible length of questionnaire</td>
<td>Conflicting advice; however, fewer ‘screens’ probably better</td>
<td>6–8 A4 pages</td>
<td>6–8 A4 pages</td>
<td>Up to half an hour</td>
<td>Variable depending on location</td>
</tr>
<tr>
<td>Suitable types of question</td>
<td>Closed questions but not too complex, complicated sequencing fine if uses IT, must be of interest to respondent</td>
<td>Closed questions but not too complex, simple sequencing only, must be of interest to respondent</td>
<td>Open and closed questions, but only simple questions, complicated sequencing fine</td>
<td>Open and closed questions, including complicated questions, complicated sequencing fine</td>
<td></td>
</tr>
<tr>
<td>Time taken to complete collection</td>
<td>2–6 weeks from distribution (dependent on number of follow-ups)</td>
<td>4–8 weeks from posting (dependent on number of follow-ups)</td>
<td>Dependent on sample size, number of field workers, etc.</td>
<td>Dependent on sample size, number of interviewers, etc., but slower than self-administered for same sample size</td>
<td></td>
</tr>
<tr>
<td>Main financial resource implications</td>
<td>Web page design, although automated expert systems offered online and by software providers are reducing this dramatically</td>
<td>Outward and return postage, photocopying, clerical support, data entry</td>
<td>Field workers, travel, photocopying, clerical support, data entry</td>
<td>Interviewers, telephone calls, clerical support. Photocopying and data entry if not using CATI(^c). Programming, software and computers if using CATI (^d)</td>
<td>Interviewers, travel, clerical support. Photocopying and data entry if not using CAPI(^c). Programming, software and computers if using CAPI (^d)</td>
</tr>
<tr>
<td>Role of the interviewer/field worker</td>
<td>None</td>
<td>None</td>
<td>Delivery and collection of questionnaires, enhancing respondent participation</td>
<td>Enhancing respondent participation, guiding the respondent through the questionnaire, answering respondents’ questions</td>
<td></td>
</tr>
<tr>
<td>Data input(^b)</td>
<td>Usually automated</td>
<td></td>
<td></td>
<td>Response to all questions entered at time of collection using CATI (^b)</td>
<td>Response to all questions can be entered at time of collection using CAPI (^d)</td>
</tr>
</tbody>
</table>

\(^a\)Discussed in Chapter 7 \(^b\)Discussed in Section 12.2 \(^c\)Computer-aided telephone interviewing \(^d\)Computer-aided personal interviewing

Sources: Authors’ experience; Dillman (2000); Hewson et al., (2003); Oppenheim (2000); deVaus (2002); Witmer et al. (1999)
Any contamination of respondents’ answers will reduce your data’s reliability (Table 11.1). Sometimes, if they have insufficient knowledge or experience they may deliberately guess at the answer, a tendency known as uninformed response. This is particularly likely when the questionnaire has been incentivised (Section 11.5). Respondents to self-administered questionnaires are relatively unlikely to answer to please you or because they believe certain responses are more socially desirable (Dillman, 2000). They may, however, discuss their answers with others, thereby contaminating their response. Respondents to telephone questionnaires and structured interviews are more likely to answer to please owing to contact with you, although the impact of this can be minimised by good interviewing technique (Section 10.5). Responses can also be contaminated or distorted when recorded. In extreme instances, interviewers may invent responses. For this reason, random checks of interviewers are often made by survey organisations.

The type of questionnaire you choose will affect the number of people who respond (Section 7.2). Interviewer-administered questionnaires will usually have a higher response rate than self-administered questionnaires (Table 11.1). The size of your sample and the way in which it is selected will have implications for the confidence you can have in your data and the extent to which you can generalise (Section 7.2).

Longer questionnaires are best presented as a structured interview. In addition, they can include more complicated questions than telephone questionnaires or self-administered questionnaires (Oppenheim, 2000). The presence of an interviewer means that it is also easier to route different subgroups of respondents to answer different questions using a filter question (Section 11.4). The suitability of different types of question also differs between techniques.

Your choice of questionnaire will also be affected by the resources you have available (Table 11.1), and in particular the:

- time available to complete the data collection;
- financial implications of data collection and entry;
- availability of interviewers and field workers to assist;
- ease of automating data entry.

The time needed for data collection increases markedly for delivery and collection questionnaires and structured interviews where the samples are geographically dispersed (Table 11.1). One way you can overcome this constraint is to select your sample using cluster sampling (Section 7.2). Unless your questionnaire is administered online, or computer-aided personal interviewing (CAPI) or computer-aided telephone interviewing (CATI) is used, you will need to consider the costs of reproducing the questionnaire, clerical support and entering the data for computer analysis. For postal and telephone questionnaires, cost estimates for postage and telephone calls will need to be included. If you are working for an organisation, postage costs may be reduced by using Freepost for questionnaire return. This means that you pay only postage and a small handling charge for those questionnaires that are returned by post. However, the use of Freepost rather than a stamp may adversely affect your response rates (see Table 11.4).

Virtually all data collected by questionnaires will be analysed by computer. Some packages (for example, SNAP™ and SphinxSurvey™) allow you both to design your questionnaire and to enter and analyse the data within the same software. Once your data have been coded and entered into the computer you will be able to explore and analyse them far more quickly and thoroughly than by hand (Section 12.2). As a rough rule, you should analyse questionnaire data by computer if they have been collected from 30 or
more respondents. For larger surveys, you may wish to automate the capture and input of data. For Internet- and intranet-mediated questionnaires (electronic questionnaires), this is normally undertaken at the questionnaire design stage and, where the software is automated, costs are minimal. For example, SurveyMonkey™, an online software tool for creating and administering web-based questionnaires, at the time of writing charged $19.99 for up to 1000 responses a month, whilst a survey of 10 or fewer questionnaires and with 100 or fewer responses is free (SurveyMonkey, 2005). For self-administered questionnaires, data capture and input is most straightforward for closed questions where respondents select and mark their answer from a prescribed list (Box 11.1).

BOX 11.1 WORKED EXAMPLE

Closed question designed for an optical mark reader

Ben’s research project involved sending out a questionnaire to a large number of people. Because of this he obtained permission to use his university’s optical mark reader to input the data from his questionnaire. In his questionnaire, respondents are given clear instructions on how to mark their responses:

Please use a pencil to mark your answer as a solid box like this: —

If you make a mistake use an eraser to rub out your answer.

1 Please mark all the types of music that you regularly listen to:

- Rock and Pop
- Dance and Urban
- Soundtracks
- Jazz and Blues
- Country
- Easy listening
- Folk
- World
- Classical
- Other

(please describe):

The mark is read using an optical mark reader, which recognises and converts marks into data at rates often exceeding 200 pages a minute. Data for interviewer-administered questionnaires can be entered directly into the computer at the time of interview using CATI or CAPI software. With both types of software you read the questions to the respondent from the screen and enter their answers directly into the computer. Because of the costs of high-speed and high-capacity scanning equipment, software and pre-survey programming, CATI and CAPI are financially viable only for very large surveys or where repeated use of the hardware and software will be made.

In reality, you are almost certain to have to make compromises in your choice of questionnaire. These will be unique to your research as the decision about which questionnaire is most suitable cannot be answered in isolation from your research question(s) and objectives and the population that you are surveying.
Deciding what data need to be collected

Research design requirements

Unlike in-depth and semi-structured interviews (Chapter 10), the questions you ask in questionnaires need to be defined precisely prior to data collection. Whereas you can prompt and explore issues further with in-depth and semi-structured interviews, this will not be possible for questionnaires. In addition, the questionnaire offers only one chance to collect the data, as it is often difficult to identify respondents or to return to collect additional information. This means that the time you spend planning precisely what data you need to collect, how you intend to analyse them (Chapter 12) and designing your questionnaire to meet these requirements is crucial if you are to answer your research question(s) and meet your objectives.

For most management and business research the data you collect using questionnaires will be used for either descriptive or explanatory purposes. For questions where the main purpose is to describe the population’s characteristics either at a fixed time or at a series of points over time to enable comparisons, you will normally need to administer your questionnaire to a sample. The sample needs to be as representative and accurate as possible where it will be used to generalise about the total population (Sections 7.1–7.3). You will also probably need to relate your findings to earlier research. It is therefore important that you select the appropriate characteristics to answer your research question(s) and to address your objectives. You therefore need to have:

- reviewed the literature carefully;
- discussed your ideas with colleagues, your project tutor and other interested parties.

For research involving organisations, we have found it essential to understand the organisations in which we are undertaking the research. Similarly, for international or cross-cultural research it is important to have an understanding of the countries or cultures in which you are undertaking the research. Without this it is easy to make mistakes, such as using the wrong terminology or language, and to collect useless data. For many research projects an understanding of relevant organisations can be achieved through browsing company publications or their Internet sites (Section 8.3), observation (Chapter 9) and in-depth and semi-structured interviews (Chapter 10).

Explanatory research requires data to test a theory or theories. This means that, in addition to those issues raised for descriptive research, you need to define the theories you wish to test as relationships between variables prior to designing your questionnaire. You therefore need to have reviewed the literature carefully, discussed your ideas widely, and conceptualised your own research clearly prior to designing your questionnaire (Ghauri and Grønhaug, 2005). In particular, you need to be clear about which relationships you think are likely to exist between variables:

- a variable is dependent – that is, it changes in response to changes in other variables;
- a variable is independent – that is, it causes changes in dependent variables;
- a variable is extraneous – that is, it might also cause changes in dependent variables, thereby providing an alternative explanation to your independent variable or variables (Box 11.2).

As these relationships are likely to be tested through statistical analysis (Section 12.5) of the data collected by your questionnaire, you need to be clear about the detail in...
which they will be measured at the design stage. Where possible, you should ensure that measures are compatible with those used in other relevant research so that comparisons can be made (Section 12.2).

Types of variable

Dillman (2000) distinguishes between three types of data variable that can be collected through questionnaires:

- opinion;
- behaviour;
- attribute.

These distinctions are important, as they will influence the way your questions are worded (Box 11.3). **Opinion** variables record how respondents feel about something or what they think or believe is true or false. In contrast, data on behaviours and attributes record what respondents do and are. When recording what respondents do, you are recording their **behaviour**. This differs from respondents’ opinions because you are recording a concrete experience. Behavioural variables contain data on what people (or their organisations) did in the past, do now or will do in the future. By contrast, **attribute** variables contain data about the respondents’ characteristics. Attributes are best thought of as things a respondent possesses, rather than things a respondent does (Dillman, 2000). They are used to explore how opinions and behaviour differ between respondents as well as to check that the data collected are representative of the total population (Section 7.2). Attributes include characteristics such as age, gender, marital status, education, occupation and income.

Ensuring that essential data are collected

A problem experienced by many students and organisations we work with is how to ensure that the data collected will enable the research question(s) to be answered and the objectives achieved. Although no method is infallible, one way is to create a **data requirements table** (Table 11.2). This summarises the outcome of a process:

1. Decide whether the main outcome of your research is descriptive or explanatory.
2. Subdivide each research question or objective into more specific investigative questions about which you need to gather data.
Opinion, behaviour and attribute questions

Sally was asked by her employer to undertake an anonymous survey of financial advisors’ ethical values. In particular, her employer was interested in the advice given to clients. After some deliberation she came up with three questions that address the issue of putting clients’ interests before their own:

2 How do you feel about the following statement? ‘Financial advisors should place their clients’ interest before their own.’

 strongly agree □
 mildly agree □
 (please tick the appropriate box) neither agree or disagree □
 mildly disagree □
 strongly disagree □

3 In general, do financial advisors place their clients’ interests before their own?

 always yes □
 usually yes □
 (please tick the appropriate box) sometimes yes □
 seldom yes □
 never yes □

4 How often do you place your clients’ interests before your own?

 80–100% of my time □
 60–79% of my time □
 (please tick the appropriate box) 40–59% of my time □
 20–39% of my time □
 0–19% of my time □

Sally’s choice of question or questions to include in her questionnaire were dependent on whether she needed to collect data on financial advisors’ opinions or behaviours. She designed question 2 to collect data on respondents’ opinions about financial advisors placing their clients’ interest before their own. This question asks respondents how they feel. In contrast, question 3 asks respondents whether financial advisors in general place their clients’ interests before their own. It is therefore concerned with their opinions in terms of their individual beliefs. Question 4 focuses on how often the respondents actually place their clients’ interests before their own. Unlike the previous questions, it is concerned with their actual behaviour rather than their opinion.

To answer her research questions and to meet her objectives Sally also needed to collect data to explore how ethical values differed between subgroupings of financial advisors. One theory she had was that ethical values were related to age. To test this she needed to collect data on the attribute age. After some deliberation she come up with question 5:

5 How old are you?

 Less than 30 years □
 30 to less than 40 years □
 (please tick the appropriate box) 40 to less than 50 years □
 50 to less than 60 years □
 60 years or over □
3 Repeat the second stage if you feel that the investigative questions are not sufficiently precise.

4 Identify the variables about which you will need to collect data to answer each investigative question.

5 Establish the level of detail required from the data for each variable.

6 Develop measurement questions to capture the data at the level of data required for each variable.

Investigative questions are the questions that you need to answer in order to address satisfactorily each research question and to meet each objective (Blumberg et al., 2005). They need to be generated with regard to your research question(s) and objectives. For some investigative questions you will need to subdivide your first attempt into more detailed investigative questions. For each you need to be clear whether you are interested in respondents’ opinions, behaviours or attributes (discussed earlier), as what appears to be a need to collect one sort of variable frequently turns out to be a need for another. We have found the literature review, discussions with interested parties and pilot studies to be of help here.

You then need to identify the variables about which you need to collect data to answer each investigative question and to decide the level of detail at which these are measured. Again, the review of the literature and associated research can suggest possibilities. However, if you are unsure about the detail needed you should measure at the more precise level. Although this is more time consuming, it will give you flexibility in your analyses. In these you will be able to use computer software to group or combine data (Section 12.2).

Once your table is complete (Box 11.4), it must be checked to make sure that all data necessary to answer your investigative questions are included. When checking, you need to be disciplined and to ensure that only data that are essential to answering your research question(s) and meeting your objectives are included. We added the final column to remind us to check that our questionnaire actually includes a measurement question that collects the precise data required!

Table 11.2 Data requirements table

<table>
<thead>
<tr>
<th>Research question/objective:</th>
<th>Type of research:</th>
<th>Investigative questions</th>
<th>Variable(s) required</th>
<th>Detail in which data measured</th>
<th>Check measurement question included in questionnaire ✓</th>
</tr>
</thead>
</table>

11.4 **Designing the questionnaire**

The internal validity and reliability of the data you collect and the response rate you achieve depend, to a large extent, on the design of your questions, the structure of your questionnaire, and the rigour of your pilot testing (all discussed in this section). A valid questionnaire will enable accurate data to be collected, and one that is reliable will mean that these data are collected consistently. Foddy (1994:17) discusses validity and reliability in terms of the questions and answers making sense. In particular, he emphasises
Data requirements table

As part of his work placement Greg was asked to discover customer attitudes to the introduction of a smoking ban in restaurants and bars. Discussion with senior management and colleagues and reading relevant literature helped him to firm up his objective and investigative questions. A selection of these is included in the extract from his table of data requirements:

<p>| Research question/objective: To establish customers’ attitudes to the introduction of a smoking ban in restaurants and bars | Type of research: Predominantly descriptive, although wish to examine differences between restaurants and bars, and between different groups of customers |</p>
<table>
<thead>
<tr>
<th>Investigative questions</th>
<th>Variable(s) required</th>
<th>Detail in which data measured</th>
<th>Check included in questionnaire ✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do customers feel that they should be able to smoke in restaurants and bars as a right? (opinion)</td>
<td>Opinion of customer to smoking in restaurants and bars as a right</td>
<td>Feel... should be allowed, should not be allowed, no strong feelings (N.B. will need separate questions for restaurants and for bars)</td>
<td></td>
</tr>
<tr>
<td>Do customers feel that restaurants and bars should provide a smoking room for smokers? (opinion)</td>
<td>Opinion of customer to the provision of a smoking room for smokers</td>
<td>Feel... very strongly that it should, quite strongly that it should, no strong opinions, quite strongly that it should not, very strongly that it should not (N.B. will need separate questions for restaurants and for bars)</td>
<td></td>
</tr>
<tr>
<td>Do customers’ opinions differ depending on (Opinion of employee – outlined above)</td>
<td>(Opinion of employee – outlined above)</td>
<td>(Included above)</td>
<td></td>
</tr>
<tr>
<td>• age? (attribute)</td>
<td>• Age of employee</td>
<td>• To nearest 5-year band (youngest 16, oldest 65)</td>
<td></td>
</tr>
<tr>
<td>• whether or not a smoker? (behaviour)</td>
<td>• Smoker</td>
<td>• Non-smoker, smokes but not in own home, smokes in own home</td>
<td></td>
</tr>
<tr>
<td>How representative are the responses of customers? (attributes)</td>
<td>Age of customer Gender of customer Job</td>
<td>(Included above) Male, female Higher managerial and professional occupations, Lower managerial and professional occupations, Intermediate occupations, Small employers and own account workers, Lower supervisory and technical occupations, Semi-routine occupations, Routine occupations, Never worked and long-term unemployed</td>
<td></td>
</tr>
</tbody>
</table>

(Extracted and formatted from original text)
that ‘the question must be understood by the respondent in the way intended by the researcher and the answer given by the respondent must be understood by the researcher in the way intended by the respondent’. This means that there are at least four stages that must occur if the question is to be valid and reliable (Figure 11.2). It also means that the design stage is likely to involve you in substantial rewriting in order to ensure that the respondent decodes the question in the way you intended. We therefore recommend that you use a word processor or survey design software such as SNAP or SphinxSurvey.

Assessing validity

Internal validity in relation to questionnaires therefore refers to the ability of your questionnaire to measure what you intend it to measure. This means you are concerned that what you find with your questionnaire actually represents the reality of what you are measuring. This presents you with a problem, as if you actually knew the reality of what you were measuring there would be no point in designing your questionnaire! Researchers get round this problem by looking for other relevant evidence that supports the answers found using the questionnaire, relevance being determined by the nature of their research question and their own judgement.

Often, when discussing the validity of a questionnaire, researchers refer to content validity, criterion-related validity and construct validity (Blumberg *et al.*, 2005). *Content validity* refers to the extent to which the measurement device, in our case the measurement questions in the questionnaire, provides adequate coverage of the investigative questions. Judgement of what is ‘adequate coverage’ can be made in a number of ways. One is through careful definition of the research through the literature reviewed and, where appropriate, prior discussion with others. Another is to use a panel of individuals to assess whether each measurement question in the questionnaire is ‘essential’, ‘useful but not essential’, or ‘not necessary’.

Criterion-related validity, sometimes known as *predictive validity*, is concerned with the ability of the measures (questions) to make accurate predictions. This means
that if you are using your measurement questions within your questionnaire to predict customers’ future buying behaviours, then a test of these measurement questions’ criterion-related validity will be the extent to which they actually predict these customers’ buying behaviours. In assessing criterion-related validity, you will be comparing the data from your questionnaire with that specified in the criterion in some way. Often this is undertaken using statistical analysis such as correlation (Section 12.5).

Construct validity refers to the extent to which your measurement questions actually measure the presence of those constructs you intended them to measure. This term is normally used when referring to constructs such as attitude scales, aptitude and personality tests and the like (Section 11.4) and can be thought of as answering the question: ‘How well can you generalise from your measurement questions to your construct?’ Because validation of such constructs against existing data is difficult, other methods are used. These are discussed in more detail in a range of texts, including Blumberg *et al.* (2005).

Testing for reliability

As we outlined earlier, **reliability** refers to consistency. Although for a questionnaire to be valid it must be reliable, this is not sufficient on its own. Respondents may consistently interpret a question in your questionnaire in one way, when you mean something else! As a consequence, although the question is reliable, it does not really matter as it has no internal validity and so will not enable your research question to be answered. Reliability is therefore concerned with the robustness of your questionnaire and, in particular, whether or not it will produce consistent findings at different times and under different conditions, such as with different samples or, in the case of an interviewer-administered questionnaire, with different interviewers.

Mitchell (1996) outlines three common approaches to assessing reliability, in addition to comparing the data collected with other data from a variety of sources. Although the analysis for each of these is undertaken after data collection, they need to be considered at the questionnaire design stage. They are:

- test re-test;
- internal consistency;
- alternative form.

Test re-test estimates of reliability are obtained by correlating data collected with those from the same questionnaire collected under as near equivalent conditions as possible. The questionnaire therefore needs to be administered twice to respondents. This may result in difficulties, as it is often difficult to persuade respondents to answer the same questionnaire twice. In addition, the longer the time interval between the two questionnaires, the lower the likelihood that respondents will answer the same way. We therefore recommend that you use this method only as a supplement to other methods.

Internal consistency involves correlating the responses to each question in the questionnaire with those to other questions in the questionnaire. It therefore measures the consistency of responses across either all the questions or a subgroup of the questions from your questionnaire. There are a variety of methods for calculating internal consistency, of which one of the most frequently used is Cronbach’s alpha. Further details of this and other approaches can be found in Mitchell (1996) and in books about more advanced statistical analysis software such as Field (2005).

The final approach to testing for reliability outlined by Mitchell (1996) is **alternative form**. This offers some sense of the reliability within your questionnaire through comparing responses to alternative forms of the same question or groups of questions. Where
Designing individual questions

The design of each question should be determined by the data you need to collect (Section 11.3). When designing individual questions researchers do one of three things (Bourque and Clark, 1994):

■ adopt questions used in other questionnaires;
■ adapt questions used in other questionnaires;
■ develop their own questions.

Adopting or adapting questions may be necessary if you wish to replicate, or to compare your findings with, another study. This can allow reliability to be assessed. It is also more efficient than developing your own questions, provided that you can still collect the data you need to answer your research question(s) and to meet your objectives. Some survey design software includes questions that you may use. Alternatively, you may find questions and coding schemes that you feel will meet your needs in existing questionnaires or in question banks such as the ESRC Question Bank. This consists of a database of questions and question methodology of UK social surveys going back to 1991 and is available from <URL http://qb.soc.surrey.ac.uk>.

However, before you adopt questions, beware! There are a vast number of poor questions in circulation, so always assess each question carefully. In addition, you need to check whether they are under copyright. If they are, you need to obtain the author’s permission to use them. Even where there is no formal copyright you should note where you obtained the questions and give credit to their author.

Initially, you need only consider the type and wording of individual questions rather than the order in which they will appear on the form. Clear wording of questions using terms that are likely to be familiar to, and understood by, respondents can improve the validity of the questionnaire. Most types of questionnaire include a combination of open and closed questions. Open questions, sometimes referred to as open-ended questions (Dillman, 2000), allow respondents to give answers in their own way (Fink, 2003a). Closed questions, sometimes referred to as closed-ended questions (Dillman, 2000) or forced-choice questions (deVaus, 2002), provide a number of alternative answers from which the respondent is instructed to choose. The latter type of question is usually quicker and easier to answer, as they require minimal writing. Responses are also easier to compare as they have been predetermined. However, if these responses cannot be easily interpreted then these benefits are, to say the least, marginal (Foddy, 1994). Within this chapter we highlight six types of closed question that we discuss later:

■ list, where the respondent is offered a list of items, any of which may be selected;
■ category, where only one response can be selected from a given set of categories;
■ ranking, where the respondent is asked to place something in order;
■ rating, in which a rating device is used to record responses;
■ quantity, to which the response is a number giving the amount;
■ grid, where responses to two or more questions can be recorded using the same matrix.
Prior to data analysis, you will need to group and code responses to each question. Detailed coding guidance is given in Section 11.2. You are strongly advised to read the entire chapter prior to designing your questions.

Open questions

Open questions are used widely in in-depth and semi-structured interviews (Section 10.5). In questionnaires they are useful if you are unsure of the response, such as in exploratory research, when you require a detailed answer or when you want to find out what is uppermost in the respondent’s mind. An example of an open question (from a self-administered questionnaire) is:

6 Please list up to three things you like about your job:

1. ..
2. ..
3. ..

With open questions, the precise wording of the question and the amount of space partially determine the length and fullness of response. However, if you leave too much space the question becomes off-putting. Question 6 collects data about what each respondent believes they like about their job. Thus if salary had been the reason uppermost in their mind this would probably have been recorded first. Unfortunately, for large-scale questionnaire surveys responses to open questions are extremely time-consuming to code (Section 12.2). For this reason, it is usually advisable keep their use to a minimum.

List questions

List questions offer the respondent a list of responses, any of which they can choose. Such questions are useful when you need to be sure that the respondent has considered all possible responses. However, the list of responses must be defined clearly and meaningfully to the respondent. For structured interviews, it is often helpful to present the respondent with a prompt card listing all responses. The response categories you can use vary widely and include ‘yes/no’, ‘agree/disagree’ and ‘applies/doses not apply’ along with ‘don’t know’ or ‘not sure’. If you intend to use what you hope is a complete list, you may wish to add a catch-all category of ‘other’. This has been included in question 7, which collects data on respondents’ religion. However, as you can read in Box 11.5, the use of ‘other’ can result in unforeseen responses!

7 What is your religion?

Please tick ✓ the appropriate box.

- Buddhist □ None □
- Christian □ Other □
- Hindu □
- Jewish □ (please say):...
- Muslim □
- Sikh □
Question 7 collects data on the religion of the respondent. In this list question, the common practice of omitting negative response boxes has been adopted. Consequently, negative responses in this question not being, for example, a Christian, are inferred from each unmarked response. If you choose to do this, beware: non-response could also indicate uncertainty or, for some questions, that an item does not apply!

George Lucas is a god in Britain. Literally.

According to official census figures, 390,000 Brits said their religious faith was “Jedi”. Had this been an official category, it would have been the fourth largest religion in the UK, ahead of Sikhism.

Instead, the Star Wars fans were registered as atheists. “We have put them among the 7.7m people who said they had no religion,” a census official said. “I suspect this was a decision which will not be challenged greatly.”

Evidently aspirant Jedi masters were inspired by an e-mail that asked them to record the unrecognised faith in the hope that their support would force the government to put Lucas on the same level as Moses, Christ and Mohammed.

“I imagine the official statistics of your country claiming a percentage of the population as practising ‘Jedi Knights!!!’ says the website jedicensus.com. Yes, imagine that.

Category questions

In contrast, category questions are designed so that each respondent’s answer can fit only one category. Such questions are particularly useful if you need to collect data about behaviour or attributes. The number of categories that you can include without affecting the accuracy of responses is dependent on the type of questionnaire. Self-administered questionnaires and telephone questionnaires should usually have no more than five response categories (Fink, 2003a). Structured interviews can have more categories provided that a prompt card is used (Box 11.6) or, as in question 8, the interviewer categorises the responses.

8 How often do you visit this shopping centre?

Interviewer: listen to the respondent’s answer and tick ✓ as appropriate.

☐ first visit 2 or more times a week
☐ once a week less than once a week to fortnightly
☐ less than fortnightly to once a month less often

You should arrange responses in a logical order so that it is easy to locate the response category that corresponds to each respondent’s answer. Your categories should be mutually exclusive (should not overlap), and should cover all possible responses. The layout of your questionnaire should make it clear which boxes refer to which response category by placing them close to the appropriate text.
Use of a prompt card as part of a structured interview

As part of his interview schedule, Peter asked the following question:

Which of the following daily newspapers have you read during the past month?

Show respondent card 3 with the names of the newspapers. Read out names of the newspapers one at a time. Record their response with a √ in the appropriate box.

<table>
<thead>
<tr>
<th>Newspaper</th>
<th>Read</th>
<th>Not read</th>
<th>Don't know</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Daily Express</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily Mail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Daily Mirror</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily Star</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Times</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Guardian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Daily Telegraph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Independent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Sun</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Times</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Peter gave card 3 to each respondent prior to reading out newspaper names and collected the card after the question had been completed.
Ranking questions

A **ranking question** asks the respondent to place things in rank order. This means that you can discover their relative importance to the respondent. In question 9, taken from a postal questionnaire, the respondents are asked their beliefs about the relative importance of a series of features when choosing a new car. The catch-all feature of ‘other’ is included to allow respondents to add one other feature.

9 Please number each of the factors listed below in order of importance to you in your choice of a new car. Number the most important 1, the next 2 and so on. If a factor has no importance at all, please leave blank.

<table>
<thead>
<tr>
<th>factor</th>
<th>importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>acceleration</td>
<td></td>
</tr>
<tr>
<td>boot size</td>
<td></td>
</tr>
<tr>
<td>depreciation</td>
<td></td>
</tr>
<tr>
<td>safety features</td>
<td></td>
</tr>
<tr>
<td>fuel economy</td>
<td></td>
</tr>
<tr>
<td>price</td>
<td></td>
</tr>
<tr>
<td>driving enjoyment</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td></td>
</tr>
</tbody>
</table>

……………………… (please describe)

With such questions, you need to ensure that the instructions are clear and will be understood by the respondent. In general, respondents find that ranking more than seven or eight items takes too much effort, so you should keep your list to this length or shorter (Kervin, 1999). Respondents can rank accurately only when they can see or remember all items. This can be overcome with face-to-face questionnaires by using prompt cards on which you list all of the features to be ranked. However, telephone questionnaires should ask respondents to rank a maximum of three or four items, as the respondent will need to rely on their memory (Kervin, 1999).

Rating questions

Rating questions are often used to collect opinion data. They should not be confused with scales (discussed later in this section), which are a coherent set of questions or items that are regarded as indicators of a construct or concept (Corbetta, 2003). Rating questions most frequently use the **Likert-style rating scale** in which the respondent is asked how strongly she or he agrees or disagrees with a statement or series of statements, usually on a four-, five-, six- or seven-point rating scale. If you intend to use a series of statements, you should keep the same order of response categories to avoid confusing respondents (Dillman, 2000). You should, however, include both positive and negative statements so as to ensure that the respondent reads each one carefully and thinks about which box to tick.

10 For the following statement please tick ✓ the box that matches your view most closely.

<table>
<thead>
<tr>
<th>I feel that employees' views have influenced the decisions taken by management.</th>
<th>agree</th>
<th>tend to agree</th>
<th>tend to disagree</th>
<th>disagree</th>
</tr>
</thead>
</table>
Question 10 has been taken from a delivery and collection questionnaire to employees in an organisation and is designed to collect opinion data. In this rating question, an even number of points (four) has been used to force the respondent to express their feelings towards an implicitly positive statement. By contrast, question 11, also from a delivery and collection questionnaire, contains an odd number (five) of points on the rating scale. This rating scale allows the respondent to ‘sit on the fence’ by ticking the middle ‘not sure’ category when considering an implicitly negative statement. The phrase ‘not sure’ is used here as it is less threatening to the respondent than admitting they do not know. This rating question is designed to collect data on employees’ opinions of the situation now.

11 For the following statement please tick ✓ the box that matches your view most closely.

<table>
<thead>
<tr>
<th>agree</th>
<th>tend to agree</th>
<th>not sure</th>
<th>tend to disagree</th>
<th>disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I believe there are ‘them and us’ barriers to communication in the company now.

You can expand this form of rating question further to record finer shades of opinion. However, respondents to telephone questionnaires find it difficult to distinguish between values on rating scales of more than five points plus ‘don’t know’. In addition, there is little point in collecting data for seven or nine response categories, if these are subsequently combined in your analysis (Chapter 12). Colleagues and students often ask us how many points they should have on their rating scale. This is related to the likely measurement error. If you know that your respondents can only respond accurately to a three-point rating, then it is pointless to have a finer rating scale with more points!

In question 12 the respondent’s attitude is captured on a 10-point numeric rating scale. In such rating questions it is important that the numbers reflect the feeling of the respondent. Thus 1 reflects poor value for money and 10 good value for money. Only these end categories (and sometimes the middle) are labelled and are known as self-anchoring rating scales. As in this question, graphics may also be used to reflect the rating scale visually, thereby aiding the respondent’s interpretation. An additional category of ‘not sure’ or ‘don’t know’ can be added and should be separated slightly from the rating scale.

12 For the following statement please circle ○ the number that matches your view most closely.

This concert was... Poor value for money 1 2 3 4 5 6 7 8 9 10 Good value for money

Another variation is the semantic differential rating scale. These are often used in consumer research to determine underlying attitudes. The respondent is asked to rate a single object or idea on a series of bipolar rating scales (Box 11.7). Each bipolar scale is described by a pair of opposite adjectives (question 13) designed to anchor respondents’ attitudes towards service. For these rating scales, you should vary the position of positive
and negative adjectives from left to right to reduce the tendency to read only the adjective on the left (Kervin, 1999).

13 On each of the lines below, place a ✕ to show how you feel about the service you received at our restaurant.

<table>
<thead>
<tr>
<th>Fast</th>
<th>Slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfriendly</td>
<td>Friendly</td>
</tr>
<tr>
<td>Value for money</td>
<td>Over-priced</td>
</tr>
</tbody>
</table>

BOX 11.7 FOCUS ON MANAGEMENT RESEARCH

Semantic differential rating scales

In their study of the perception of messages conveyed by review and audit reports published in the *Accounting, Auditing & Accountability Journal*, Gay, Schelluch and Baines (1998) reviewed the academic literature to identify the messages that these two types of report were intended to convey. Based upon this they developed a semantic differential scale consisting of 35 bipolar adjectival statements separated by a seven-point scale. These adjectival statements were worded as polar opposites and included (Gay *et al.*, 1998:480):

<table>
<thead>
<tr>
<th>The financial statements give a true and fair view</th>
<th>The financial statements do not give a true and fair view</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The entity is free from fraud</th>
<th>The entity is not free from fraud</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
</tr>
</tbody>
</table>

By using the semantic differential scale, Gay *et al.* (1998) were able to measure perceived messages in relation to the reliability of financial statements, auditor/management responsibility and the usefulness of such financial statements for decision making.

Rating questions have been combined to measure a wide variety of concepts such as customer loyalty, service quality and job satisfaction. For each concept the resultant measure or *scale* is represented by a scale score created by combining the scores for each of the rating questions. Each question is often referred to as a *scale item*. In the case of a simple Likert scale, for example, the scale score for each case would be calculated by adding together the scores of each of the questions (items) selected (deVaus, 2002). A detailed discussion of creating scales, including those by Likert and Guttman, can be found in Corbetta (2003). However, rather than developing your own scales, it often makes sense to use or adapt existing scales. Since scaling techniques were first used in the 1930s, literally thousands of scales have been developed to measure attitudes and personality dimensions and to assess skills and abilities. Details of an individual scale can often be found by following up references in an article reporting research that uses that scale. In addition, there are a wide variety of handbooks that list these scales (for example, Miller and Salkind, 2002). However, you need to beware: they may be subject to copyright constraints. Even where there is no formal copyright, you should note where you obtained the scale and give credit to the author.
Quantity questions

The response to a quantity question is a number, which gives the amount of a characteristic. For this reason, such questions tend to be used to collect behaviour or attribute data. A common quantity question, which collects attribute data, is:

14 What is your year of birth?

(for example, for 1980 write:)

Because the data collected by this question could be entered into the computer without coding, the question can also be termed a self-coded question.

Grid

A grid or matrix enables you to record the responses to two or more similar questions at the same time. Although the 1991 UK census form was designed using a matrix format, this was not continued for the 2001 census form. Questions were listed down the left-hand side of the page, and each household member was listed across the top. The response to each question for each household member was then recorded in the cell where the row and column met. Although using a grid saves space, Dillman (2000) suggests that respondents have difficulties comprehending these designs and that they are a barrier to response.

Question wording

The wording of each question will need careful consideration to ensure that the responses are valid – that is, measure what you think they do. Your questions will need to be checked within the context for which they were written rather than in abstract to ensure they are not misread (Box 11.8). Given this, the checklist in Box 11.9 should help you to avoid the most obvious problems associated with wording that threaten the validity of responses.

BOX 11.8 WORKED EXAMPLE

Misreading questions

Before becoming a student Tracey worked for a UK-based market research agency and was responsible for much of their questionnaire design and analysis work. During her time at the agency she noted that certain words in questions were likely to be misread by respondents. The question ‘In which county do you live?’ was often answered as if the question had been ‘In which country do you live?’ This meant that rather than answering ‘Oxfordshire’, the respondent would answer either ‘England’ or ‘UK’. Later questionnaires for which Tracey was responsible used the question ‘In which town do you live?’, the response being used to establish and code the county in which the respondent lived.

Translating questions into other languages

Translating questions and associated instructions into another language requires care if your translated or target questionnaire is to be decoded and answered by respondents in the way you intended. For international research this is extremely important if the questions
Your question wording

- Does your question collect data at the right level of detail to answer your investigative question as specified in your data requirements table?
- Will respondents have the necessary knowledge to answer your question? A question on the implications of a piece of European Union legislation would yield meaningless answers from those who were unaware of that legislation.
- Does your question talk down to respondents? It should not!
- Are the words used in your question familiar, and will all respondents understand them in the same way? In particular, you should use simple words and avoid jargon, abbreviations and colloquialisms.
- Are there any words that sound similar and might be confused with those used in your question? This is a particular problem with interviewer-administered questionnaires.
- Are there any words that look similar and might be confused if your question is read quickly? This is particularly important for self-administered questionnaires.
- Are there any words in your question that might cause offence? These might result in biased responses or a lower response rate.
- Can your question be shortened? Long questions are often difficult to understand, especially in interviewer-administered questionnaires, as the respondent needs to remember the whole question. Consequently, they often result in no response at all.
- Are you asking more than one question at the same time? The question ‘How often do you visit your mother and father?’ contains two separate questions, one about each parent, so responses would probably be impossible to interpret.
- Does your question include a negative or double negative? Questions that include the word ‘not’ are sometimes difficult to understand. The question ‘Would you rather not use a non-medicated shampoo?’ is far easier to understand when rephrased as: ‘Would you rather use a medicated shampoo?’
- Is your question unambiguous? This can arise from poor sentence structure, using words with several different meanings or having an unclear investigative question. If you ask ‘When did you leave school?’ some respondents might state the year, others might give their age, while those still in education might give the time of day! Ambiguity can also occur in category questions. If you ask employers how many employees they have on their payroll and categorise their answers into three groups (up to 100, 100–250, 250 plus), they will not be clear which group to choose if they have 100 or 250 employees.
- Does your question imply that a certain answer is correct? If it does, the question is biased and will need to be reworded, such as with the question ‘Many people believe that too little money is spent on our public Health Service. Do you believe this to be the case?’ For this question, respondents are more likely to answer ‘yes’ to agree with and please the interviewer.
- Does your question prevent certain answers from being given? If it does, the question is biased and will need to be reworded. The question ‘Is this the first time you have pretended to be sick?’ implies that the respondent has pretended to be sick whether they answer yes or no!
- Is your question likely to embarrass the respondent? If it is then you need either to reword it or to place it towards the end of the survey when you will, it is to be hoped, have gained
are to have the same meaning to all respondents. For this reason Usunier (1998) suggests that when translating the source questionnaire attention should be paid to:

- **lexical meaning** – the precise meaning of individual words (for example, the French word *chaud* can be translated into two concepts in English and German, ‘warm’ and ‘hot’);

- **idiomatic meaning** – the meanings of a group of words that are natural to a native speaker and not deducible from those of the individual words (for example, the English expression for informal communication, ‘grapevine’, has a similar idiomatic meaning as the French expression *téléphone arabe*, meaning literally ‘arab telephone’ and the German expression *mundpropaganda*, meaning literally ‘mouth propaganda’);

- **grammar and syntax** – the correct use of language, including the ordering of words and phrases to create well-formed sentences (for example, in Japanese the ordering is quite different from English or Dutch, as verbs are at the end of sentences);

- **experiential meaning** – the equivalence of meanings of words and sentences for people in their everyday experiences (for example, terms that are familiar in the source questionnaire’s context such as ‘dual career household’ may be unfamiliar in the target questionnaire’s context).

Usunier (1998) outlines a number of techniques for translating your source questionnaire. These, along with their advantages and disadvantages, are summarised in Table 11.3. In this table, the source questionnaire is the questionnaire that is to be translated, and the target questionnaire is the translated questionnaire. When writing your final project report, remember to include a copy of both the source and the target questionnaire as appendices. This will allow readers familiar with both languages to check that equivalent questions in both questionnaires have the same meaning.

Question coding

If you are planning to analyse your data by computer, they will need to be coded prior to entry. For quantity questions, actual numbers can be used as codes. For other questions, you will need to design a coding scheme. Whenever possible, you should establish the coding scheme prior to collecting data and incorporate it into your questionnaire. This should take account of relevant existing coding schemes to enable comparisons with other data sets (Section 12.2).

For most closed questions you should be able to add codes to response categories. These can be printed on the questionnaire, thereby pre-coding the question and removing the need to code after data collection. Two ways of doing this are illustrated by questions 15 and 16, which collect data on the respondents’ opinions.
Table 11.3 Translation techniques for questionnaires

<table>
<thead>
<tr>
<th>Approach</th>
<th>Direct translation</th>
<th>Back-translation</th>
<th>Parallel translation</th>
<th>Mixed techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source questionnaire to target questionnaire</td>
<td>Source questionnaire to target questionnaire; comparison of two new source questionnaires; creation of final version</td>
<td>Source questionnaire to target questionnaire by two or more independent translators; comparison of two target questionnaires; creation of final version</td>
<td>Back-translation undertaken by two or more independent translators; comparison of two new source questionnaires; creation of final version</td>
<td></td>
</tr>
<tr>
<td>Advantages</td>
<td>Easy to implement, relatively inexpensive</td>
<td>Likely to discover most problems</td>
<td>Leads to good wording of target questionnaire</td>
<td>Ensures best match between source and target questionnaires</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Can lead to many discrepancies (including those relating to meaning) between source and target questionnaire</td>
<td>Requires two translators, one a native speaker of the source language, the other a native speaker of the target language</td>
<td>Cannot ensure that lexical, idiomatic and experiential meanings are kept in target questionnaire</td>
<td>Costly, requires two or more independent translators. Implies that the source questionnaire can also be changed</td>
</tr>
</tbody>
</table>

15 Is the service you receive? (please circle the number)

<table>
<thead>
<tr>
<th>Excellent</th>
<th>Good</th>
<th>Reasonable</th>
<th>Poor</th>
<th>Awful</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

16 Is the service you receive? (please tick the box)

<table>
<thead>
<tr>
<th>Excellent</th>
<th>Good</th>
<th>Reasonable</th>
<th>Poor</th>
<th>Awful</th>
</tr>
</thead>
<tbody>
<tr>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>

The codes allocated to response categories will affect your analyses. In question 15 an ordered scale of numbers has been allocated to adjacent responses. This will make it far easier to aggregate responses using a computer (Section 12.2) to ‘satisfactory’ (5, 4 or 3) and ‘unsatisfactory’ (2 or 1) compared with the codes in question 16. We therefore recommend that you do not allocate codes as in question 16.

In contrast, if you are considering using an Internet- or intranet-mediated questionnaire you can create an online form (questionnaire) containing text boxes where the respondent enters information, check boxes that list the choices available to the respondent allowing them to ‘check’ or ‘tick’ one or more of them (as in the TGI Friday’s questionnaire), and drop-down list boxes that restrict the respondent to selecting only one of the answers you specify. Online forms are often included as part of word-processing software such as Microsoft Word™. Alternatively, as for question 17, you can use online software tools such as SurveyMonkey to create your online form. Both allow you to create a professional questionnaire and the respondent to complete the questionnaire online and return the data electronically in a variety of formats such as Excel™, SPSS compatible or a comma-delimited file.

For open questions you will need to reserve space on your data collection form to code responses after data collection. Question 18 has been designed to collect attribute data in...
a sample survey of 5000 people. Theoretically there could be hundreds of possible responses, and so sufficient spaces are left in the ‘for Office use only’ box.

18 What is your full job title?

Open questions, which generate lists of responses, are likely to require more complex coding using either the multiple-response or the multiple-dichotomy method. These are discussed in Section 12.2, and we recommend that you read this prior to designing your questions.

Designing the survey form

The order and flow of questions

When constructing your questionnaire it is a good idea to spend time considering the order and flow of your questions. These should be logical to the respondent (and interviewer) rather than follow the order in your data requirements table (Table 11.2). To assist the flow of the survey it may be necessary to include filter questions. These identify those respondents for whom the following question or questions are not applicable, so they can skip those questions. You should beware of using more than two or three filter questions in self-administered questionnaires, as respondents tend to find having to skip questions annoying. More complex filter questions can be programmed using Internet- and intranet-mediated questionnaires and CAPI and CATI software so that skipped questions are never displayed on the screen and as a consequence never asked (Dillman, 2000). In such situations the respondent is unlikely to be aware of the questions that have been skipped. The following example uses the answer to question 19 to determine whether questions 20 to 24 will be answered. (Questions 19 and 20 both collect data on attributes.)

19 Are you currently registered as unemployed? Yes ☐ No ☐

If ‘no’ go to question 25

20 How long have you been registered as unemployed? [] years [] months

(for example, for no years and six months write:) [] years [6] months
Where you need to introduce new topics, phrases such as ‘the following questions refer to . . . ’ or ‘I am now going to ask you about . . . ’ are useful. And when wording your questions, you should remember the particular population for whom your questionnaire is designed. For interviewer-administered questionnaires, you will have to include instructions for the interviewer (Box 11.10). The checklist in Box 11.11 should help you to avoid the most obvious problems associated with question order and flow. For some questionnaires the advice contained may be contradictory. Where this is the case, you need to decide what is most important for your particular population.

BOX 11.10 WORKED EXAMPLE

Introducing a series of rating questions in a telephone questionnaire

As part of a telephone questionnaire, Stefan needed to collect data on respondents’ attitudes to motorway service stations. To do this he asked respondents to rate a series of statements using a Likert-type rating scale. Because his survey was conducted by telephone the rating scale was restricted to four categories: strongly agree, agree, disagree, strongly disagree.

In order to make the questionnaire easy for the interviewer to follow, Stefan used italic script to highlight the interviewer’s instructions and the words that the interviewer needed to read in bold. An extract is given below:

Now I’m going to read you several statements. Please tell me whether you strongly agree, agree, disagree or strongly disagree with each.

Interviewer: read out statements 21 to 30 one at a time and after each ask . . .

Do you strongly agree, agree, disagree or strongly disagree?

Record respondent’s response with a tick ✓

<table>
<thead>
<tr>
<th>strongly agree</th>
<th>agree</th>
<th>disagree</th>
<th>strongly disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

21 I wish there were a greater number of service stations on motorways

The layout of the questionnaire

Layout is important for both self-administered and interviewer-administered questionnaires. Interviewer-administered questionnaires should be designed to make reading questions and filling in responses easy. The layout of self-administered questionnaires should, in addition, be attractive to encourage the respondent to fill it in and to return it, while not appearing too long. However, where the choice is between an extra page and a cramped questionnaire the former is likely to be more acceptable to respondents (Dillman, 2000). Survey design and analysis software such as Snap and SphinxSurvey and online software tools such as SurveyMonkey contain a series of style templates for typefaces, colours and page layout, which are helpful in producing a professional-looking questionnaire more quickly (Snap Surveys, 2005; Sphinx Development, 2005; SurveyMonkey, 2005). For paper-based surveys, the use of colour will increase the printing costs. However, it is worth noting that the best way of obtaining valid responses to questions is to keep both the visual appearance of the questionnaire and the wording of each question simple (Dillman, 2000).
Research findings on the extent to which the length of your questionnaire will affect your response rate are mixed (deVaus, 2002). There is a widespread view that longer questionnaires will reduce response rates relative to shorter questionnaires (Edwards et al., 2002). However, a very short questionnaire may suggest that your research is insignificant and hence not worth bothering with. Conversely, a questionnaire that takes over two hours to complete might just be thrown away by the intended respondent. In general, we have found that a length of between four and eight A4 pages has been acceptable for within-organisation self-administered questionnaires. Telephone questionnaires of up to half an hour have caused few problems, whereas the acceptable length for structured interviews can vary from only a few minutes in the street to over two hours in a more comfortable environment (Section 10.6). Based on these experiences, we recommend you follow deVaus’ (2002) advice:

- Do not make the questionnaire longer than is really necessary to meet your research questions and objectives.
- Do not be too obsessed with the length of your questionnaire.

One way you can reduce apparent length without reducing legibility is to record answers to questions with the same set of possible responses as a table. Usually you place questions in the rows and responses in the columns. Instructions on how to answer the question and column headings are given prior to the table and on each subsequent page.

BOX 11.11 CHECKLIST

Your question order

- Are questions at the beginning of your questionnaire more straightforward and ones the respondent will enjoy answering? Questions about attributes and behaviours are usually more straightforward to answer than those collecting data on opinions.
- Are questions at the beginning of your questionnaire obviously relevant to the stated purpose of your questionnaire? For example, questions requesting contextual information may appear irrelevant.
- Are questions and topics that are more complex placed towards the middle of your questionnaire? By this stage most respondents should be completing the survey with confidence but should not yet be bored or tired.
- Are personal and sensitive questions towards the end of your questionnaire, and is their purpose clearly explained? On being asked these a respondent may refuse to answer; however, if they are at the end of an interviewer-administered questionnaire you will still have the rest of the data!
- Are filter questions and routeing instructions easy to follow so that there is a clear route through the questionnaire?
- (For interviewer-administered questionnaires) Are instructions to the interviewer easy to follow?
- Are questions grouped into obvious sections that will make sense to the respondent?
- Have you re-examined the wording of each question and ensured it is consistent with the position in the questionnaire as well as with the data you require?
as illustrated by questions 23 and 24. These were designed to collect data on respondents’
behaviour using a delivery and collection questionnaire.

For each of the following statements please tick the box that most closely matches your
experience . . .

<table>
<thead>
<tr>
<th>monthly</th>
<th>every 3 months</th>
<th>every 6 months</th>
<th>less often</th>
<th>never</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

23 I receive a company site newsletter . . .
24 I receive other company publications . . .

Box 11.12 discusses the order of a questionnaire used to research the effects of total
quality management and Box 11.13 summarises the most important layout issues as a
checklist.

BOX 11.12 FOCUS ON MANAGEMENT RESEARCH

Questionnaire order

Lagrosen and Lagrosen’s (2005) paper titled ‘The effects of quality management – a survey of
Swedish quality professionals’, published in the *International Journal of Operations &
Production Management*, includes as appendix a full copy of their questionnaire translated from
Swedish. Their questionnaire is divided into three parts, presenting a logic flow of questions to
the respondent. The first, consisting of two attribute questions, collects general data about the
organisation by which the respondent was employed or, for those who were consultants, with
which they were currently working. These ask for the organisation’s broad sector and the
approximate number of employees. The second is concerned with the respondent’s opinion
about the organisation’s values, as well as behaviours such as the quality management stan-
dards used by the organisation and the tools used by the organisation to help manage quality.
The final part focuses on the respondent’s opinion regarding the effects of the quality manage-
ment work undertaken. This includes two filter questions, each followed by an open question.
The first of these filter questions asks (2005: 952):

Have you noticed any positive effects of your quality work?

If so, which is the most prominent effect? ..

..

whilst the second is concerned with negative effects. The final question asks respondents to
rate the organisation’s ‘quality management work’ on a seven-point scale using the bipolar
phrases ‘very badly’ and ‘very well’.

Explaining the purpose of the questionnaire

The covering letter

Most self-administered questionnaires are accompanied by a *covering letter*, which
explains the purpose of the survey. This is the first part of the questionnaire that a
respondent should look at. Unfortunately, some of your sample will ignore it, while
others use it to decide whether to answer the accompanying questionnaire.
Research by Dillman (2000) and others has shown that the messages contained in a self-administered questionnaire’s covering letter will affect the response rate. The results of this research are summarised in the annotated letter (Figure 11.3).

For some research projects you may also send a letter prior to administering your questionnaire. This will be used by the respondent to decide whether to grant you access. Consequently, it is often the only opportunity you have to convince the respondent to participate in your research. Ways of ensuring this are discussed in Section 6.4.

Introducing the questionnaire

At the start of your questionnaire you need to explain clearly and concisely why you want the respondent to complete the survey. Dillman (2000) argues that, to achieve as high a response rate as possible, this should be done on the first page of the questionnaire in addition to the covering letter. He suggests that in addition to a summary of the main messages in the covering letter (Figure 11.3) you include:

- a clear unbiased banner or title, which conveys the topic of the questionnaire and makes it sound interesting;
- a subtitle, which conveys the research nature of the topic (optional);
- a neutral graphic illustration or logo to add interest and to set the questionnaire apart (self-administered questionnaires).
Mr Steve Moker
17, Hamlet Road
Anytown
AN1 3CO
19th November 2005
Dear Mr Moker ,
This questionnaire is part of a research project to understand people’s views about smoking in restaurants and bars. Your responses are important in enabling me to obtain as full an understanding as possible of this topical issue. The questionnaire should take you about five minutes to complete. Please answer the questions in the spaces provided. If you wish to add further comments, please feel free to do so. The information you provide will be treated in the strictest confidence. You will notice that you are not asked to include your name and address anywhere on the questionnaire. The findings from your questionnaire and others will be used as the main data set for my dissertation for my degree course in Management and Business Studies at the University of Anytown. I hope you will find completing the questionnaire enjoyable. Please return the completed questionnaire to me, Errol McFinn by 3 December 2005 in the enclosed Freepost envelope to the above address. If you have any queries or would like further information, please feel free to contact me on 1234 567890. Thank you for your help.
Errol McFinn

Figure 11.3 Structure of a covering letter

Intervener-administered questionnaires will require this information to be phrased as a short introduction, which the interviewer can read to each respondent. A template for this (developed from deVaus, 2002) is given in the next paragraph, while Box 11.14 provides an example from a self-administered questionnaire.

Good morning / afternoon / evening. My name is (your name) from (your organisation). I am doing a research project to find out (brief description of purpose of the research). Your telephone number was drawn from a random sample of (brief description of the total population). The questions I should like to ask will take about (number) minutes. If you have any queries, I shall be happy to answer them. (Pause). Before I continue please can you confirm that this is (read out the telephone number) and that I am talking to (read out name/occupation/position in organisation to check that you have the right person). Please can I ask you the questions now?
You will also need to have prepared answers to the more obvious questions that the respondent might ask you. These include the purpose of the survey, how you obtained the respondent’s telephone number, who is conducting or sponsoring the survey, and why someone else cannot answer the questions instead (Lavrakas, 1993).

BOX 11.14 WORKED EXAMPLE

Introducing a self-administered questionnaire

Liz asked her project tutor to comment on what she hoped was the final draft of her questionnaire. This included the following introduction:

ANYTOWN PRIVATE HOSPITAL STAFF SURVEY

All your responses will be treated in the strictest of confidence and only aggregated data will be available to the Hospital. All questionnaires will be shredded once the data have been extracted. The Hospital will publish a summary of the results.

Not surprisingly, her project tutor suggested that she redraft her introduction. Her revised introduction follows:

Anytown Private Hospital

Staff Survey 2006

This survey is being carried out to find out how you feel about the Hospital’s policies to support colleagues like you in your work. Please answer the questions freely. You cannot be identified from the information you provide, and no information about individuals will be given to the Hospital.

ALL THE INFORMATION YOU PROVIDE WILL BE TREATED IN THE STRICTEST CONFIDENCE

The questionnaire should take you about five minutes to complete. Please answer the questions in the space provided. Try to complete the questions at a time when you are unlikely to be disturbed. Also, do not spend too long on any one question. Your first thoughts are usually your best! Even if you feel the items covered may not apply directly to your working life please do not ignore them. Your answers are essential in building an accurate picture of the issues that are important to improving our support for people working for this Hospital.

WHEN YOU HAVE COMPLETED THE QUESTIONNAIRE PLEASE RETURN IT TO US IN THE ENCLOSED FREEPPOST ENVELOPE

I hope you find completing the questionnaire enjoyable, and thank you for taking the time to help us. A summary of the findings will be published on the Hospital intranet. If you have any queries or would like further information about this project, please call me on 01234-5678910.

Thank you for your help.

Elizabeth Petrie

Elizabeth Petrie
Human Resources Department
Anytown Private Hospital
Anytown AN99 9HS
CHAPTER 11 · COLLECTING PRIMARY DATA USING QUESTIONNAIRES

Closing the questionnaire

At the end of your questionnaire you need to explain clearly what you want the respondent to do with their completed questionnaire. It is usual to start this section by thanking her or him for completing the questionnaire, and by providing a contact name and telephone number for any queries she or he may have (Figure 11.3). You should then give details of the date by which you would like the questionnaire returned and how and where to return it. A template for this is given in the next paragraph:

Thank you for taking the time to complete this questionnaire. If you have any queries please do not hesitate to contact (your name) by telephoning (contact telephone number with answer machine/voice mail).

Please return the completed questionnaire by (date) in the envelope provided to:

(your name)
(your address)

Pilot testing and assessing validity

Prior to using your questionnaire to collect data it should be pilot tested. The purpose of the pilot test is to refine the questionnaire so that respondents will have no problems in answering the questions and there will be no problems in recording the data. In addition, it will enable you to obtain some assessment of the questions’ validity and the likely reliability of the data that will be collected. Preliminary analysis using the pilot test data can be undertaken to ensure that the data collected will enable your investigative questions to be answered.

Initially you should ask an expert or group of experts to comment on the representativeness and suitability of your questions. As well as allowing suggestions to be made on the structure of your questionnaire, this will help establish content validity and enable you to make necessary amendments prior to pilot testing with a group as similar as possible to the final population in your sample. For any research project there is a temptation to skip the pilot testing. We would endorse Bell’s (2005:147) advice, ‘however pressed for time you are, do your best to give the questionnaire a trial run’, as, without a trial run, you have no way of knowing your questionnaire will succeed.

The number of people with whom you pilot your questionnaire and the number of pilot tests you conduct are dependent on your research question(s), your objectives, the size of your research project, the time and money resources you have available, and how well you have initially designed your questionnaire. Very large questionnaire surveys such as national censuses will have numerous field trials, starting with individual questions and working up to larger and more rigorous pilots of later drafts.

For smaller-scale questionnaires you are unlikely to have sufficient financial or time resources for large-scale field trials. However, it is still important that you pilot test your questionnaire. The number of people you choose should be sufficient to include any major variations in your population that you feel are likely to affect responses. For most student questionnaires this means that the minimum number for a pilot is 10 (Fink, 2003b), although for large surveys between 100 and 200 responses is usual (Dillman, 2000). Occasionally you may be extremely pushed for time. In such instances it is better to pilot test the questionnaire using friends or family than not at all! This will provide you with at least some idea of your questionnaire’s face validity: that is, whether the questionnaire appears to make sense.
As part of your pilot you should check each completed pilot questionnaire to ensure that respondents have had no problems understanding or answering questions and have followed all instructions correctly (Fink, 2003b). Their responses will provide you with an idea of the reliability and suitability of the questions. For self-administered questionnaires additional information about problems can be obtained by giving respondents a further short questionnaire. Bell (2005) suggests you should use this to find out:

- how long the questionnaire took to complete;
- the clarity of instructions;
- which, if any, questions were unclear or ambiguous;
- which, if any, questions the respondent felt uneasy about answering;
- whether in their opinion there were any major topic omissions;
- whether the layout was clear and attractive;
- any other comments.

Interviewer-administered questionnaires need to be tested with the respondents for all these points other than layout. One way of doing this is to form an assessment as each questionnaire progresses. Another is to interview any interviewers you are employing. However, you can also check by asking the respondent additional questions at the end of their interview. In addition, you will need to pilot test the questionnaire with interviewers to discover whether:

- there are any questions for which visual aids should have been provided;
- they have difficulty in finding their way through the questionnaire;
- they are recording answers correctly.

Once you have completed pilot testing you should write to your respondents thanking them for their help.

11.5 Administering the questionnaire

Once your questionnaire is designed, pilot tested and amended and your sample selected, the questionnaire can be used to collect data. This final stage is called administering the questionnaire. As part of this you will need to gain access to your sample (Sections 6.2 and 6.3) and attempt to maximise the response rate. Edwards et al. (2002) identify 292 studies that have assessed between them the impact of 75 different strategies for increasing the response to postal questionnaires. These trials were published predominantly in marketing, business and statistical journals (42 per cent), medical and health-related journals (32 per cent) and psychological, educational and sociological journals (23 per cent). The findings of those studies that had more than 1000 participants are summarised in Table 11.4. However, such increases in response rates are dependent upon your questionnaire being clearly worded and well laid out. In addition, it must be remembered that organisations and individuals are increasingly being bombarded with requests to respond to questionnaires and so may be unwilling to answer your questionnaire (Box 11.15).

Which of these techniques you use to help to maximise responses will inevitably be dependent on the way in which your questionnaire is administered. It is the processes associated with administering each of the five types of questionnaire that we now consider.
Table 11.4 Relative impact of strategies for raising postal questionnaire response rates

Note: strategies in italics increase response rates relative to those in normal font

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Relative impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incentives</td>
<td></td>
</tr>
<tr>
<td>Monetary incentive v. no incentive</td>
<td>very high</td>
</tr>
<tr>
<td>Incentive sent with questionnaire v. incentive on questionnaire return</td>
<td>high</td>
</tr>
<tr>
<td>Non-monetary incentive v. no incentive</td>
<td>low</td>
</tr>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>Shorter questionnaire v. longer questionnaire</td>
<td>very high</td>
</tr>
<tr>
<td>Appearance</td>
<td></td>
</tr>
<tr>
<td>Brown envelope v. white envelope</td>
<td>high but variable</td>
</tr>
<tr>
<td>Coloured ink v. standard</td>
<td>medium</td>
</tr>
<tr>
<td>Folder or booklet v. stapled pages</td>
<td>low</td>
</tr>
<tr>
<td>More personalised v. less personalised</td>
<td>low</td>
</tr>
<tr>
<td>Coloured questionnaire v. white questionnaire</td>
<td>very low</td>
</tr>
<tr>
<td>Identifying feature on the return v. none</td>
<td>very low but variable</td>
</tr>
<tr>
<td>Delivery</td>
<td></td>
</tr>
<tr>
<td>Recorded delivery v. standard delivery</td>
<td>very high</td>
</tr>
<tr>
<td>Stamped return envelope v. business reply or franked</td>
<td>medium</td>
</tr>
<tr>
<td>First class post onwards v. other class</td>
<td>low</td>
</tr>
<tr>
<td>Sent to work address v. sent to home address</td>
<td>low but variable</td>
</tr>
<tr>
<td>Pre-paid return v. not pre-paid</td>
<td>low but variable</td>
</tr>
<tr>
<td>Commemorative stamp v. ordinary stamp</td>
<td>low variable</td>
</tr>
<tr>
<td>Stamped outward envelope v. franked</td>
<td>negligible</td>
</tr>
<tr>
<td>Contact</td>
<td></td>
</tr>
<tr>
<td>Pre-contact v. no pre-contact</td>
<td>medium</td>
</tr>
<tr>
<td>Follow-up v. no follow-up</td>
<td>medium</td>
</tr>
<tr>
<td>Postal follow-up including questionnaire v. postal follow-up excluding</td>
<td>medium</td>
</tr>
<tr>
<td>questionnaire</td>
<td></td>
</tr>
<tr>
<td>Pre-contact by telephone v. pre-contact by post</td>
<td>low</td>
</tr>
<tr>
<td>Mention of follow-up contact v. none</td>
<td>negligible</td>
</tr>
<tr>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>More interesting v. less interesting questionnaire</td>
<td>very high</td>
</tr>
<tr>
<td>User friendly questionnaire v. standard</td>
<td>medium</td>
</tr>
<tr>
<td>Attribute and behaviour questions only v. attribute, behaviour and attitude questions</td>
<td>medium</td>
</tr>
<tr>
<td>More relevant questions first v. other questions first</td>
<td>low</td>
</tr>
<tr>
<td>Most general question first v. last</td>
<td>low but variable</td>
</tr>
<tr>
<td>Sensitive questions included v. sensitive questions not included</td>
<td>very low</td>
</tr>
<tr>
<td>Demographic questions first v. other questions first</td>
<td>negligible</td>
</tr>
<tr>
<td>‘Don’t know’ boxes included v. not included</td>
<td>negligible</td>
</tr>
<tr>
<td>Origin</td>
<td></td>
</tr>
<tr>
<td>University sponsorship as a source v. other organisation</td>
<td>medium</td>
</tr>
<tr>
<td>Sent by more senior or well-known person v. less senior or less well-known</td>
<td>low but variable</td>
</tr>
<tr>
<td>Ethnically unidentifiable/white name v. other name</td>
<td>low but variable</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Explanation for not participating requested v. not requested</td>
<td>medium</td>
</tr>
<tr>
<td>Choice to opt out from study offered v. not given</td>
<td>low</td>
</tr>
<tr>
<td>Instructions given v. not given</td>
<td>low but variable</td>
</tr>
<tr>
<td>Benefits to respondent stressed v. other benefits</td>
<td>very low</td>
</tr>
<tr>
<td>Benefits to sponsor stressed v. other benefits</td>
<td>negligible</td>
</tr>
<tr>
<td>Benefits to society stressed v. other benefits</td>
<td>negligible</td>
</tr>
<tr>
<td>Response deadline given v. no deadline</td>
<td>negligible</td>
</tr>
</tbody>
</table>

Source: Developed from Edwards et al., 2002
For Internet- and intranet-mediated questionnaires it is important to have a clear timetable that identifies the tasks that need to be done and the resources that will be needed. A good response is dependent on the recipient being motivated to answer the questionnaire and to send it back. Although the covering email (letter) (Section 11.4) and good design will help to ensure a high level of response, it must be remembered that, unlike paper questionnaires, the designer and respondent may see different images displayed on their monitors. Alternative computer operating systems, Internet browsers and display screens can all result in the image being displayed differently, emphasising the need to ensure the questionnaire design is clear (Dillman, 2000).

Internet- and intranet-mediated questionnaires are usually administered in one of two ways: via email or via a website (Hewson et al., 2003). The first of these uses email to ‘post’ and receive questionnaires and is dependent on having a list of addresses. Although it is possible to obtain such lists from an Internet-based employment directory or via a search engine (Section 3.5), we would not recommend you obtain them this way. If you are considering using the Internet for research, you should abide by the general operating guidelines or netiquette. This includes (Hewson et al., 2003):

For those seeking to hold companies to account for their behaviour, transparency has become a buzzword over the past few years. But how much transparency is enough? Have demands for ever-greater disclosure gone too far?

Take the workload created by these demands at BT, the telecommunications group. The company receives more than 200 questionnaires a year about its governance and corporate responsibility practices, says Chris Tuppen, head of sustainable development and corporate accountability. Requests for information come from big government clients, investors, academics and consultancies.

“In 1990, there were probably about five questionnaires a year. It has grown exponentially since about 2000,” he says. “Some of the questionnaires have 80 to 100 questions, often with sub-questions.” One person now devotes two to three days a week responding to these questionnaires, at a direct cost to the company of £25,000 ($45,000) a year.

BT is not alone. Concern about the risks posed by poor governance, ethical lapses or environmental mismanagement have swelled requests for detailed information about whether companies are meeting acceptable standards.

“There is no question that there has been a huge increase over the last couple of years,” says Al Loehnis, a director of the Investor Relations Society, a European professional body. “It genuinely has created problems at companies.”

The resulting “questionnaire fatigue” afflicts investor relations officers, company secretaries and corporate responsibility managers, who face piles of paper and online forms that often cover similar ground, but each from a slightly different angle.

Bridget Walker, head of investor relations at Scottish & Newcastle, the international brewing group, says many questions are irrelevant. The concerns that S&N must address are those that can directly affect its reputation, such as responsible alcohol consumption or labour standards in its operations in emerging markets. Questions such as how much electricity it uses in each of its UK sites are a side issue. “We don’t need to talk about this.”

There is pressure, however, to take part in big questionnaire and ranking exercises, such as the FTSE4Good Index and the Corporate Responsibility Index run by Business in the Community, even at the risk of scoring less than brilliantly. “If we’re not in it, it would look like we’d have something to hide,” she says.

Source: Article by Alison Maitland, Financial Times, 26 March 2004. Copyright © The Financial Times Ltd.
ensuring emails and postings to user groups are relevant and that you do not send junk emails (spam);

■ remembering that invitations to participate sent to over 20 user groups at once are deemed as unacceptable by many net vigilantes and so you should not exceed this threshold;

■ avoiding sending your email to multiple mailing lists as this is likely to result in individuals receiving multiple copies of your email (this is known as cross-posting);

■ avoiding the use of email attachments as these can contain viruses.

Failure to do this is likely to result in ‘few responses and a barrage of mail informing the researcher of their non-compliance’ (Coomber, 1997:10). Despite this, questionnaires can be successfully administered by email within organisations provided that all of the sample have access to it and use it. However, unless an anonymous server or mailbox that removes email addresses is used for returning questionnaires, respondents will be identifiable by their email addresses (Witmer et al., 1999). If you choose to use email, we suggest that you:

1 contact recipients by email and advise them to expect a questionnaire – a pre-survey contact (Section 6.3);

2 email the questionnaire with a covering email. Where possible, the letter and questionnaire should be part of the email message rather than an attached file to avoid viruses. You should make sure that this will arrive when recipients are likely to be receptive. For most organisations Fridays and days surrounding major public holidays have been shown to be a poor time;

3 email the first follow-up one week after emailing out the questionnaire to all recipients. This should thank early respondents and remind non-respondents to answer (a copy of the questionnaire should be included);

4 email the second follow-up to people who have not responded after three weeks. This should include another covering letter and a copy of the questionnaire. The covering letter should be reworded to further emphasise the importance of completing the questionnaire;

5 also use a third follow-up if time allows or your response rate is low.

Alternatively, the questionnaire can be advertised by email, on the Internet or on the intranet and respondents invited to access a website and to fill in an online questionnaire. Adopting this web-based approach observes netiquette and means that respondents can remain anonymous and, of equal importance, are unable to modify the questionnaire (Witmer et al., 1999). The stages involved are:

1 Ensure that a website has been set up that explains the purpose of the research and how to complete the questionnaire (this takes the place of the covering letter).

2 Ensure that the questionnaire has been set up on the web and has a direct link (hyperlink) from the website.

3 Advertise the website widely using a range of media (for example, an email pre-survey contact or a banner advertisement on a page that is likely to be looked at by the target population), using a hyperlink to the questionnaire and highlighting the closing date.

4 When the respondent completes the questionnaire, ensure that the data file is generated and saved automatically and that the web-based software prevents multiple responses from one respondent.
5 For web-based questionnaires advertised using an email pre-survey contact, email all recipients one week after the initial email thanking early respondents and reminding others to respond.

6 For web-based questionnaires advertised using an email pre-survey contact, email a second follow-up to people who have not responded after three weeks. The email should be reworded to emphasise further the importance of completing the questionnaire. For anonymous questionnaires a second follow-up will not be possible, as you should not be able to tell who has responded!

Response rates from such an approach are likely to be very low, and there are considerable problems of non-response bias as the respondent has to take extra steps to locate and complete the questionnaire (Coomber, 1997). Consequently, it is likely to be very difficult to obtain a representative sample from which you might generalise. This is not to say that this approach should not be used as it can, for example, enable you to contact difficult-to-access groups. It all depends, as you would expect us to say, on your research question and objectives!

Postal questionnaires

For postal questionnaires, it is also important to have a well-written covering letter and good design to help to ensure a high level of response. As with online questionnaires, a clear timetable and well-executed administration process are important (Box 11.16).

Our advice for postal questionnaires (developed from deVaus, 2002) can be split into six stages:

1 Ensure that questionnaires and letters are printed, and envelopes addressed.

2 Contact recipients by post, telephone or email and advise them to expect a questionnaire – a pre-survey contact (Section 5.3). This stage is often omitted for cost reasons.

3 Post the survey with a covering letter and a return envelope (and fax cover sheet). You should make sure that this will arrive when recipients are likely to be receptive. For most organisations Fridays and days surrounding major public holidays have been shown to be a poor time.

4 Post (or email) the first follow-up one week after posting out the survey to all recipients. For posted questionnaires this should take the form of a postcard designed to thank early respondents and to remind rather than to persuade non-respondents.

5 Post the second follow-up to people who have not responded after three weeks. This should contain another copy of the questionnaire, a new return envelope and a new covering letter. The covering letter should be reworded to emphasise further the importance of completing the questionnaire. For anonymous questionnaires a second follow-up will not be possible, as you should not be able to tell who has responded!

6 Also use a third follow-up if time allows or your response rate is low. For this it may be possible to use recorded delivery (post), telephone calls or even call in person to emphasise the importance of responding.

deVaus (2002) also advises placing a unique identification number on each questionnaire, which is recorded on your list of recipients. This makes it easy to check and follow up non-respondents and, according to Dillman (2000) and Edwards et al. (2002), has little, if any, effect on response rates. However, identification numbers should not be used if you have assured respondents that their replies will be anonymous!
Delivery and collection questionnaires

The administration of delivery and collection questionnaires is very similar to that of postal questionnaires. However, you or field staff will deliver and call to collect the questionnaire. It is therefore important that your covering letter states when the questionnaire is likely to be collected. As with postal questionnaires, follow-ups can be used, calling at a variety of times of day and on different days to try to catch the respondent.
A variation on this process that we have used widely in organisations allows for delivery and collection of questionnaires the same day and eliminates the need for a follow-up. The stages are:

1. Ensure that all questionnaires and covering letters are printed and a collection box is ready.
2. Contact respondents by internal post or telephone advising them to attend a meeting or one of a series of meetings to be held (preferably) in the organisation’s time (Section 6.3).
3. At the meeting or meetings hand out the questionnaire with a covering letter to each respondent.
4. Introduce the questionnaire and stress its anonymous or confidential nature.
5. Ensure that respondents place their completed questionnaires in a collection box before they leave the meeting.

Although this adds to costs, as employees are completing the questionnaire in work time, response rates as high as 98 per cent are achievable!

Telephone questionnaires

The quality of data collected using telephone questionnaires will be affected by the researcher’s competence to conduct interviews. This is discussed in Section 10.5. Once your sample has been selected, you need to:

1. Ensure that all questionnaires are printed or, for CATI, that the software has been programmed and tested;
2. Where possible and resources allow, contact respondents by post, email or telephone advising them to expect a telephone call (Section 6.3);
3. Telephone each respondent, recording the date and time of call and whether or not the questionnaire was completed. You should note any specific times that have been arranged for callbacks. For calls that were not successful you should note the reason, such as no reply or telephone disconnected;
4. For unsuccessful calls where there was no reply, try three more times, each at a different time and on a different day, and note the same information;
5. Make callback calls at the time arranged.

Structured interviews

Conducting structured interviews uses many of the skills required for in-depth and semi-structured interviews (Section 10.5). Issues such as interviewer appearance and preparedness are important and will affect the response rate (Section 10.4). However, once your sample has been selected you need to:

1. Ensure that all questionnaires are printed or, for CAPI, that the software has been programmed and tested;
2. Contact respondents by post, email or telephone advising them to expect an interviewer to call within the next week. This stage is often omitted for cost reasons;
3. (For large-scale surveys) divide the sample into groups that are of a manageable size (50–100) for one interviewer;
contact each respondent or potential respondent in person, recording the date and time of contact and whether or not the interview was completed. You should note down any specific times that have been arranged for return visits. For contacts that were not successful, you should note down the reason;

try unsuccessful contacts at least twice more, each at a different time and on a different day, and note down the same information;

visit respondents at the times arranged for return visits.

11.6 Summary

Questionnaires collect data by asking people to respond to exactly the same set of questions. They are often used as part of a survey strategy to collect descriptive and explanatory data about opinions, behaviours and attributes. Data collected are normally coded and analysed by computer.

Your choice of questionnaire will be influenced by your research question(s) and objectives and the resources that you have available. The five main types are Internet- or intranet-mediated, postal, delivery and collection, telephone, and interview schedule.

Prior to designing a questionnaire, you must know precisely what data you need to collect to answer your research question(s) and to meet your objectives. One way of helping to ensure that you collect these data is to use a data requirements table.

The validity and reliability of the data you collect and the response rate you achieve depend largely on the design of your questions, the structure of your questionnaire, and the rigour of your pilot testing.

When designing your questionnaire you should consider the wording of individual questions prior to the order in which they appear. Questions can be divided into open and closed. The six types of closed questions are list, category, ranking, rating, quantity and grid.

Wherever possible, closed questions should be pre-coded on your questionnaire to facilitate analysis.

The order and flow of questions in the questionnaire should be logical to the respondent. This can be assisted by filter questions and linking phrases.

The questionnaire should be laid out so that it is easy to read and the responses are easy to fill in.

Questionnaires must be introduced carefully to the respondent to ensure a high response rate. For self-administered questionnaires this should take the form of a covering letter; for interviewer-administered questions it will be done by the interviewer.

All questionnaires should be pilot tested prior to collecting data to assess the validity and likely reliability of the questions.

Administration of questionnaires needs to be appropriate to the type of questionnaire.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

11.1 In what circumstances would you choose to use a delivery and collection questionnaire rather than a postal questionnaire? Give reasons for your answer.

11.2 The following questions have been taken from a questionnaire about flexibility of labour.
SELF-CHECK QUESTIONS

i Do you agree or disagree with the use of nil hours contracts by employers? strongly agree □
(please tick appropriate box)
 agree □
 disagree □
 strongly disagree □

ii Have you ever been employed on a nil hours contract? yes □
(please tick appropriate box)
 no □
 not sure □

iii What is your marital status? single □
(please tick appropriate box)
 married or living in long-term relationship □
 widowed □
 divorced □
 other □
 .. (⇐ please describe)

iv Please describe what you think would be the main impact on employees of a nil hours contract.

For each question identify:
 a the sort of data that are being collected;
 b the type of question.
You should give reasons for your answers.

11.3 You are undertaking research on the use of children’s book clubs by householders within
mainland Europe. As part of this you have already undertaken in-depth interviews with households
who belong and do not belong to children’s book clubs. This, along with a literature review, has
suggested a number of investigative questions from which you start to construct a table of data
requirements.

<table>
<thead>
<tr>
<th>Research question/objective: To establish mainland Europe’s householders’ opinions about children’s book clubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of research: Predominantly descriptive, although wish to explain differences between householders</td>
</tr>
<tr>
<td>Investigative questions</td>
</tr>
<tr>
<td>a Do householders think that children’s book clubs are a good or a bad idea?</td>
</tr>
<tr>
<td>b What things do householders like most about children’s book clubs?</td>
</tr>
<tr>
<td>c Would householders be interested in an all-ages book club?</td>
</tr>
<tr>
<td>d How much per year do households spend on children’s books?</td>
</tr>
</tbody>
</table>
e Do households’ responses differ depending on:
i number of children?
ii whether already members of a children’s book club?

a For each investigative question listed, decide whether you will need to collect data on opinions, behaviours or attributes.
b Complete the table of data requirements for each of the investigative questions already listed. (You may embellish the scenario to help in your choice of variables required and how the data will be measured as you feel necessary.)

11.4 Design pre-coded or self-coded questions to collect data for each of the investigative questions in self-check question 11.3. Note that you will need to answer self-check question 11.3 first (or use the answer at the end of this chapter).

11.5 What issues will you need to consider when translating your questionnaire?

11.6 You work for a major consumer research bureau that has been commissioned by 11 major UK companies to design and administer a telephone questionnaire. The purpose of this questionnaire is to describe and explain relationships between adult consumers’ lifestyles, opinions and purchasing intentions. Write the introduction to this telephone questionnaire, to be read by an interviewer to each respondent. You may embellish the scenario and include any other relevant information you wish.

11.7 You have been asked by a well-known national charity ‘Work for All’ to carry out research into the effects of long-term unemployment throughout the UK. The charity intends to use the findings of this research as part of a major campaign to highlight public awareness about the effects of long-term unemployment. The charity has drawn up a list of names and addresses of people who are or were long-term unemployed with whom they have had contact over the past six months. Write a covering letter to accompany the postal questionnaire. You may embellish the scenario and include any other relevant information you wish.

11.8 You have been asked to give a presentation to a group of managers at an oil exploration company to gain access to undertake your research. As part of the presentation you outline your methodology, which includes piloting the questionnaire. In the ensuing question and answer session one of the managers asks you to justify the need for a pilot study, arguing that ‘given the time constraints the pilot can be left out’. List the arguments that you would use to convince him that pilot testing is essential to your methodology.

11.9 Obtain a copy of a ‘customer questionnaire’ from a department store or restaurant. For each question on the questionnaire establish whether it is collecting data about opinion, behaviours or attributes. Do you consider any of the questions are potentially misleading? If yes, how do you think the question could be improved? Discuss the answer to these questions in relation to your questionnaire with a friend.

11.10 Visit the website of an online questionnaire provider. A selection of possible providers can be found by typing “online questionnaire provider” or “online survey provider” into the Google search engine. Use the online software to design a simple questionnaire. To what extent does...
the questionnaire you have designed meet the requirements of the checklists in Boxes 11.9, 11.10 and 11.13?

11.11 Visit your university library or use the Internet to view a copy of a report for a recent national government survey in which you are interested. If you are using the Internet, the national government websites listed in Table 8.3 are a good place to start. Check the appendices in the report to see if a copy of the questionnaire used to collect the data is included. Of the types of question – open, list, category, ranking, rating, quantity and grid – which is most used and which is least frequently used? Note down any that may be of use to you in your research project.

PROGRESSING YOUR RESEARCH PROJECT

Using questionnaires in your research

- Return to your research question(s) and objectives. Decide on how appropriate it would be to use questionnaires as part of your research strategy. If you do decide that this is appropriate, note down the reasons why you think it will be sensible to collect at least some of your data in this way. If you decide that using a questionnaire is not appropriate, justify your decision.

- If you decide that using a questionnaire is appropriate, re-read Chapter 7 on sampling and, in conjunction with this chapter, decide which of the five types of questionnaire will be most appropriate. Note down your choice of questionnaire and the reasons for this choice.

- Construct a data requirements table and work out precisely what data you need to answer your investigative questions. Remember that you will need to relate your investigative questions and data requirements back to the literature you have reviewed and any preliminary research you have already undertaken.

- Design the separate questions to collect the data specified in your data requirements table. Wherever possible, try to use closed questions and to adhere to the suggestions in the question wording checklist. If you are intending to analyse your questionnaire by computer, read Section 12.2 and pre-code questions on the questionnaire whenever possible.

- Order your questions to make reading the questions and filling in the responses as logical as possible to the respondent. Wherever possible, try to adhere to the checklist for layout. Remember that interviewer-administered questionnaires will need instructions for the interviewer.

- Write the introduction to your questionnaire and, where appropriate, a covering letter.

- Pilot test your questionnaire with as similar a group as possible to the final group in your sample. Pay special attention to issues of validity and reliability.

- Administer your questionnaire and remember to send out a follow-up survey to non-respondents whenever possible.
References

Further reading

During her degree placement Sam Jones spent a year working in the Purchasing Services department of a local acute hospital National Health Service (NHS) Trust. During her time in the organisation she saw at first hand the pressures faced by the organisation as it strove to deliver the vision of The NHS Plan (Department of Health, 2000) of a health service that provided timely, high-quality, value-for-money and patient-centred care. Specifically, she witnessed the changes being introduced in relation to supply chain policy and practice as the Purchasing Services department responded to the challenge of delivering quality products and services that met the needs of the end patient and other service users. Embarking on her research project Sam decided to focus on the topic of measuring service quality in health care supply chains. During the placement the Head of Purchasing Services had expressed an interest in the topic as being both important and timely and had offered to assist in facilitating the collecting of data. In addition, an initial review of the literature suggested that there was scope to make a worthwhile contribution to knowledge by researching the topic.

Having completed a review of the literature on supply chain management and service quality, Sam established an overarching aim of her research project, which was to measure and compare perceptions of service quality in health care supply chains. Through her reading of the literature and having undertaken some initial exploratory interviews with Purchasing Services’ staff she had developed the following objectives for the research:

- to establish how service quality is measured in health care supply chains;
- to investigate the factors that influence perceptions of service quality of different people/groups within health care supply chain chains;
- to establish how performance is reflected in the degree of alignment between measures and perceptions.

A major issue facing Sam was deciding upon a unit of analysis. To do this she needed to understand how the supply chains worked. It soon became obvious that NHS supply chains are complex, spanning geographical locations and sectors, such as acute hospitals, primary care organisations and health authorities; and encompassing diverse products and services, such as personnel, drugs and pharmaceuticals, medical equipment, information technology, transport and car parking. In order to be able to compare and contrast measures and perceptions she decided that she needed to select different types of services. Therefore she chose to investigate three services managed by the NHS Trust in which she had worked during her placement: personnel, transport and medical equipment. For each service she identified a supply chain comprising of four groups: Primary Care Trust (patients and general practitioners), Strategic Health Authority, the acute hospital NHS Trust, and a supplier to the hospital.

To meet the research’s first objective of establishing how service quality is measured Sam considered undertaking a survey using a previously validated instrument, such as SERVQUAL (Parasuraman et al., 1985). This presented Sam with a dilemma. Whilst there were clear benefits in terms of establishing external validity, with such instruments having been shown through prior research to contain measures of service quality that are appropriate to a wide range of situations, other literature suggested that such generic instruments may not provide sufficient detail of the measures important in the health care context (for example: Robinson, 1999). Judging that the limitations of using a previously validated instrument outweighed the benefits, Sam decided to undertake focus group meetings with each of the four groups in each of
the three supply chains (twelve meetings in total), to obtain data about the attributes used to measure service quality. After the meetings, Sam used content analysis to generate a number of measures of service quality. On comparing the measures she had extracted from the data with existing service quality constructs she was able to categorise them under headings similar to those used in SERVQUAL: Reliability, Assurance, Tangibles, Empathy and Responsiveness.

Her next two research objectives required:

- data to be collected on perceptions of service quality;
- a comparison of measures of service quality and perceptions;
- analysis of the factors that influenced differences between measures and perceptions.

In addition, Sam recognised that the measures she had generated through her focus groups needed further validation by a larger sample of people in each of the supply chains. Sam’s initial thought was to carry out interviews to obtain a larger amount of data that would address the objectives and the issue of validity; however, she soon realised that this would be very costly and time consuming in practice, and would not necessarily give her the data in a form suitable for analysis. She therefore decided an appropriate approach for the remainder of the research would be to survey opinions and attitudes of people within the three supply chains using a questionnaire.

To ensure the data gained from her questionnaire would be suitable for analysis, Sam utilised the Service Template process used in previous research (Williams et al., 1999). This allows the identification and measurement of different dimensions and perceptions of service quality, and so fitted well with Sam’s research objectives. In line with the Service Template process, Sam developed her questionnaire by first listing each measure of service quality identified through her focus groups as an item in the questionnaire. The importance of the item would be measured as an expectation, and the current performance against the item would be recorded as a perception. This would be recorded using a 10-point Likert scale, anchored by ideal and worst situation descriptors which Sam could derive from her focus group meetings. This is illustrated in the following extract from Sam’s questionnaire:

For the Medical Equipment supply chain, please rate the following items on the scale below, with 10 representing the ideal situation and 1 the worst. For each item, use E to indicate your expected level of service, and P for your perception of actual performance.

<table>
<thead>
<tr>
<th>Item</th>
<th>Ideal 10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>Worst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Information</td>
<td>Accessible</td>
<td>E</td>
<td>P</td>
<td>Non-existent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability of support</td>
<td>Permanently there</td>
<td>P</td>
<td>E</td>
<td>Sporadic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed of service</td>
<td>Prompt</td>
<td>EP</td>
<td>Slow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E – Expectation (measures of importance)
P – Perception of actual performance

In addition, she included a number of demographic questions relating to the respondent’s position in the supply chain, role, age, sex and length of time in organisation. These she placed at the end of her questionnaire. Including these questions would allow her to analyse patterns across supply chains, to determine if any of these factors influence perceptions. For example, Sam may discover that people under 25 have similar expectations of service across supply chains, and these may differ from those in an older age category.

Sam pilot tested her questionnaire on a sample of five people drawn from the focus groups. Some minor amendments were made based on the feedback from this pilot. Having designed and piloted the questionnaire, Sam planned to mail it...
CHAPTER 11 · COLLECTING PRIMARY DATA USING QUESTIONNAIRES

out via email to 1500 people: 500 per supply chain comprising 125 representatives for the four groups in each chain. Similar survey-based research in supply chains had reported response rates of about 20% (Larson and Poist, 2004) and, on this basis, Sam anticipated obtaining a dataset of about 300 completed questionnaires: 100 per supply chain.

References

QUESTIONS

1 What are the strengths and weaknesses of Sam’s decision to use focus groups to generate a list of service quality measures rather than relying on a pre-validated instrument such as SERVQUAL?

2 What are the advantages and disadvantages of using a questionnaire to obtain data on the importance of the measures and perceptions of performance?

3 How can Sam maximise the response rate to the survey?

4 The extracts of Sam’s questionnaire you have seen do not include any of the amendments suggested by her pilot test. What amendments to these questions do you think Sam made after the pilot testing?

Self-Check Answers

11.1 When you:

- wanted to check that the person whom you wished to answer the questions had actually answered the questions;
- have sufficient resources to devote to delivery and collection and the geographical area over which the questionnaire is administered is small;
- can use field workers to enhance response rates. Delivery and collection questionnaires have a moderately high response rate of between 30 and 50 per cent compared with 30 per cent offered on average by a postal questionnaire;
- are administering a questionnaire to an organisation’s employees and require a very high response rate. By administering the questionnaire to groups of employees in work time and collecting it on completion, response rates of up to 98 per cent can be achieved.

11.2 a i Opinion data: the question is asking how the respondent feels about the use of nil hours contracts by employees.

- Behaviour data: the question is asking about the concrete experience of being employed on a nil hours contract.

- Attribute data: the question is asking about the respondent’s characteristics.

- Opinion data: the question is asking the respondent what they think or believe would be the impact on employees.

b i Rating question using a Likert-type scale in which the respondent is asked how strongly she or he agrees or disagrees with the statement.

- Category question in which the respondent’s answer can fit only one answer.
iii Category question as before.
iv Open question in which the respondent can give her or his own answer in her or his own way.

11.3 Although your answer is unlikely to be precisely the same, the completed table of data requirements below should enable you to check you are on the right lines.

<table>
<thead>
<tr>
<th>Research question/objective: To establish householders’ opinions about children’s book clubs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of research: Predominantly descriptive, although wish to explain differences between householders</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investigative questions</th>
<th>Variable(s) required</th>
<th>Detail in which data measured</th>
<th>Check measurement question included in questionnaire ✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do householders think that children’s book clubs are a good or a bad idea? (opinion – this is because you are really asking how householders feel)</td>
<td>Opinion about children’s book clubs</td>
<td>very good idea, good idea, neither a good nor a bad idea, bad idea, very bad idea</td>
<td></td>
</tr>
<tr>
<td>What things do householders like most about children’s book clubs? (opinion)</td>
<td>What householders like about children’s book clubs</td>
<td>get them to rank the following things (generated from earlier in-depth interviews): monthly magazine, lower prices, credit, choice, special offers, shopping at home</td>
<td></td>
</tr>
<tr>
<td>Would householders be interested in an all-ages book club? (behaviour)</td>
<td>Interest in a book club which was for both adults and children</td>
<td>interested, not interested, may be interested</td>
<td></td>
</tr>
<tr>
<td>How much per year do households spend on children’s books? (behaviour)</td>
<td>Amount spent on children’s books by adults and children per year by household</td>
<td>(answers to the nearest €) €0 to €10, €11 to €20, €21 to €30, €31 to €50, €51 to €100, over €100</td>
<td></td>
</tr>
<tr>
<td>Do households’ responses differ depending on:</td>
<td>Number of children aged under 16 Children’s book club member</td>
<td>actual number</td>
<td>yes, no</td>
</tr>
<tr>
<td>■ number of children? (attribute)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ whether already members of a children’s book club? (behaviour)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.4 a Please complete the following statement by ticking the phrase that matches your feelings most closely . . .

I feel children’s book clubs are a very good idea [5]
. . . a good idea [4]
. . . neither a good nor a bad idea [3]
. . . a bad idea [2]
. . . a very bad idea [1]

b Please number each of the features of children’s book clubs listed below in order of how much you like them. Number the most important 1, the next 2 and so on. The feature you like the least should be given the highest number.
CHAPTER 11 · COLLECTING PRIMARY DATA USING QUESTIONNAIRES

<table>
<thead>
<tr>
<th>feature</th>
<th>how much liked</th>
</tr>
</thead>
<tbody>
<tr>
<td>monthly magazine</td>
<td>yes</td>
</tr>
<tr>
<td>lower prices</td>
<td>no</td>
</tr>
<tr>
<td>credit</td>
<td>yes</td>
</tr>
<tr>
<td>choice</td>
<td>no</td>
</tr>
<tr>
<td>special offers</td>
<td>yes</td>
</tr>
<tr>
<td>shopping at home</td>
<td>no</td>
</tr>
</tbody>
</table>

c Would you be interested in a book club that was for both adults and children?

(please tick the appropriate box)
- yes □
- no □
- not sure □

d How much money is spent in total each year on children’s books by all the adults and children living in your household?

(please tick the appropriate box)
- €0 to €10 □
- €11 to €20 □
- €21 to €30 □
- €31 to €50 □
- €51 to €100 □
- over €100 □

e i How many children aged under 16 are living in your household?

(For example, for 3 write:) □ children

ii Is any person living in your household a member of a children’s book club?

(please tick the appropriate box)
- yes □
- no □

11.5 When translating your questionnaire you will need to ensure that:
- the precise meaning of individual words is kept (lexical equivalence);
- the meanings of groups of words and phrases that are natural to a native speaker but cannot be translated literally are kept (idiomatic equivalence);
- the correct grammar and syntax are used.

In addition you should, if possible, use back translation, parallel translation or mixed translation techniques to ensure that there are no differences between the source and the target questionnaire.

11.6 Although the precise wording of your answer is likely to differ, it would probably be something like this:

Good morning/afternoon/evening. My name is ________ from JJ Consumer Research. We are doing an important national survey covering lifestyles, opinions and likely future purchases of adult consumers. Your telephone number has been selected at random. The questions I need to ask you will take about 15 minutes. If you have any queries I shall be happy to answer them (pause). Before I continue please can you confirm that this is (read out telephone number including dialling code) and that I am talking to a person aged 18 or over. Please can I ask you the first question now?

11.7 Although the precise wording of your answer is likely to differ, it would probably be something like the letter opposite.

11.8 Despite the time constraints, pilot testing is essential to your methodology for the following reasons:
- to find out how long the questionnaire takes to complete;
- to check that respondents understand and can follow the instructions on the questionnaire (including filter questions);
Work for All

B&J Market Research Ltd
St Richard’s House
Malvern
Worcestershire WR14 12Z

Phone 01684-56789101
Fax 01684-56789102
Email andy@b&jmarketresearch.co.uk

Respondent’s name

Respondent’s address

Today’s date

Dear [title name],

Work for All is conducting research into the effects of long-term unemployment. This is an issue of great importance within the UK and yet little is currently known about the consequences.

You are one of a small number of people who are being asked to give your opinion on this issue. You were selected at random from Work for All’s list of contacts. In order that the results will truly represent people who have experienced long-term unemployment, it is important that your questionnaire is completed and returned.

All the information you give us will be totally confidential. You will notice that your name and address do not appear on the questionnaire and that there is no identification number. The results of this research will be passed to Work for All, who will be mounting a major campaign in the New Year to highlight public awareness about the effects of long-term unemployment.

If you have any questions you wish to ask or there is anything you wish to discuss please do not hesitate to telephone me, or my assistant Benjamin Marks, on 01684-56789101 during the day. You can call me at home on 01234-123456789 evenings and weekends. Thank you for your help.

Yours sincerely,

Andy Nother
Mr Andy Nother
Project Manager

Get ahead using resources on the Companion Website at:
www.pearsoned.co.uk/saunders

- Improve your SPSS and NVivo research analysis with practice tutorials.
- Save time researching on the Internet with the Smarter Online Searching Guide.
- Test your progress using self-assessment questions.
- Follow live links to useful websites.
LEARNING OUTCOMES

By the end of this chapter, you should be able to:

➔ identify the main issues that you need to consider when preparing quantitative data for analysis and when analysing these data by computer;

➔ recognise different types of data and understand the implications of data type for subsequent analyses;

➔ create a data matrix and to code data for analysis by computer;

➔ select the most appropriate tables and diagrams to explore and illustrate different aspects of your data;

➔ select the most appropriate statistics to describe individual variables and to examine relationships between variables and trends in your data;

➔ interpret the tables, diagrams and statistics that you use correctly.

12.1 Introduction

Quantitative data in a raw form, that is, before these data have been processed and analysed, convey very little meaning to most people. These data therefore need to be processed to make them useful, that is, to turn them into information. Quantitative analysis techniques such as graphs, charts and statistics allow us to do this; helping us to explore, present, describe and examine relationships and trends within our data.

Virtually any business and management research you undertake is likely to involve some numerical data or contain data that could usefully be quantified to help you answer your research question(s) and to meet your objectives. Quantitative data refers to all such data and can be a product of all research strategies (Section 5.3). It can range from simple counts such as the frequency of occurrences to more complex data such as test scores, prices or rental costs. To be useful these data need to be analysed and interpreted. Quantitative analysis techniques assist you in this process. They range from creating simple tables or diagrams that show the frequency of occurrence and using statistics such as indices to enable comparisons, through establishing statistical relationships between variables to complex statistical modelling.
Until the advent of powerful personal computers, data were analysed either by hand or by using mainframe computers. The former of these was extremely time consuming and prone to error, the latter expensive. Fortunately, the by-hand or calculator ‘number-crunching’ and ‘charting’ elements of quantitative analysis have been incorporated into relatively inexpensive personal-computer-based analysis software. These range from spreadsheets such as Excel and Lotus 1–2–3™ to more advanced data management and statistical analysis software packages such as Minitab™, SAS™, SPSS for Windows™ and Statview™. They also include more specialised survey design and analysis packages such as SNAP and SphinxSurvey. Consequently, it is no longer necessary for you to be able to draw presentation-quality diagrams or to calculate statistics by hand as these can be done using a computer. However, if your analyses are to be straightforward and of any value you need to:

- have prepared your data with quantitative analyses in mind;
- be aware of and know when to use different charting and statistical techniques.

Robson (2002:393) summarises this, arguing that quantitative data analysis is:

...a field where it is not at all difficult to carry out an analysis which is simply wrong, or inappropriate for your purposes. And the negative side of readily available analysis software is that it becomes that much easier to generate elegantly presented rubbish.

He also emphasises the need to seek advice regarding statistical analyses, a sentiment that we support strongly.
This chapter builds on the ideas outlined in earlier chapters about data collection. It assumes that you will use a personal computer (with at least a spreadsheet) to undertake all but the most simple quantitative analyses. Although it does not focus on one particular piece of analysis software, you will notice in the worked examples that many of the analyses were undertaken using widely available software such as Excel and SPSS. If you wish to develop your skills in either of these software packages, self-teach packages are available via our companion website. In addition, there are numerous statistics books already published that concentrate on specific software packages. These include Field (2005) or Kinnear and Gray (2004) on SPSS, and Morris (2003) or Curwin and Slater (2004) on Excel. Likewise this chapter does not attempt to provide an in-depth discussion of the wide range of graphical and statistical techniques available or to cover more complex statistical modelling, as these are already covered elsewhere (for example, Everitt and Dunn, 2001; Hays, 1994; Henry, 1995). Rather it discusses issues that need to be considered at the planning and analysis stages of your research project, and outlines analytical techniques that our students have found to be of most use. In particular, the chapter is concerned with:

- preparing, inputting into a computer and checking your data (Section 12.2);
- choosing the most appropriate tables and diagrams to explore and present your data (Section 12.3);
- choosing the most appropriate statistics to describe your data (Section 12.4);
- choosing the most appropriate statistics to examine relationships and trends in your data (Section 12.5).

12.2 Preparing, inputting and checking data

If you intend to undertake quantitative analysis we recommend that you consider the:

- type of data (level of numerical measurement);
- format in which your data will be input to the analysis software;
- impact of data coding on subsequent analyses (for different data types);
- need to weight cases;
- methods you intend to use to check data for errors.

Ideally, all of these should be considered before obtaining your data. This is equally important for both primary and secondary data analysis, although you obviously have far greater control over the type, format and coding of primary data. We shall now consider each of these.

Data types

Many business statistics textbooks classify quantitative data into *data types* using a hierarchy of measurement, often in ascending order of numerical precision (Diamantopoulos and Schlegelmilch, 1997; Morris, 2003). These different levels of numerical measurement dictate the range of techniques available to you for the presentation, summary and analysis of your data. They are discussed in more detail in subsequent sections of this chapter.
Quantitative data can be divided into two distinct groups: categorical and quantifiable (Figure 12.1). **Categorical data** refer to data whose values cannot be measured numerically but can be either classified into sets (categories) according to the characteristics that identify or describe the variable or placed in rank order. They can be further subdivided into descriptive and ranked. A car manufacturer might categorise the types of cars it produces as hatchback, saloon and estate. These are known as **descriptive data** or **nominal data** as it is impossible to define the category numerically or to rank it. Rather these data simply count the number of occurrences in each category of a variable. For virtually all analyses the categories should be unambiguous and discrete; in other words, having one particular feature, such as a car being a hatchback, excludes all other features for that variable. This prevents questions arising as to which category an individual case belongs. Although these data are purely descriptive, you can count them to establish which category has the most and whether cases are spread evenly between categories (Morris, 2003). Some statisticians (and statistics) also separate descriptive data where there are only two categories. These are known as **dichotomous data**, as the variable is divided into two categories, such as the variable gender being divided into female and male. **Ranked** (or **ordinal**) **data** are a more precise form of categorical data. In such instances you know the relative position of each case within your data set, although the actual numerical measures (such as scores) on which the position is based are not recorded (Box 12.1). Rating or scale questions, such as where a respondent is asked to rate how strongly she or he agrees with a statement, collect ranked (ordinal) data. Despite this, some researchers argue that, where such data are likely to have similar size gaps between data values, they can be analysed as if they were quantifiable interval data (Blumberg et al., 2005).

Quantifiable data are those whose values are measured numerically as quantities. This means that quantifiable data are more precise than categorical as you can assign each data value a position on a numerical scale. It also means that you can analyse these data using a far wider range of statistics. There are two possible ways of subdividing quantifiable data: into interval or ratio data and, alternatively, into continuous or discrete data (Figure 12.1). If you have **interval data** you can state the difference or ‘interval’ between any two data values for a particular variable, but you cannot state the relative difference. This means that values on an interval scale can meaningfully be added and subtracted, but not multiplied and divided. The Celsius temperature scale is a good example of an interval scale. Although the difference between, say, 20°C and 30°C is 10°C it does not mean that 30°C is one and a half times as warm. This is because 0°C does not represent a true zero. When it is 0°C outside, there is still some warmth, rather than none at all! In contrast, for **ratio data**, you can also calculate the relative difference or ratio between any two data values for a variable. Consequently, if a multinational company makes a profit of $300,000,000 in one year and $600,000,000 the following year, we can say that profits have doubled.

Continuous data are those whose values can theoretically take any value (sometimes within a restricted range) provided that you can measure them accurately enough (Morris, 2003). Data such as furnace temperature, delivery distance and length of service are therefore continuous data. **Discrete data** can, by contrast, be measured precisely. Each case takes one of a finite number of values from a scale that measures changes in discrete units. These data are often whole numbers (**integers**) such as the number of mobile telephones manufactured or customers served. However, in some instances (for example, UK shoe size) discrete data will include non-integer values. Definitions of discrete and continuous data are, in reality, dependent on how your data values are measured. The number of customers served by a large organisation is strictly a discrete
datum as you are unlikely to get a part customer! However, for a large organisation with many customers you might treat this as a continuous datum, as the discrete measuring units are exceedingly small compared with the total number being measured.

Understanding differences between types of data is extremely important when analysing your data quantitatively, for two reasons. Firstly, it is extremely easy with analysis software to generate statistics from your data that are inappropriate for the data type and are consequently of little value (Box 12.2). Secondly, the more precise the level of measurement, the greater the range of analytical techniques available to you. Data that have been collected and coded using precise numerical measurements can also be

Figure 12.1 Deciding the level of numerical measurement

410
regrouped to a less precise level where they can also be analysed (Box 12.1). For example, a student's score in a test could be recorded as the actual mark (discrete data) or as the position in their class (ranked data). By contrast, less precise data cannot be made more precise. Therefore, if you are not sure about the level of precision you require, it is usually better to collect data at the highest level possible and to regroup them if necessary.

Data layout

Some primary data collection methods, such as computer-aided personal interviewing (CAPI), computer-aided telephone interviewing (CATI) and online questionnaires, can automatically enter and save data to a computer file at the time of collection. Survey design and analysis software such as SNAP and SphinxSurvey goes one stage further and integrates the analysis software in the same package as the questionnaire design/data input software (Snap Surveys, 2005; Sphinx Development, 2005). Alternatively, secondary data (Section 8.3) accessed from CD-ROMs or via the Internet can be saved to a file, removing the need for re-entering. For such data, it is often possible to specify a data layout compatible with your analysis software. For other data collection methods, you will have to prepare and enter your data for computer analysis. You therefore need to be clear about the precise data layout requirements of your analysis software.

Virtually all analysis software will accept your data if they are entered in table format. This table is called a **data matrix** (Table 12.1). Once data have been entered into your analysis software, it is usually possible to save them in a format that can be read by other software. Within a data matrix, each column usually represents a separate **variable** for which you have obtained data. Each matrix row contains the variables for an individual **case**, that is, an individual unit for which data have been obtained. If your data have been collected using a survey, each row will contain the data from one survey form. Alternatively, for longitudinal data such as a company’s share price over time, each row (case) might be a different time period. Secondary data that have already been stored in computer-readable form will almost always be held as a large data matrix. For such data sets you usually select the subset of variables and cases you

Table 12.1 A simple data matrix

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>variable 1</th>
<th>variable 2</th>
<th>variable 3</th>
<th>variable 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>1</td>
<td>27</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Case 2</td>
<td>2</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Case 3</td>
<td>3</td>
<td>24</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
CHAPTER 12 · ANALYSING QUANTITATIVE DATA

The implications of levels of measurement for data analysis

Pierre’s research was concerned with customers’ satisfaction for a small hotel group of six hotels. In collecting the data he had asked 1044 customers to indicate the hotel at which they were staying when they completed their questionnaires. Each hotel was subsequently allocated a numerical code and this data entered into the computer in the variable ‘Hotel’:

<table>
<thead>
<tr>
<th>Hotel</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amsterdam</td>
<td>1</td>
</tr>
<tr>
<td>Antwerp</td>
<td>2</td>
</tr>
<tr>
<td>Eindhoven</td>
<td>3</td>
</tr>
<tr>
<td>Nijmegen</td>
<td>4</td>
</tr>
<tr>
<td>Rotterdam</td>
<td>5</td>
</tr>
<tr>
<td>Tilburg</td>
<td>6</td>
</tr>
</tbody>
</table>

In his initial analysis Pierre used the computer to calculate descriptive statistics for every data variable including the variable ‘Hotel’. These included the minimum value (the code for Amsterdam), the maximum value (the code for Tilburg), the mean and the standard deviation. Looking at his computer screen Pierre noted that the mean (average) was 2.68 and the standard deviation was 1.10. He had forgotten that the data for this variable were categorical and, consequently, the descriptive statistics he had chosen were inappropriate.

require and save these as a separate matrix. If you are entering your own data, they are typed directly into your chosen analysis software one case (row) at a time using codes to record the data (Box 12.3). Larger data sets with more data variables and cases are recorded using larger data matrices. Although data matrices store data using one column for each variable, this may not be the same as one column for each question for data collected using surveys.

We strongly recommend that you save your data regularly as you are entering it, to minimise the chances of deleting it all by accident! In addition, you should save a back-up or security copy on your USB mass storage device, or burn it onto a CD.
If you intend to enter data into a spreadsheet, the first variable is in column A, the second in column B and so on. Each cell in the first row (1) should contain a short variable name to enable you to identify each variable. Subsequent rows (2 onwards) will each contain the data for one case (Box 12.3). Statistical analysis software follows the same logic, although the variable names are usually displayed ‘above’ the first row (Box 12.4).

BOX 12.3 WORKED EXAMPLE

An Excel data matrix

Lucy’s data related to employees who were working or had worked for a large public sector organisation. In her Excel spreadsheet, the first variable (id) was the *survey form identifier*. This meant that she could link data for each case (row) in her matrix to the survey form when checking for errors (discussed later). The second variable (age) contained quantifiable data, the age of each respondent (case) at the time her questionnaire was administered. Subsequent variables contained the remaining data: the third (gender) recorded this dichotomous data using code 1 for male and 2 for female; the fourth (service) recorded quantifiable data about each case’s length of service to the nearest year in the organisation. The final dichotomous variable (employed) recorded whether each respondent was (code 1) or was not (code 2) employed by the organisation at the time the data were collected. The codes used by Lucy therefore had different meanings for different variables.

If you intend to enter data into a spreadsheet, the first variable is in column A, the second in column B and so on. Each cell in the first row (1) should contain a short variable name to enable you to identify each variable. Subsequent rows (2 onwards) will each contain the data for one case (Box 12.3). Statistical analysis software follows the same logic, although the variable names are usually displayed ‘above’ the first row (Box 12.4).

BOX 12.4 WORKED EXAMPLE

Data coding

As part of a market research interview survey Zack needed to discover which of four products (tomato ketchup, brown sauce, soy sauce, vinegar) had been purchased within the last month by consumers. He therefore needed to collect four data items from each respondent:

- Tomato ketchup purchased within the last month? Yes/No
- Brown sauce purchased within the last month? Yes/No
- Soy sauce purchased within the last month? Yes/No
- Vinegar purchased within the last month? Yes/No

Each of these data items is a separate variable. However, the data were collected using one question:
1 Which of the following items have you purchased within the last month?

<table>
<thead>
<tr>
<th>Item</th>
<th>Purchased</th>
<th>Not Purchased</th>
<th>Not Sure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomato Ketchup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Sauce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soy Sauce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinegar</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The data Zack collected from each respondent formed four separate variables in the data matrix using numerical codes (1 = purchased, 2 = not purchased, 3 = not sure). This is known as multiple-dichotomy coding:

Zack also included a question (Question 2 below) that could theoretically have millions of possible responses for each of the ‘things’. For such questions, the number that each respondent mentions may also vary. Our experience suggests that virtually all respondents will select five or fewer. Zack therefore left space to code up to five responses after data had been collected.

2 List up to five things you like about tomato ketchup

The multiple-response method of coding uses the same number of variables as the maximum number of different responses from any one case. For question 2 these were named ‘like1’, ‘like2’, ‘like3’, ‘like4’ and ‘like5’ (Box 12.4). Each of these variables would use the same codes and could include any of the responses as a category. Statistical analysis software often contains special multiple-response procedures to analyse such data. The alternative, the multiple-dichotomy method of coding, uses a separate variable for each different answer (Box 12.4). For question 2 (Box 12.4) a separate variable could have been used for each ‘thing’ listed: for example, salary, location, colleagues, hours, holidays, car and so on. You would subsequently code each variable as ‘listed’ or ‘not listed’ for each case. This makes it easy to calculate the number of responses for each ‘thing’ (deVaus, 2002).
Coding

All data types should, with few exceptions, be recorded using numerical codes. This enables you to enter the data quickly using the numeric keypad on your keyboard and with fewer errors. It also makes subsequent analyses, in particular those that require re-coding of data to create new variables, more straightforward. Unfortunately, analyses of limited meaning are also easier, such as calculating a mean (average) gender from codes 1 and 2, or the average hotel location (Box 12.2)! A common exception to using a numerical code for categorical data is where a postcode is used as the code for a geographical reference. If you are using a spreadsheet, you will need to keep a list of codes for each variable. Statistical analysis software can store these so that each code is automatically labelled.

Coding quantifiable data

Actual numbers are often used as codes for quantifiable data, even though this level of precision may not be required. Once you have entered your data as a matrix, you can use analysis software to group or combine data to form additional variables with less detailed categories. This process is referred to as re-coding. For example, a Republic of Ireland's employee's salary could be coded to the nearest euro and entered into the matrix as 43543 (quantifiable discrete data). Later, re-coding could be used to place it in a group of similar salaries, from €40 000 to €49 999 (categorical ranked data).

Coding categorical data

Codes are often applied to categorical data with little thought, although you can design a coding scheme that will make subsequent analyses far simpler. For many secondary data sources (such as government surveys), a suitable coding scheme will have already been devised when the data were first collected. However, for some secondary and all primary data you will need to decide on a coding scheme. Prior to this, you need to establish the highest level of precision required by your analyses (Box 12.5).

Existing coding schemes can be used for many variables. These include industrial classification (Great Britain Office for National Statistics, 2002), occupation (Great Britain Office for National Statistics, 2000a, 2000b), social class (Heath et al., 2003), socioeconomic classification (Rose and Pevalin, 2003) and ethnic group (National Statistics, 2001) as well as social attitude variables (Park et al., 2005). Wherever possible, we recommend you use these as they:

- save time;
- are normally well tested;
- allow comparisons of your results with other (often larger) surveys.

These codes should be included on your data collection form as pre-set codes provided that there are a limited number of categories (Section 11.4), and they will be understood by the person filling in the form. Even if you decide not to use an existing coding scheme, perhaps because of a lack of detail, you should ensure that your codes are still compatible. This means that you will be able to compare your data with those already collected.

Coding at data collection occurs when there is a limited range of well-established categories into which the data can be placed. These are included on your data collection form, and the person filling in the form selects the correct category.

Coding after data collection is necessary when you are unclear of the likely responses or there are a large number of possible responses in the coding scheme. To ensure that the
coding scheme captures the variety in responses (and will work!) it is better to wait until data from the first 50 to 100 cases are available and then develop the coding scheme. This is called the codebook (Box 12.6). As when designing your data collection method(s) (Chapters 8, 9, 10, and 11), it is essential to be clear about the intended analyses, in particular:

■ the level of precision required;
■ the coding schemes used by surveys with which comparisons are to be made.

To create your codebook for each variable you:

1. examine the data and establish broad groupings;
2. subdivide the broad groupings into increasingly specific subgroups dependent on your intended analyses;
3. allocate codes to all categories at the most precise level of detail required;
4. note the actual responses that are allocated to each category and produce a codebook;
5. ensure that those categories that may need to be aggregated together are given adjacent codes to facilitate re-coding.

Coding missing data

Each variable for each case in your data set should have a code, even if no data have been collected. The choice of code is up to you, although some statistical analysis software have a code that is used by default. A missing data code is used to indicate why data are missing. deVaus (2002) identifies four main reasons for missing data:

■ The data were not required from the respondent, perhaps because of a skip generated by a filter question in a survey.
■ The respondent refused to answer the question (a non-response).
■ The respondent did not know the answer or did not have an opinion. Sometimes this is treated as implying an answer; on other occasions it is treated as missing data.
■ The respondent may have missed a question by mistake, or the respondent’s answer may be unclear.

In addition, it may be that:

■ leaving part of a question in a survey blank implies an answer; in such cases the data are not classified as missing (Section 11.4).

Statistical analysis software often reserves a special code for missing data. Cases with missing data can then be excluded from subsequent analyses when necessary (Box 12.6). For some analyses it may be necessary to distinguish between reasons for missing data using different codes.

Entering data

Once your data have been coded you can enter them into the computer. Increasingly, data analysis software contains algorithms that check the data for obvious errors as it is entered. Despite this, it is essential that you take considerable care to ensure that your data are entered correctly. When entering data the well-known maxim ‘rubbish in, rubbish out’ certainly applies! More sophisticated analysis software allows you to attach individual labels to each variable and the codes associated with each of them. If this is
Accountants as sources of business advice for small firms

Small business accountants play an important role as business advisors in many countries, although the use of such accountants as advisors varies considerably. Research by Gooderham and colleagues (2004) published in the *International Small Business Journal* reveals a number of insights as to why this might be the case, the findings being drawn from a questionnaire administered by telephone to a random sample of 320 Norwegian firms.

In their paper, Gooderham and colleagues explain clearly the code book, outlining the codes used for each of the variables for which they collected data. These include:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Codes</th>
</tr>
</thead>
</table>
| Degree to which a small firm uses its authorised accountant as a business advisor | Scale from 1 to 6
1 = not at all, 6 = to a very large degree |
| Long-term relationship with accountant | 1 = changed accountant within last 5 years
2 = have not changed accountant within last 5 years |
| Perceived competence of accountant in statutory accounting services | Scale from 1 to 6
1 = very limited competence, 6 = very highly competent |
| Firm size (number of employees) | 1 = 1 employee, 3 = 2–4 employees, 7 = 5–9 employees, 15 = 10–20 employees |
| Degree of interest in authorised accountant’s attempts to sell them advisory services | Scale from 1 to 6
1 = very little interest, 6 = very large interest |
| Upper hourly billing rate the firm is willing to pay for business advisory services | 1 = do not know or under NKr 300, 2 = NKr 300–450, 3 = NKr 451–650, 4 = NKr 651 or more |
| Degree of competition | Scale from 1 to 6
1 = negligible, 6 = very hard |

feasible, we strongly recommend that you do this. By ensuring the labels replicate the exact words used in the data collection, you will reduce the number of opportunities for misinterpretation when analysing your data. Taking this advice for the variable ‘advisor1’ in Box 12.6 would result in the variable label ‘List up to three things a supervisor needs to do to enable a student to achieve their full potential’, each value being labelled with the actual response in the coding scheme.

Checking for errors

No matter how carefully you code and subsequently enter data there will always be some errors. The main methods to check data for errors are as follows:
Creating a codebook, coding multiple responses and entering data

As part of the evaluation for the research project module Mark used a questionnaire to collect data from his students. The questionnaire included an open question which asked 'List up to three things a supervisor needs to do to enable a student to achieve their full potential.' The data included over 50 different 'things' that the 186 students responding considered a supervisor needed to do, although the maximum number mentioned by any one student was three.

Once data had been collected, Mark devised a hierarchical coding scheme based on what the students thought the supervisor needed to do. Codes were allocated to each 'thing' a supervisor (advisor) needed to do, as shown in the extract below.

Codes were entered into three (the maximum number students were asked to list) variables, advisor1, advisor2 and advisor3 in the data matrix using the multiple-response method for coding. This meant that any response could appear in any of the three variables. When there were fewer than three responses given, the code '.' was entered in the remaining outlet variables, signifying missing data. The first student in the extract below listed 'things' coded 11, 21 and 42, the next 3 and 21 and so on. No significance was attached to the order of variables to which responses were coded.

Extract from coding scheme used to classify responses

<table>
<thead>
<tr>
<th>Grouping</th>
<th>Sub grouping</th>
<th>Response</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge/</td>
<td></td>
<td>have knowledge of topic</td>
<td>1</td>
</tr>
<tr>
<td>Interest</td>
<td></td>
<td>be interested in topic</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>understand the topic</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Process</td>
<td>hold regular meetings</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>commit to future meetings</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Availability</td>
<td>make time for meetings</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be available in university</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be contactable</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Attitude</td>
<td>encourage</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>motivate</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>push you</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be patient</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>be understanding</td>
<td>35</td>
</tr>
</tbody>
</table>

BOX 12.6 WORKED EXAMPLE
Look for illegitimate codes. In any coding scheme, only certain numbers are allocated. Other numbers are therefore errors. Common errors are the inclusion of letters O and o instead of zero, letters l or I instead of 1, and number 7 instead of 1.

Look for illogical relationships. For example, if a person is coded to the ‘higher managerial occupations’ socioeconomic classification category and she describes her work as ‘manual’ it is likely an error has occurred.

Check that rules in filter questions are followed. Certain responses to filter questions (Section 11.4) mean that other variables should be coded as missing values. If this has not happened there has been an error.

For each possible error you need to discover whether it occurred at coding or data entry and then correct it. By giving each case a unique identifier (normally a number) it is possible to link the matrix to the original data. You must remember to write the identifier on the data collection form and enter it along with the other data into the matrix.

Data checking is very time consuming and so is often not undertaken. Beware: not doing it is very dangerous and can result in incorrect results from which false conclusions are drawn!

Weighting cases

Most data you use will be a sample. For some forms of probability sampling, such as stratified random sampling (Section 7.2), you may have used a different sampling fraction for each stratum. Alternatively, you may have obtained a different response rate for each of the strata. To obtain an accurate overall picture you will need to take account of these differences in response rates between strata. A common method of achieving this is to use cases from those strata that have lower proportions of responses to represent more than one case in your analysis (Box 12.7). Most statistical analysis software allows you to do this by weighting cases. To weight the cases you:

1. Calculate the percentage of the population responding for each stratum.
2. Establish which stratum had the highest percentage of the population responding.
3. Calculate the weight for each stratum using the following formula:

\[
\text{Weight} = \frac{\text{Total Population}}{\text{Total Responding}}
\]
weight = \frac{\text{highest proportion of population responding for any stratum}}{\text{proportion of population responding in stratum for which calculating weight}}

(Note: if your calculations are correct this will always result in the weight for the stratum with the highest proportion of the population responding being 1.)

4. Apply the appropriate weight to each case.

Beware: many authors (for example, Hays, 1994) question the validity of using statistics to make inferences from your sample if you have weighted cases.

BOX 12.7 WORKED EXAMPLE

Weighting cases

Doris had used stratified random sampling to select her sample. The percentage of each stratum’s population that responded is given below:

- upper stratum: 90%
- lower stratum: 65%

To account for the differences in the response rates between strata she decided to weight the cases prior to analysis.

The weight for the upper stratum was: \frac{90}{90} = 1

This meant that each case in the upper stratum counted as 1 case in her analysis.

The weight for the lower stratum was: \frac{90}{65} = 1.38

This meant that each case in the lower stratum counted for 1.38 cases in her analysis.

Doris entered these as a separate variable in her data set and used the statistical analysis software to apply the weights.

12.3 Exploring and presenting data

Once your data have been entered and checked for errors, you are ready to start your analysis. We have found Tukey’s (1977) exploratory data analysis approach useful in these initial stages. This approach emphasises the use of diagrams to explore and understand your data, emphasising the importance of using your data to guide your choices of analysis techniques. As you would expect, we believe that it is important to keep your research question(s) and objectives in mind when exploring your data. However, the exploratory data analysis approach allows you flexibility to introduce previously unplanned analyses to respond to new findings. It therefore formalises the common practice of looking for other relationships in data, which your research was not initially designed to test. This should not be discounted, as it may suggest other fruitful avenues for analysis. In addition, computers make this relatively easy and quick.

Even at this stage it is important that you structure and label clearly each diagram and table to avoid possible misinterpretation. Box 12.8 provides a summary checklist of the points to remember when designing a diagram or table.
We have found it best to begin exploratory analysis by looking at individual variables and their components. The key aspects you may need to consider will be guided by your research question(s) and objectives, and are likely to include (Sparrow, 1989):

- specific values;
- highest and lowest values;
- trends over time;
- proportions;
- distributions.

Once you have explored these, you can then begin to compare and look for relationships between variables, considering in addition (Sparrow, 1989):

- conjunctions (the point where values for two or more variables intersect);
- totals;
- interdependence and relationships.

These are summarised in Table 12.2. Most analysis software contains procedures to create tables and diagrams. Your choice will depend on those aspects of the data that you wish to emphasise and the level of measurement at which the data were recorded. This section is concerned only with tables and two-dimensional diagrams, including pictograms, available on most spreadsheets (Table 12.2). Three-dimensional diagrams are not discussed, as these often can hinder interpretation. Those tables and diagrams most

BOX 12.8 CHECKLIST

Designing your diagrams and tables

For both diagrams and tables

☑ Does it have a brief but clear and descriptive title?
☑ Are the units of measurement used stated clearly?
☑ Are the sources of data used stated clearly?
☑ Are there notes to explain abbreviations and unusual terminology?
☑ Does it state the size of the sample on which the values in the table are based?

For diagrams

☑ Does it have clear axis labels?
☑ Are bars and their components in the same logical sequence?
☑ Is more dense shading used for smaller areas?
☑ Have you avoided misrepresenting or distorting the data
☑ Is a key or legend included (where necessary)?

For tables

☑ Does it have clear column and row headings?
☑ Are columns and rows in a logical sequence?
pertinent to your research question(s) and objectives will eventually appear in your research report to support your arguments. You should therefore save an electronic copy of all tables and diagrams you create.

Table 12.2 Data presentation by data type: a summary

<table>
<thead>
<tr>
<th>Table/Frequency Distribution (Data Often Grouped)</th>
<th>Bar Chart or Pictogram (Data May Need Grouping)</th>
<th>Histogram or Frequency Polygon (Data Must Be Grouped)</th>
<th>Pie Chart or Bar Chart (Data May Need Grouping)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar Chart or Pictogram (Data May Need Grouping)</td>
<td>Line Graph or Bar Chart</td>
<td>Line Graph or Histogram</td>
<td>Line Graph or Bar Chart</td>
</tr>
<tr>
<td>Frequency Polygon, Histogram (Data Must Be Grouped)</td>
<td>Line Graph or Bar Chart</td>
<td>Frequency Polygon, Bar Chart (Data May Need Grouping)</td>
<td>Box Plot</td>
</tr>
<tr>
<td>Contingency Table/Cross-Tabulation (Data Often Grouped)</td>
<td>Multiple Bar Chart (Continuous Data Must Be Grouped, Other Data May Need Grouping)</td>
<td>Multiple Line Graph or Multiple Bar Chart</td>
<td></td>
</tr>
<tr>
<td>Comparative Pie Charts or Percentage Component Bar Chart (Continuous Data Must Be Grouped, Other Data May Need Grouping)</td>
<td>Multiple Line Graph or Multiple Bar Chart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple Box Plot</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stacked Bar Chart (Continuous Data Must Be Grouped, Other Data May Need Grouping)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To show the relationship between cases for two variables

To show one variable so that any specific value can be read easily

To show the frequency of occurrences of categories or values for one variable so that highest and lowest are clear

To show the trend for a variable

To show the proportion of occurrences of categories or values for one variable

To show the distribution of values for one variable

To show the interdependence between two or more variables so that any specific value can be read easily

To compare the frequency of occurrences of categories or values for two or more variables so that highest and lowest are clear

To compare the trends for two or more variables so that conjunctions are clear

To compare the proportions of occurrences of categories or values for two or more variables

To compare the distribution of values for two or more variables

To compare the frequency of occurrences of categories or values for two or more variables so that totals are clear

To compare the proportions and totals of occurrences of categories or values for two or more variables

To show the relationship between cases for two variables
Exploring and presenting individual variables

To show specific values

The simplest way of summarising data for individual variables so that specific values can be read is to use a table (frequency distribution). For descriptive data, the table summarises the number of cases (frequency) in each category. For variables where there are likely to be a large number of categories (or values for quantifiable data), you will need to group the data into categories that reflect your research question(s) and objectives.

To show highest and lowest values

Tables attach no visual significance to highest or lowest values unless emphasised by alternative fonts. Diagrams can provide visual clues, although both categorical and quantifiable data may need grouping (Henry, 1995). For categorical and discrete data, bar charts and pictograms are both suitable. Generally, bar charts provide a more accurate representation and should be used for research reports, whereas pictograms convey a general impression and can be used to gain an audience’s attention. In a bar chart, the height or length of each bar represents the frequency of occurrence. Bars are separated by gaps, usually half the width of the bars. Bar charts where the bars are vertical (as in Figure 12.2) are sometimes called column charts. This bar chart emphasises that the European Union Member State with the highest per capita amount of municipal waste in 2003 was Ireland, whilst Poland had the lowest per capita amount of municipal waste.

To emphasise the relative values represented by each of the bars in a bar chart, the bars may be reordered in either descending or ascending order of the frequency of occurrence represented by each bar (Figure 12.3).

Most researchers use a histogram to show highest and lowest values for continuous data. Prior to being drawn, data will often need to be grouped into class intervals. In a histogram, the area of each bar represents the frequency of occurrence and the continuous nature of the data is emphasised by the absence of gaps between the bars. For

![Figure 12.2 Bar chart](source)

Figure 12.2 Bar chart

equal width class intervals, the height of your bar still represents the frequency of occurrences (Figures 12.4 and 12.5) and so the highest and lowest values are easy to distinguish. For histograms with unequal class interval widths, this is not the case. In Figure 12.4 the histogram emphasises that the most frequent amount spent is £40 to £60, whilst the least frequent amount spent is £160 to £180. In Figure 12.5 the histogram emphasises that the highest number of Harley-Davidson motorcycles shipped worldwide was in 2003, and the lowest number in 1993.

Figure 12.3 Bar chart (data reordered)

Figure 12.4 Histogram
Analysis software treats histograms for data of equal width class intervals as a variation of a bar chart. Unfortunately, few spreadsheets will cope automatically with the calculations required to draw histograms for unequal class intervals. Consequently, you may have to use a bar chart owing to the limitations of your analysis software.

In a pictogram, each bar is replaced by a picture or series of pictures chosen to represent the data. To illustrate the impact of doing this, we have used data of worldwide Harley-Davidson motorcycle shipments to generate both a histogram (Figure 12.5) and a pictogram (Figure 12.6). In the pictogram each picture represents 20,000 motorcycles. Pictures in pictograms can, like bars in bar charts and histograms, be shown in columns or horizontally. The height of the column or length of the bar made up by the pictures represents the frequency of occurrence. In this case we felt it was more logical to group the pictures as a horizontal bar rather than vertically on top of each other. You will have
probably also noticed that, in the pictogram, there are gaps between the bars. Whilst this normally signifies discrete categories of data, it is also acceptable to do this for continuous data (such as years) when drawing a pictogram to aid clarity. Although analysis software allows you to convert a bar chart or histogram to a pictogram both easily and accurately, it is more difficult to establish the actual data values from a pictogram. This is because the number of units part of a picture represents is not immediately clear. For example, in Figure 12.6, how many motorcycles shipped would a rear wheel represent?

Pictograms have a further drawback, namely that it is very easy to misrepresent the data. Both Figure 12.5 and Figure 12.6 show that shipments of Harley-Davidson motorcycles almost doubled between 1998 and 2003. Using our analysis software, this could have been represented using a picture of a motorcycle in 2003 that was nearly twice as long as the picture in 1998. However, in order to keep the proportions of the motorcycle accurate, the picture would have needed to be nearly twice as tall. Consequently, the actual area of the picture would have been nearly four times as great and would have been interpreted as motorcycle shipments almost quadrupling. Because of this we would recommend that, if you are using a pictogram, you decide on a standard value for each picture and do not alter its size. In addition, you should include a key or note to indicate the value each picture represents.

Frequency polygons are used less often to illustrate limits. Most analysis software treats them as a version of a line graph (Figure 12.7) in which the lines are extended to meet the horizontal axis, provided that class widths are equal.

To show a trend

Trends can only be presented for variables containing quantifiable (and occasionally ranked) longitudinal data. The most suitable diagram for exploring the trend is a line graph (Henry, 1995) in which your data values for each time period are joined with a line to represent the trend (Figure 12.7). In Figure 12.7 the line graph emphasises the upward trend in the number of Harley-Davidson motorcycles shipped worldwide between 1993 and 2003. You can also use histograms (Figure 12.5) to show trends over continuous time periods and bar charts (Figure 12.2) to show trends between discrete time periods. The trend can also be calculated using time series analysis (Section 12.5).
To show proportions

Research has shown that the most frequently used diagram to emphasise the proportion or share of occurrences is the pie chart, although bar charts have been shown to give equally good results (Henry, 1995). A pie chart is divided into proportional segments according to the share each has of the total value (Figure 12.8). For continuous and some discrete and categorical data you will need to group data prior to drawing the pie chart, as it is difficult to interpret pie charts with more than six segments (Morris, 2003).

To show the distribution of values

Prior to using many statistical tests it is necessary to establish the distribution of values for variables containing quantifiable data (Sections 12.4, 12.5). This can be seen...
Exploring and presenting data for individual variables

As part of audience research for his dissertation, Valentin asked people attending a play at a provincial theatre to complete a short questionnaire. This collected responses to 25 questions including:

3 How many plays (including this one) have you seen at this theatre in the past year?
 11 This play is good value for money
 strongly disagree □1 disagree □2 agree □3 strongly agree □4

24 How old are you?
 Under 18 □1 18 to 34 □2 35 to 64 □3 65 & over □4

by plotting either a frequency polygon or a histogram (Figure 12.4) for continuous data or a frequency polygon or bar chart for discrete data. If your diagram shows a bunching to the left and a long tail to the right as in Figure 12.4 the data are positively skewed. If the converse is true (Figure 12.5), the data are negatively skewed. If your data are equally distributed either side of the highest frequency then they are symmetrically distributed. A special form of the symmetric distribution, in which the data can be plotted as a bell-shaped curve, is known as the normal distribution.

An alternative often included in more advanced statistical analysis software is the box plot (Figure 12.9). This diagram provides you with a pictorial representation of the distribution of the data for a variable. The plot shows where the middle value or median is, how this relates to the middle 50 per cent of the data or inter-quartile range, and highest and lowest values or extremes (Section 12.4). It also highlights outliers, those values that are very different from the data. In Figure 12.9 the two outliers might be due to mistakes in data entry. Alternatively, they may be correct and emphasise that sales for these two cases (93 and 88) are far higher. In this example we can see that the data values for the variable are positively skewed as there is a long tail to the right.

Table 12.3 Contingency table: number of insurance claims by gender, 2006

<table>
<thead>
<tr>
<th>Number of claims*</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10,032</td>
<td>13,478</td>
<td>23,510</td>
</tr>
<tr>
<td>1</td>
<td>2,156</td>
<td>1,430</td>
<td>3,586</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>25</td>
<td>145</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>12,321</td>
<td>14,937</td>
<td>27,258</td>
</tr>
</tbody>
</table>

*No clients had more than 3 claims
Source: PJ Insurance Services
Exploratory analyses were undertaken using analysis software and diagrams and tables generated. For question 3, which collected discrete data, the aspects that were most important were the distribution of values and the highest and lowest numbers of plays seen. A bar chart was therefore drawn:

This emphasised that the most frequent number of plays seen by respondents was three and the least frequent number of plays seen by the respondents was either nine or probably some larger number. It also suggested that the distribution was positively skewed towards lower numbers of plays seen.

For question 11 (categorical data), the most important aspect was the proportions of people agreeing and disagreeing with the statement. A pie chart was therefore drawn using similar shadings for the two agree categories and for the two disagree categories:
Comparing variables

To show specific values and interdependence
As with individual variables the best method of finding specific data values is a table. This is known as a contingency table or cross-tabulation (Table 12.3), and it also enables you to examine interdependence between the variables. For variables where there are likely to be a large number of categories (or values for quantifiable data), you may need to group the data to prevent the table from becoming too large.

Most statistical analysis software allows you to add totals, and row and column percentages when designing your table. Statistical analyses such as chi square can also be undertaken at the same time (Section 12.5).

To compare highest and lowest values
Comparisons of variables that emphasise the highest and lowest rather than precise values are best explored using a multiple bar chart (Henry, 1995), also known as a compound bar chart. As for a bar chart, continuous data – or data where there are many values or categories – need to be grouped. Within any multiple bar chart you are likely to find it easiest to compare between adjacent bars. The multiple bar chart (Box 12.10) has therefore been drawn to emphasise comparisons between years rather than between countries.

To compare proportions
Comparison of proportions between variables uses either a percentage component bar chart or two or more pie charts. Either type of diagram can be used for all data types provided that continuous data, and data where there are more than six values or categories,
are grouped. Percentage component bar charts are more straightforward to draw than comparative pie charts when using most spreadsheets. Within your percentage component bar chart, comparisons will be easiest between adjacent bars. The chart in
Figure 12.10 has been drawn to compare proportions of each type of response between products. Consumers’ responses for each product therefore form a single bar.

To compare trends and conjunctions

The most suitable diagram to compare trends for two or more quantifiable (or occasionally ranked) variables is a multiple line graph where one line represents each variable (Henry, 1995). You can also use multiple bar charts (Box 12.10) in which bars for the same time period are placed adjacent.

If you need to look for conjunctions in the trends – that is, where values for two or more variables intersect – this is where the lines on a multiple line graph cross.

To compare totals

Comparison of totals between variables uses a variation of the bar chart. A stacked bar chart can be used for all data types provided that continuous data and data where there are more than six possible values or categories are grouped. As with percentage component bar charts, the design of the stacked bar chart is dictated by the totals you want to compare. For this reason, in Figure 12.11 sales for each quarter have been stacked to give totals which can be compared between companies.

To compare proportions and totals

To compare both proportions of each category or value and the totals for two or more variables it is best to use comparative proportional pie charts for all data types. For each comparative proportional pie chart the total area of the pie chart represents the total for that variable. By contrast, the angle of each segment represents the relative proportion of a category within the variable (Figure 12.8). Because of the complexity of drawing comparative proportional pie charts, they are rarely used for exploratory data analysis, although they can be used to good effect in research reports.

Responses to: ‘Would you purchase this product again?’

Source: Survey of 2500 consumers, 2006

![Percentage component bar chart](image-url)
To compare the distribution of values

Often it is useful to compare the distribution of values for two or more variables. Plotting multiple frequency polygons or bar charts (Box 12.10) will enable you to compare distributions for up to three or four variables. After this your diagram is likely just to look a mess! An alternative is to use a diagram of multiple box plots, similar to the one in Figure 12.9. This provides a pictorial representation of the distribution of the data for the variables in which you are interested. These plots can be compared and are interpreted in the same way as the single box plot.

To show the relationship between cases for variables

You can explore possible relationships between ranked and quantifiable data variables by plotting one variable against another. This is called a scatter graph or scatter plot, and each cross (point) represents the values for one case (Figure 12.12). Convention dictates that you plot the dependent variable – that is, the variable that changes in response to changes in the other (independent) variable – against the vertical axis. The strength of the relationship is indicated by the closeness of the points to an imaginary straight line. If, as the values for one variable increase, so do those for the other, you have a positive relationship. If, as the values for one variable decrease, those for the other variable increase, you have a negative relationship. Thus in Figure 12.12 there is a negative relationship between the two variables. The strength of this relationship can be assessed statistically using techniques such as correlation or regression (Section 12.5).

12.4 Describing data using statistics

The exploratory data analysis approach (Section 12.3) emphasised the use of diagrams to understand your data. Descriptive statistics enable you to describe (and compare) vari-
Francis was asked by his uncle, an independent ice cream manufacturer, to examine the records of monthly sales of ice cream for 2004 and 2005. In addition, his uncle had obtained longitudinal data on average (mean) daily hours of sunshine for each month for the same time period from their local weather station. Francis decided to explore data on sales of the three best-selling flavours (vanilla, strawberry and chocolate), paying particular attention to:

- comparative trends in sales;
- the relationship between sales and amount of sunshine.

To compare trends in sales between the three flavours he plotted a multiple line graph using a spreadsheet.

Figure 12.12 Scatter graph

Comparing variables numerically. Your research question(s) and objectives, although limited by the type of data (Table 12.4), should guide your choice of statistics. Statistics to describe a variable focus on two aspects:

- the central tendency;
- the dispersion.

These are summarised in Table 12.4. Those most pertinent to your research question(s) and objectives will eventually be quoted in your research report as support for your arguments.

Describing the central tendency

When describing data for both samples and populations quantitatively it is usual to provide some general impression of values that could be seen as common, middling or...
This indicated that sales for all flavours of ice cream were following a seasonal pattern but with an overall upward trend. It also showed that sales of vanilla ice cream were highest, and that those of chocolate had overtaken strawberry. The multiple line graph highlighted the conjunction when sales of chocolate first exceeded strawberry, September 2005.

To show relationships between sales and amount of sunshine Francis plotted scatter graphs for sales of each ice cream flavour against average (mean) daily hours of sunshine for each month. He plotted sales on the vertical axis, as he presumed that these were dependent on the amount of sunshine, for example:

The scatter graph showed that there was a positive relationship between the amount of sunshine and sales of vanilla flavour ice cream. Subsequent scatter plots revealed similar relationships for strawberry and chocolate flavours.
Table 12.4 Descriptive statistics by data type: a summary

<table>
<thead>
<tr>
<th>To calculate a measure of:</th>
<th>Categorical</th>
<th>Quantifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Descriptive</td>
<td>Ranked</td>
</tr>
<tr>
<td>Central tendency that ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... represents the value that occurs most frequently</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... represents the middle value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... includes all data values (average)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispersion that ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... states the difference between the highest and lowest values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... states the difference within the middle 50% of values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... states the difference within another fraction of the values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... describes the extent to which data values differ from the mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... compares the extent to which data values differ from the mean between variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>... allows the relative extent that different data values differ to be compared</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: © Mark Saunders, Philip Lewis and Adrian Thornhill 2006
average. These are termed measures of central tendency and are discussed in virtually all statistics textbooks. The three ways of measuring the central tendency most used in business research are the:

- value that occurs most frequently (mode);
- middle value or mid-point after the data have been ranked (median);
- value, often known as the average, that includes all data values in its calculation (mean).

However, as we saw in Box 12.2, beware: if you have used numerical codes, most analysis software can calculate all three measures whether or not they are appropriate!

To represent the value that occurs most frequently

The mode is the value that occurs most frequently. For descriptive data, the mode is the only measure of central tendency that can be interpreted sensibly. You might read in a report that the most common (modal) colour of motor cars sold last year was silver, or that the two equally most popular makes of motorcycle in response to a questionnaire were Honda and Yamaha (it is possible to have more than one mode). The mode can be calculated for variables where there are likely to be a large number of categories (or values for quantifiable data), although it may be less useful. One solution is to group the data into suitable categories and to quote the most frequently occurring modal group.

To represent the middle value

If you have quantitative data it is also possible to calculate the middle or median value by ranking all the values in ascending order and finding the mid-point (or 50th percentile) in the distribution. For variables that have an even number of data values the median will occur halfway between the two middle data values. The median has the advantage that it is not affected by extreme values in the distribution.

To include all data values

The most frequently used measure of central tendency is the mean or average, which includes all data values in its calculation. However, it is usually only possible to calculate a meaningful mean using quantifiable data.

The value of your mean is unduly influenced by extreme data values in skewed distributions (Section 12.3). In such distributions the mean tends to get drawn towards the long tail of extreme data values and may be less representative of the central tendency. For this and other reasons Hays (1994) suggests that the median may be a more useful descriptive statistic. However, because the mean is the building block for many of the statistical tests used to explore relationships (Section 12.5), it is usual to include it as at least one of the measures of central tendency for quantifiable data in your report. This is, of course, provided that it makes sense!

Describing the dispersion

As well as describing the central tendency for a variable, it is important to describe how the data values are dispersed around the central tendency. As you can see from Table 12.4, this is only possible for quantifiable data. Two of the most frequently used ways of describing the dispersion are the:

- difference within the middle 50 per cent of values (inter-quartile range);
- extent to which values differ from the mean (standard deviation).
As part of her research project, Kylie had obtained secondary data from the service department of her organisation on the length of time for which their customers had held service contracts:

<table>
<thead>
<tr>
<th>Length of time held contract</th>
<th>Number of customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3 months</td>
<td>50</td>
</tr>
<tr>
<td>3 to < 6 months</td>
<td>44</td>
</tr>
<tr>
<td>6 months to < 1 year</td>
<td>71</td>
</tr>
<tr>
<td>1 to < 2 years</td>
<td>105</td>
</tr>
<tr>
<td>2 to < 3 years</td>
<td>74</td>
</tr>
<tr>
<td>3 to < 4 years</td>
<td>35</td>
</tr>
<tr>
<td>4 to < 5 years</td>
<td>27</td>
</tr>
<tr>
<td>5+ years</td>
<td>11</td>
</tr>
</tbody>
</table>

Her exploratory analysis revealed a positively skewed distribution (long tail to the right).

From the table the largest single group of customers were those who had contracts for 1 to < 2 years. This was the modal time period (most commonly occurring). However, the usefulness of this statistic is limited owing to the variety of class widths. By definition, half of the organisation's customers will have held contracts below the median time period (approximately 1 year 5 months) and half above it. As there are 11 customers who have held service contracts for over 5 years, the mean time period (approximately 1 year 9 months) is pulled towards longer times. This is represented by the skewed shape of the distribution.

Kylie needed to decide which of these measures of central tendency to include in her research report. As the mode made little sense she quoted the median and mean when interpreting her data:

The length of time for which customers have held service contracts is positively skewed. Although mean length of time is approximately 1 year 9 months, half of customers have held service contracts for less than 1 year 5 months (median). Grouping of these data means that it is not possible to calculate a meaningful mode.
Although these measures of dispersion are suitable only for quantifiable data, most statistical analysis software will also calculate them for categorical data if you have used numerical codes!

To state the difference between values

In order to get a quick impression of the distribution of data values for a variable you could simply calculate the difference between the lowest and the highest values – that is, the *range*. However, this statistic is rarely used in research reports as it represents only the extreme values.

A more frequently used statistic is the *inter-quartile range*. As we discussed earlier, the median divides the range into two. The range can be further divided into four equal sections called *quartiles*. The *lower quartile* is the value below which a quarter of your data values will fall; the *upper quartile* is the value above which a quarter of your data values will fall. As you would expect, the remaining half of your data values will fall between the lower and upper quartiles. The difference between the upper and lower quartiles is the inter-quartile range (Morris, 2003). As a consequence, it is concerned only with the middle 50 per cent of data values and ignores extreme values.

You can also calculate the range for other fractions of a variable’s distribution. One alternative is to divide your distribution using *percentiles*. These split your distribution into 100 equal parts. Obviously the lower quartile is the 25th percentile and the upper quartile the 75th percentile. However, you could calculate a range between the 10th and 90th percentiles so as to include 80 per cent of your data values. Another alternative is to divide the range into 10 equal parts called *deciles*.

To describe and compare the extent by which values differ from the mean

Conceptually and statistically in research it is important to look at the extent to which the data values for a variable are spread around their mean, as this is what you need to know to assess its usefulness as a typical value for the distribution. If your data values are all close to the mean, then the mean is more typical than if they vary widely. To describe the extent of spread of quantifiable data you use the *standard deviation*. If your data are a sample (Section 7.1) this is calculated using a slightly different formula than if your data are a population, although if your sample is larger than about 30 cases there is little difference in the two statistics (Morris, 2003).

You may need to compare the relative spread of data between distributions of different magnitudes (for example, one may be measured in hundreds of tonnes, the other in billions of tonnes). To make a meaningful comparison you will need to take account of these different magnitudes. A common way of doing this is:

1. to divide the standard deviation by the mean;
2. then to multiply your answer by 100.

This results in a statistic called the *coefficient of variation* (Diamantopoulos and Schlegelmilch, 1997). The values of this statistic can then be compared. The distribution with the largest coefficient of variation has the largest relative spread of data (Box 12.13).

Alternatively, as discussed in the introduction in relation to room rental prices for different university towns and cities, you may wish to compare the relative extent to which individual data values differ. One way of doing this is to use *index numbers* and consider the relative differences rather than actual data values. Such indices compare each data value against a base value that is normally given the value of 100, differences being calculated relative to this value. An index number greater than 100 would represent a
larger or higher data value relative to the base value and an index less than 100, a smaller or lower data value. To calculate an index number for each case for a data variable you use the following formula:

\[
\text{index number for case} = \frac{\text{data value for case}}{\text{base data value}} \times 100
\]

For our introductory example, the data value for each case was the mean rental price for each university town or city, whereas the base data value was the mean rental price for all the data collected from all the university towns and cities.

12.5 Examining relationships, differences and trends using statistics

One of the questions you are most likely to ask in your analysis is: ‘How does a variable relate to another variable?’ In statistical analysis you answer this question by testing the likelihood of the relationship (or one more extreme) occurring by chance alone, if there really was no difference in the population from which the sample was drawn (Robson, 2002). This process is known as *significance* or *hypothesis testing* as, in effect, you are com-
paring the data you have collected with what you would theoretically expect to happen. Significance testing can therefore be thought of as helping to rule out the possibility that your result could be due to random variation in your sample.

There are two main groups of statistical significance tests: non-parametric and parametric. Non-parametric statistics are designed to be used when your data are not normally distributed. Not surprisingly, this most often means they are used with categorical data. In contrast, parametric statistics are used with quantifiable data. Although parametric statistics are considered more powerful because they use quantifiable data, a number of assumptions about the actual data being used need to be satisfied if they are not to produce spurious results (Blumberg et al., 2005). These include:

- the data cases selected for the sample should be independent, in other words the selection of any one case for your sample should not affect the probability of any other case being included in the same sample;
- the data cases should be drawn from a normally distributed populations (Section 12.3);
- the populations from which the data cases are drawn should have equal variances (don’t worry, the term variance is explained later in Section 12.4);
- the data used should be quantifiable.

If these assumptions are not satisfied, it is often still possible to use non-parametric statistics.

The way in which this significance is tested using both non-parametric and parametric statistics can be thought of as answering one from a series of questions, dependent on the data type:

- Is the association statistically significant?
- Are the differences statistically significant?
- What is the strength of the relationship, and is it statistically significant?
- Are the predicted values statistically significant?

These are summarised in Table 12.5 along with statistics used to help examine trends.

Testing for significant relationships and differences

Testing the probability of a relationship between variables occurring by chance alone if there really was no difference in the population from which that sample was drawn is known as significance testing. As part of your research project, you might have collected sample data to examine the relationship between two variables. Once you have entered data into the analysis software, chosen the statistic and clicked on the appropriate icon, an answer will appear as if by magic! With most statistical analysis software this will consist of a test statistic, the degrees of freedom (df) and, based on these, the probability (p-value) of your test result or one more extreme occurring by chance alone. If the probability of your test statistic or one more extreme having occurred by chance alone is very low (usually \(p = 0.05 \) or lower\(^1 \)), then you have a statistically significant relationship. Statisticians refer to this as rejecting the null hypothesis and accepting the hypothesis, often

\(^1\) A probability of 0.05 means that the probability of your test result or one more extreme occurring by chance alone, if there really was no difference in the population from which the sample was drawn, is 5 in 100, that is 1 in 20.
Table 12.5 Statistics to examine relationships, differences and trends by data type: a summary

<table>
<thead>
<tr>
<th>Category</th>
<th>Categorical</th>
<th>Quantifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Descriptive</td>
<td>Ranked</td>
</tr>
<tr>
<td>To test whether two variables are associated</td>
<td>Chi square</td>
<td>Chi square if variables grouped into discrete classes</td>
</tr>
<tr>
<td></td>
<td>(data may need grouping)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cramer’s V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phi (both variables must be dichotomous)</td>
<td></td>
</tr>
<tr>
<td>To test whether two groups (categories) are different</td>
<td>Kolmogorov–Smirnov (data may need grouping)</td>
<td>Independent t-test or paired t-test (often used to test for changes over time)</td>
</tr>
<tr>
<td>To test whether three or more groups (categories) are different</td>
<td></td>
<td>Analysis of variance (ANOVA)</td>
</tr>
<tr>
<td>To assess the strength of relationship between two variables</td>
<td>Spearman’s rank correlation coefficient (Spearman’s rho) or Kendall’s rank order correlation coefficient (Kendall’s tau)</td>
<td>Pearson’s product moment correlation coefficient (PMCC)</td>
</tr>
<tr>
<td>To assess the strength of a relationship between one dependent and one independent variable</td>
<td></td>
<td>Coefficient of determination (regression analysis)</td>
</tr>
<tr>
<td>To assess the strength of a relationship between one dependent and two or more independent variables</td>
<td></td>
<td>Coefficient of multiple determination (multiple regression analysis)</td>
</tr>
<tr>
<td>To predict the value of a dependent variable from one or more independent variables</td>
<td></td>
<td>Regression equation (regression analysis)</td>
</tr>
<tr>
<td>To examine relative change (trend) over time</td>
<td></td>
<td>Index numbers</td>
</tr>
<tr>
<td>To compare relative changes (trends) over time</td>
<td></td>
<td>Index numbers</td>
</tr>
<tr>
<td>To determine the trend over time of a series of data</td>
<td></td>
<td>Time series: moving averages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Regression equation (regression analysis)</td>
</tr>
</tbody>
</table>

Source: © Mark Saunders, Philip Lewis and Adrian Thornhill 2006.
abbreviating the terms null hypothesis to \(H_0 \) and hypothesis to \(H_1 \). Consequently, rejecting a null hypothesis will mean rejecting a testable statement something like ‘there is no significant difference between …’ and accepting a testable statement something like ‘there is a significant difference between …’. If the probability of obtaining the test statistic or one more extreme by chance alone is higher than 0.05, then you conclude that the relationship is not statistically significant. Statisticians refer to this as accepting the *null hypothesis*. There may still be a relationship between the variables under such circumstances, but you cannot make the conclusion with any certainty.

Despite our discussion of hypothesis testing, albeit briefly, it is worth mentioning that a great deal of quantitative analysis, when written up, does not specify actual hypotheses. Rather, the theoretical underpinnings of the research and the research questions provide the context within which the probability of relationships between variables occurring by chance alone is tested. Thus although hypothesis testing has taken place, it is often only discussed in terms of statistical significance.

The statistical significance of the relationship indicated by a test statistic is determined in part by your sample size (Section 7.2). One consequence of this is that it is very difficult to obtain a significant test statistic with a small sample. Conversely, by increasing your sample size, less obvious relationships and differences will be found to be statistically significant until, with extremely large samples, almost any relationship or difference will be significant (Anderson, 2003). This is inevitable as your sample is becoming closer in size to the population from which it was selected. You therefore need to be remember that small populations can make statistical tests insensitive, while very large samples can make statistical tests overly sensitive. One consequence of this is that, if you expect a difference or relationship will be small, you need to have a larger sample size.

Type I and Type II errors

Inevitably, errors can occur when making inferences from samples. Statisticians refer to these as Type I and Type II errors. Blumberg *et al.* (2005) use the analogy of legal decisions to explain Type I and Type II errors. In their analogy they equate a Type I error to a person who is innocent being unjustly convicted and a Type II error to a person who is guilty of a crime being unjustly acquitted. In business and management research we would say that an error made by wrongly coming to a decision that something is true when in reality it is not is a **Type I error**. Type I errors might involve your concluding that two variables are related when they are not, or incorrectly concluding that a sample statistic exceeds the value that would be expected by chance alone. This means you are rejecting your null hypothesis when you should not. The term *statistical significance* discussed earlier therefore refers to the probability of making a Type I error. A **Type II error** involves the opposite occurring. In other words, you conclude that something is not true, when in reality it is, and accept your null hypothesis. This means that Type II errors might involve you in concluding that two variables are not related when they are, or that a sample statistic does not exceed the value that would be expected by chance alone.

Given that a Type II error is the inverse of a Type I error, it follows that if we reduce our chances of making a Type I error by setting the significance level to 0.01 rather than 0.05, we increase our chances of making a Type II error by a corresponding amount. This is not an insurmountable problem, as researchers usually consider Type I errors more serious and prefer to take a small chance of saying something is true when it is not (Figure 12.13). It is therefore generally more important to minimise Type I than Type II errors.
To test whether two variables are associated

Often descriptive or quantifiable data will be summarised as a two-way contingency table (such as Table 12.3). The chi square test enables you to find out how likely it is that the two variables are associated. It is based on a comparison of the observed values in the table with what might be expected if the two distributions were entirely independent. Therefore you are assessing the likelihood of the data in your table, or data more extreme, occurring by chance alone by comparing it with what you would expect if the two variables were independent of each other. This could be phrased as the null hypothesis: ‘there is no significant difference...’.

The test relies on:

■ the categories used in the contingency table being mutually exclusive, so that each observation falls into only one category or class interval;

■ no more than 20 per cent of the cells in the table having expected values of less than 5. For contingency tables of two rows and two columns, no expected values of less than 10 are preferable (Hays, 1994).

If the latter assumption is not met, the accepted solution is to combine rows and columns where this produces meaningful data.

The chi square (χ^2) test calculates the probability that the data in your table, or data more extreme, could occur by chance alone. Most statistical analysis software does this automatically. However, if you are using a spreadsheet you will usually need to look up the probability in a ‘critical values of chi square’ table using your calculated chi square value and the degrees of freedom. This table is included in most statistics textbooks. A probability of 0.05 means that there is only a 5 per cent chance of the data in your table occurring by chance alone, and is termed statistically significant. Therefore a probability of 0.05 or smaller means you can be at least 95 per cent certain that the relationship between your two variables could not have occurred by chance factors alone. When interpreting probabilities from software packages, beware: owing to statistical rounding

Figure 12.13 Type I and Type II errors

<table>
<thead>
<tr>
<th>Significance level at</th>
<th>Chance of making a Type I error</th>
<th>Chance of making a Type II error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>Increased</td>
<td>Decreased</td>
</tr>
<tr>
<td>0.01</td>
<td>Decreased</td>
<td>Increased</td>
</tr>
</tbody>
</table>

2 Degrees of freedom are the number of values free to vary when computing a statistic. The number of degrees of freedom for a contingency table of at least 2 rows and 2 columns of data is calculated from (number of rows in the table – 1) x (number of columns in the table – 1).
of numbers a probability of 0.000 does not mean zero, but that it is less than 0.001 (Box 12.14).

Some software packages, such as SPSS, calculate the statistic Cramer’s V alongside the chi square statistic (Box 12.14). If you include the value of Cramer’s V in your research report, it is usual to do so in addition to the chi square statistic. Whereas the chi square statistic gives the probability that data in a table, or data more extreme, could occur by chance alone; Cramer’s V measures the association between the two variables within the table on a scale where 0 represents no association and 1 represents perfect association. Because the value of Cramer’s V is always between 0 and 1, the relative strengths of significant associations between different pairs of variables can be compared.

An alternative statistic used to measure the association between two variables is Phi. This statistic measures the association on a scale between –1 (perfect negative association), through 0 (no association) to 1 (perfect association). However, unlike Cramer’s V, using Phi to compare the relative strengths of significant associations between pairs of variables can be problematic. This is because, although values of Phi will only range between –1 and 1 when measuring the association between two dichotomous variables, they may exceed these extremes when measuring the association for categorical variables where at least one of these variables has more than two categories. For this reason, we recommend that you use Phi only when comparing pairs of dichotomous variables.

BOX 12.14 WORKED EXAMPLE

Testing whether two variables are associated

As part of his research project, John wanted to find out whether there was a significant association between grade of respondent and gender. Earlier analysis using SPSS had indicated that there were 385 respondents in his sample with no missing data for either variable. However, it had also highlighted the small numbers of respondents in the highest grade (GC01 to GC05) categories:
Bearing in mind the assumptions of the chi square test, John decided to combine categories GC01 through GC05 to create a new grade GC01-5 using SPSS:

He then used his analysis software to undertake a chi square test and calculate Cramer’s V:

As can be seen, this resulted in an overall chi square value of 33.59 with 4 degrees of freedom (df). The significance of .000 (Asymp. Sig.) meant that the probability of the values in his table occurring by chance alone was less than 0.001. He therefore concluded that the relationship between gender and grade was extremely unlikely to be explained by chance factors alone and quoted the statistic in his project report:
To test whether two groups are different

Ranked data Sometimes it is necessary to see whether the distribution of an observed set of values for each category of a variable differs from a specified distribution, for example whether your sample differs from the population from which it was selected. The *Kolmogorov–Smirnov test* enables you to establish this for ranked data (Kanji, 1999). It is based on a comparison of the cumulative proportions of the observed values in each category with the cumulative proportions in the same categories for the specified population. Therefore you are testing the likelihood of the distribution of your observed data differing from that of the specified population by chance alone.

The *Kolmogorov–Smirnov test* calculates a *D* statistic that is then used to work out the probability of the two distributions differing by chance alone. Although the test and statistic are not often found in analysis software, they are relatively straightforward to calculate using a spreadsheet (Box 12.15). A reasonably clear description of this can be found in Cohen and Holliday (1996). Once calculated, you will need to look up the significance of your *D* value in a ‘critical values of *D* for the *Kolmogorov–Smirnov test*’ table. A probability of 0.05 means that there is only a 5 per cent chance that the two distributions differ by chance alone, and is termed statistically significant. Therefore a probability of 0.05 or smaller means you can be at least 95 per cent certain that the difference between your two distributions cannot be explained by chance factors alone.

Quantifiable data If a quantifiable variable can be divided into two distinct groups using a descriptive variable you can assess the likelihood of these groups being different using an *independent groups t-test*. This compares the difference in the means of the two groups using a measure of the spread of the scores. If the likelihood of any difference between these two groups occurring by chance alone is low, this will be represented by a large *t* statistic with a probability less than 0.05. This is termed statistically significant.

Alternatively, you might have quantifiable data for two variables that measure the same feature but under different conditions. Your research could focus on the effects of an intervention such as employee counselling. As a consequence, you would have pairs of data that measure work performance before and after counselling for each case. To assess the likelihood of any difference between your two variables (each half of the pair)
occurring by chance alone you would use a paired \textit{t}-test (Box 12.16). Although the calculation of this is slightly different, your interpretation would be the same as for the independent groups \textit{t}-test.

Although the \textit{t}-test assumes that the data are normally distributed (Section 12.3), this can be ignored without too many problems even with sample sizes of less than 30 (Hays, 1994). The assumption that the data for the two groups have the same variance (standard deviation squared) can also be ignored provided that the two samples are of similar size (Hays, 1994).

\textbf{To test whether three or more groups are different}

If a quantifiable variable is divided into three or more distinct groups using a descriptive variable, you can assess the likelihood of these groups being different occurring by chance alone by using one-way analysis of variance or one-way ANOVA (Table 12.5). As you can gather from its name, ANOVA analyses the variance, that is, the spread of data values, within and between groups of data by comparing means. The \textit{F} ratio or \textit{F} statistic represents these differences. If the likelihood of any difference between groups occurring by chance alone is low, this will be represented by a large \textit{F} ratio with a probability of less than 0.05. This is termed statistically significant (Box 12.17).
Hays (1994) lists the following assumptions that need to be met before using one-way ANOVA:

- Each data value is independent and does not relate to any of the other data values. This means that you should not use one-way ANOVA where data values are related in some way, such as the same person being tested repeatedly.
- The data for each group are normally distributed (Section 12.3). This assumption is not particularly important provided that the number of cases in each group is large (30 or more).
- The data for each group have the same variance (standard deviation squared). However, provided that the number of cases in the largest group is not more than 1.5 times that of the smallest group, this appears to have very little effect on the test results.

BOX 12.16 FOCUS ON MANAGEMENT RESEARCH

Testing whether two groups are different

Schneider and Cornwell's (2005) paper in the *International Journal of Advertising* is concerned with the practice of placing brand names, logos and products in computer games. In particular, it is concerned with the impact of different placement practices on game players' recall of brand name, logo and product. This, they highlight, is of increasing importance owing to the rapid increase in the cost of producing a top quality computer game and the need to seek out methods to subsidise these costs, such as through shared marketing and cross-promotional campaigns. In their paper they propose a number of hypotheses regarding the placement of brands using ‘banners’, the computer game equivalent of displaying a banner at a sporting event. Four of these hypotheses are listed in the subsequent table.

Having collected data by questionnaire from 46 participants on the brands and products they could remember after playing a particular game for a specified period, the hypotheses were tested using paired samples t-tests. The results for the first four hypotheses were as follows:

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>t value</th>
<th>df</th>
<th>Significance (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prominent placements will elicit greater recall than subtle placements</td>
<td>5.627</td>
<td>45</td>
<td><0.001</td>
</tr>
<tr>
<td>Prominent placements will elicit greater recognition than subtle placements</td>
<td>9.833</td>
<td>45</td>
<td><0.001</td>
</tr>
<tr>
<td>Experienced players will show greater recall of brand placement than novice players</td>
<td>2.383</td>
<td>44</td>
<td><0.02</td>
</tr>
<tr>
<td>Experienced players will show greater recognition of brand placement than novice players</td>
<td>3.734</td>
<td>44</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Based on these results, Schneider and Cornwell argued the banners that were placed prominently were significantly better recalled than those placed subtly. In addition, prominent placements of banners were significantly better recognised than subtle placements. This, along with other aspects of their research, was used to provide guidance regarding the characteristics of successful banner placement in computer games.
Assessing the strength of relationship

If your data set contains ranked or quantifiable data, it is likely that, as part of your exploratory data analysis, you will already have plotted the relationship between cases for these ranked or quantifiable variables using a scatter graph (Figure 12.12). Such relationships might include those between weekly sales of a new product and those of a similar established product, or age of employees and their length of service with the company. These examples emphasise the fact that your data can contain two sorts of relationship:

- those where a change in one variable is accompanied by a change in another variable but it is not clear which variable caused the other to change, a correlation;
- those where a change in one or more (independent) variables causes a change in another (dependent) variable, a cause-and-effect relationship.

Assessing the strength of relationship

If your data set contains ranked or quantifiable data, it is likely that, as part of your exploratory data analysis, you will already have plotted the relationship between cases for these ranked or quantifiable variables using a scatter graph (Figure 12.12). Such relationships might include those between weekly sales of a new product and those of a similar established product, or age of employees and their length of service with the company. These examples emphasise the fact that your data can contain two sorts of relationship:

- those where a change in one variable is accompanied by a change in another variable but it is not clear which variable caused the other to change, a correlation;
- those where a change in one or more (independent) variables causes a change in another (dependent) variable, a cause-and-effect relationship.

To assess the strength of relationship between pairs of variables

A correlation coefficient enables you to quantify the strength of the linear relationship between two ranked or quantifiable variables. This coefficient (usually represented by the
letter \(r \) can take on any value between \(-1 \) and \(+1\) (Figure 12.14). A value of \(+1\) represents a perfect positive correlation. This means that the two variables are precisely related and that, as values of one variable increase, values of the other variable will increase. By contrast, a value of \(-1\) represents a perfect negative correlation. Again this means that the two variables are precisely related; however, as the values of one variable increase those of the other decrease. Correlation coefficients between \(-1\) and \(+1\) represent weaker positive and negative correlations, a value of 0 meaning the variables are perfectly independent. Within business research it is extremely unusual to obtain perfect correlations.

For data collected from a sample you will need to know the probability of your correlation coefficient having occurred by chance alone. Most analysis software calculates this probability automatically (Box 12.18). As outlined earlier, if this probability is very low (usually less than 0.05) then it is considered statistically significant. If the probability is greater than 0.05 then your relationship is not statistically significant.

If both your variables contain quantifiable data you should use Pearson’s product moment correlation coefficient (PMCC) to assess the strength of relationship (Table 12.5). Where these data are from a sample then the sample should have been selected at random. However, if one or both of your variables contain rank data you cannot use PMCC, but will need to use a correlation coefficient that is calculated using ranked data. Such rank correlation coefficients represent the degree of agreement between the two sets of rankings. Before calculating the rank correlation coefficient, you will need to ensure that the data for both variables are ranked. Where one of the variables is quantifiable this will necessitate converting these data to ranked data. Subsequently, you have a choice of rank correlation coefficients. The two used most widely in business and management research are Spearman’s rank correlation coefficient (Spearman’s rho) and Kendall’s rank correlation coefficient (Kendall’s tau). Where data is being used from a sample, both these rank correlation coefficients assume that the sample is selected at random and the data are ranked (ordinal). Given this, it is not surprising that, whenever you can use Spearman’s rank correlation coefficient, you can also use Kendall’s rank correlation coefficient. However, if your data for a variable contain tied ranks, Kendall’s rank correlation coefficient is generally considered to be the more appropriate of these coefficients to use. Although each of the correlation coefficients discussed uses a different formula in its calculation, the resulting coefficient is interpreted in the same way as PMCC.

To assess the strength of a cause-and-effect relationship between variables

In contrast to the correlation coefficient, the coefficient of determination (sometimes known as the regression coefficient) enables you to assess the strength of relationship between a quantifiable dependent variable and one or more quantifiable independent variables. Once again, where these data have been selected from a sample, the sample must have been selected at random. For a dependent variable and one (or perhaps two) independent variables you will have probably already plotted this relationship on a
Assessing the strength of relationship between pairs of variables

As part of his research project Hassan obtained data from a company on the number of television advertisements, number of enquiries and number of sales of their product. These data were entered into the statistical analysis software. He wished to discover whether there were any relationships between the following pairs of these variables:

- number of television advertisements and number of enquiries;
- number of television advertisements and number of sales;
- number of enquiries and number of sales.

As the data were quantifiable he used the statistical analysis software to calculate Pearson’s product moment correlation coefficients for all pairs of variables. The output was a correlation matrix:

Hassan’s matrix is symmetrical because correlation implies only a relationship rather than a cause-and-effect relationship. The value in each cell of the matrix is the correlation coefficient. Thus the correlation between the number of advertisements and the number of enquiries is 0.344. This coefficient shows that there is a fairly weak but positive relationship between the number of television advertisements and the number of enquiries. The (*) highlights that the probability of this correlation coefficient occurring by chance alone is less than 0.05 (5 per cent). This correlation coefficient is therefore statistically significant.

Using the data in this matrix Hassan concluded that:

- There is a statistically significant strong positive relationship between the number of enquiries and the number of sales ($r = 0.700$, $p < .01$) and a statistically significant but weaker relationship between the number of newspaper advertisements and the number of enquiries ($r = 0.344$, $p < .05$). However, there is no statistically significant relationship between the number of television advertisements and the number of sales ($r = 0.203$, $p > .05$).

BOX 12.18 WORKED EXAMPLE

Assessing the strength of relationship between pairs of variables

As part of his research project Hassan obtained data from a company on the number of television advertisements, number of enquiries and number of sales of their product. These data were entered into the statistical analysis software. He wished to discover whether there were any relationships between the following pairs of these variables:

- number of television advertisements and number of enquiries;
- number of television advertisements and number of sales;
- number of enquiries and number of sales.

As the data were quantifiable he used the statistical analysis software to calculate Pearson’s product moment correlation coefficients for all pairs of variables. The output was a correlation matrix:

Hassan’s matrix is symmetrical because correlation implies only a relationship rather than a cause-and-effect relationship. The value in each cell of the matrix is the correlation coefficient. Thus the correlation between the number of advertisements and the number of enquiries is 0.344. This coefficient shows that there is a fairly weak but positive relationship between the number of television advertisements and the number of enquiries. The (*) highlights that the probability of this correlation coefficient occurring by chance alone is less than 0.05 (5 per cent). This correlation coefficient is therefore statistically significant.

Using the data in this matrix Hassan concluded that:

- There is a statistically significant strong positive relationship between the number of enquiries and the number of sales ($r = 0.700$, $p < .01$) and a statistically significant but weaker relationship between the number of newspaper advertisements and the number of enquiries ($r = 0.344$, $p < .05$). However, there is no statistically significant relationship between the number of television advertisements and the number of sales ($r = 0.203$, $p > .05$).

scatter graph. If you have more than two independent variables this is unlikely as it is very difficult to represent four or more scatter graph axes visually!

The coefficient of determination (represented by r^2) can take on any value between 0 and +1. It measures the proportion of the variation in a dependent variable (amount of
sales) that can be explained statistically by the independent variable (marketing expenditure) or variables (marketing expenditure, number of sales staff etc.). This means that if all the variation in amount of sales can be explained by the marketing expenditure and the number of sales staff, the coefficient of determination will be 1. If 50 per cent of the variation can be explained the coefficient of determination will be 0.5, and if none of the variation can be explained the coefficient will be 0 (Box 12.19). Within our research we have rarely obtained a coefficient above 0.8.

The process of calculating coefficient of determination and regression equation using one independent variable is normally termed regression analysis. Calculating a coefficient of multiple determination (or multiple regression coefficient) and regression equation using two or more independent variables is termed multiple regression analysis. The calculations and interpretation required by multiple regression are relatively complicated, and we advise you to use statistical analysis software and consult a detailed statistics textbook or computer manual such as Norusis (2005). Most statistical analysis software will calculate the significance of the coefficient of multiple determination for sample data automatically. A very low significance value (usually less than 0.05) means that your coefficient is unlikely to have occurred by chance alone. A value greater than 0.05 means you can conclude that your coefficient of multiple determination could have occurred by chance alone.

BOX 12.19 WORKED EXAMPLE

Assessing a cause-and-effect relationship

As part of her research project Arethea wanted to assess the relationship between all the employees’ annual salaries and the number of years each had been employed by an organisation. She believed that an employee’s annual salary would be dependent on the number of years for which she or he had been employed (the independent variable). Arethea entered these data into her analysis software and calculated a coefficient of determination (r^2) of 0.37.

As she was using data for all employees of the firm (the total population) rather than a sample, the probability of her coefficient occurring by chance alone was 0. She therefore concluded that 37 per cent of the variation in current employees’ salary could be explained by the number of years they had been employed by the organisation.

To predict the value of a variable from one or more other variables

Regression analysis can also be used to predict the values of a dependent variable given the values of one or more independent variables by calculating a regression equation. You may wish to predict the amount of sales for a specified marketing expenditure and number of sales staff. You would represent this as a regression equation:

$$AoS_i = \alpha + \beta_1 ME_i + \beta_2 NSS_i$$

where:
- AoS_i is the Amount of Sales
- ME_i is the Marketing Expenditure
- NSS_i is the Number of Sales Staff
- α is the regression constant
- β_1 and β_2 are the beta coefficients

This equation can be translated as stating:
Using regression analysis you would calculate the values of the constant coefficient α and the slope coefficients β_1 and β_2 from data you had already collected on amount of sales, marketing expenditure and number of sales staff. A specified marketing expenditure and number of sales staff could then be substituted into the regression equation to predict the amount of sales that would be generated. When calculating a regression equation you need to ensure the following assumptions are met:

- The relationship between dependent and independent variables is linear. **Linearity** refers to the degree to which the change in the dependent variable is related to the change in the independent variables. Linearity can easily be examined through residual plots (these are usually drawn by the analysis software). Two things may influence the linearity. First, individual cases with extreme values on one or more variables (outliers) may violate the assumption of linearity. It is therefore important to identify these outliers and, if appropriate, exclude them from the regression analysis. Second, the values for one or more variables may violate the assumption of linearity. For these variables the data values may need to be transformed. Techniques for this can be found in other, more specialised books on multivariate data analysis, for example Anderson (2003).

- The extent to which the data values for the dependent and independent variables have equal variances (this term was explained earlier in Section 12.4), also known as **homoscedasticity**. Again, analysis software usually contains statistical tests for equal variance. For example, the Levene test for homogeneity of variance measures the equality of variances for a single pair of variables. If **heteroscedasticity** (that is, unequal variances) exists, it may still be possible to carry out your analysis. Further details of this can again be found in more specialised books on multivariate analysis such as Anderson (2003).

- Absence of correlation between two or more independent variables (multicollinearity), as this makes it difficult to determine the separate effects of individual variables. The simplest diagnostic is to use the correlations coefficients, extreme multicollinearity being represented by a correlation coefficient of 1.

- The data for the independent variables and dependent variable are normally distributed (Section 12.3).

The coefficient of determination, r^2 (discussed earlier), can be used as a measure of how good a predictor your regression equation is likely to be. If your equation is a perfect predictor then the coefficient of determination will be 1. If the equation can predict only 50 per cent of the variation then the coefficient of determination will be 0.5, and if the equation predicts none of the variation the coefficient will be 0. The coefficient of multiple determination (R^2) indicates the degree of the goodness of fit for your estimated multiple regression equation. It can be interpreted as how good a predictor your multiple regression equation is likely to be. It represents the proportion of the variability in the dependent variable that can be explained by your multiple regression equation. This means that when multiplied by 100, the coefficient of multiple determination can be interpreted as the percentage of variation in the dependent variable that can be explained by the estimated regression equation. The adjusted R^2 statistic (which takes into account the number of independent variables in your regression equation) is preferred by some researchers as it helps avoid overestimating the impact of adding an independent variable on the amount of variability explained by the estimated regression equation.
The \(t \) test and \(F \) test are used to work out the probability of the relationship represented by your regression analysis having occurred by chance. In simple linear regression (with one independent and one dependent variable), the \(t \) test and \(F \) test will give you the same answer. However, in multiple regression, the \(t \) test is used to find out the probability of the relationship between each of the individual independent variables and the dependent variable occurring by chance. In contrast, the \(F \) test is used to find out the overall probability of the relationship between the dependent variable and all the independent variables occurring by chance. The \(t \) distribution table and the \(F \) distribution table are used to determine whether a \(t \) test or an \(F \) test is significant by comparing the results with the \(t \) distribution and \(F \) distribution respectively, given the degrees of freedom and the pre-defined significance level.

BOX 12.20 WORKED EXAMPLE

Forecasting number of road injury accidents

As part of her research project Nimmi had obtained data on the number of road injury accidents and the number of drivers breath tested for alcohol in 39 police force areas. In addition, she obtained data on the total population (in thousands) for each of these areas from the most recent Census. Nimmi wished to find out if it was possible to predict the number of road injury accidents (RIA) in each police area (her dependent variable) using the number of drivers breath tested (BT) and the total population in thousands (POP) for each of the police force areas (independent variables). This she represented as an equation:

\[
RIAi = \alpha + \beta_1 BTi + \beta_2 POP_i
\]

Nimmi entered her data into the analysis software and undertook a multiple regression. She scrolled down the output file and found the table headed ‘Coefficients’:

<table>
<thead>
<tr>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Population of area in thousands</td>
<td>(\beta_1)</td>
</tr>
<tr>
<td>Number of breath tests</td>
<td>(\beta_2)</td>
</tr>
</tbody>
</table>

Nimmi substituted the ‘unstandardized coefficients’ into her regression equation (after rounding the values):

\[
RIAi = -30.7 + 0.01 BTi + 0.13 POP_i
\]

This meant she could now predict the number of road injury accidents for a police area of different populations for different numbers of drivers breath tested for alcohol. For example, the number of road injury accidents for an area of 500,000 population in which 10,000 drivers were breath tested for alcohol can now be estimated:

\[
-30.7 + (0.01 \times 10,000) + (0.13 \times 500)
= -30.7 + 100 + 65
= 135
\]
In order to check the usefulness of these estimates, Nimmi scrolled back up her output and looked at the results of R^2, t test and F test:

The R^2 and adjusted R^2 values of 0.965 and 0.931 respectively both indicated that there was a high degree of goodness of fit of her regression model. It also means that over 90% of variance in the dependent variable (the number of road injury accidents) can be explained by the regression model. The F test result was 241.279 with a significance (‘Sig.’) of .000. This meant that the probability of these results occurring by chance was less than 0.0005. Therefore, a significant relationship was present between the number of road injury accidents in an area and the population of the area, and the number of drivers breath tested for alcohol.

The t test results for the individual regression coefficients (shown in the first extract) for the two independent variables were 9.632 and 2.206. Once again the probability of both these results occurring by chance was less than 0.05, being less than 0.0005 for the independent variable population of area in thousands and 0.034 for the independent variable number of breath tests. This means that the regression coefficients for these variables were both statistically significant at the $p < 0.05$ level.

Examining trends

When examining longitudinal data the first thing we recommend you do is to draw a line graph to obtain a visual representation of the trend (Figure 12.7). Subsequent to this, statistical analyses can be undertaken. Three of the more common uses of such analyses are:

- to examine the trend or relative change for a single variable over time;
- to compare trends or the relative change for variables measured in different units or of different magnitudes;
- to determine the long-term trend and forecast future values for a variable.

These have been summarised earlier in Table 12.5.

To examine the trend

To answer some research question(s) and meet some objectives you may need to examine the trend for one variable. One way of doing this is to use **index numbers** to compare the relative magnitude for each data value (case) over time rather than using the actual
data value. Index numbers are also widely used in business publications and by organisations. The *Financial Times* share indices such as the FTSE 100 (Box 12.21) and the Retail Price Index are well-known examples.

Although such indices can involve quite complex calculations, they all compare change over time against a base period. The base period is normally given the value of 100 (or 1000 in the case of many share indices, including the FTSE 100), and change is calculated relative to this. Thus a value greater than 100 would represent an increase relative to the base period, and a value less than 100 a decrease.

To calculate simple index numbers for each case of a longitudinal variable you use the following formula:

\[
\text{index number for case} = \left(\frac{\text{data value for case}}{\text{data value for base period}} \right) \times 100
\]

Thus if a company’s sales were 125,000 units in 2004 (base period) and 150,000 units in 2005 the index number for 2004 would be 100 and for 2005 it would be 120.

BOX 12.21 RESEARCH IN THE NEWS

FTSE 100 rallies to three-year high point

The FTSE 100 index of blue-chip stocks closed at a three-year high of 5,077.6 yesterday as London played catch-up with continental European markets. Since the rally started in late April the FTSE has risen by more than 288 points, or 6 per cent.

The advance has been driven by a combination of a healthy outlook for earnings, expectations of interest rate cuts and positive corporate news flow, including orders announced at this week’s Paris air show and good news from the semiconductor sector in the US.

Earnings revisions have been positive for five months in a row, mainly due to the mining and oil sectors. Deutsche Bank is forecasting earnings growth of 8.2 per cent for the FTSE 100 this year and 6.3 per cent in 2006. Dividend payouts are expected to grow by about 8.5 per cent this year and companies are seen returning substantial capital to shareholders through buy-backs.

Equity market valuations remain attractive by historical standards, particularly relative to bonds. The FTSE is trading on a trailing price/earnings ratio of 14.5, which is not expensive by historic comparisons.

However, headwinds remain. Oil yesterday touched a record high of $58.60 a barrel in New York and concerns remain about weak manufacturing and consumer spending, and a slowing housing market.

Although expectations of an early cut in UK interest rates are growing, many fear that any rise in US rates might be a drag on liquidity for equity markets.

Investors appear divided, with some having already decided to start taking their money off the table while others are suggesting that it may be time for a re-rating of the equities market.

More optimistic analysts, such as Mike Lenhoff of Brewin Dolphin, believe the FTSE could push on towards 5,300. Against that, Ian Richards, equity strategist at ABN Amro, said: “Given the aggressive market moves we have seen over recent weeks, we believe the risks are now firmly skewed to the downside and the market is too high to chase this rally further.”

To compare trends

To answer some other research question(s) and to meet the associated objectives you may need to compare trends between two or more variables measured in different units or at different magnitudes. For example, to compare changes in prices of fuel oil and coal over time is difficult as the prices are recorded for different units (litres and tonnes). One way of overcoming this is to use *index numbers* and compare the relative changes in the value.
of the index rather than actual figures. The index numbers for each variable are calculated in the same way as outlined earlier.

To determine the trend and forecasting

The trend can be estimated by drawing a freehand line through the data on a line graph. However, these data are often subject to variations such as seasonal variations, and so this method is not very accurate. A straightforward way of overcoming this is to calculate a moving average for the time series of data values. Calculating a moving average involves replacing each value in the time series with the mean of that value and those values directly preceding and following it (Morris, 2003). This smooths out the variation in the data so that you can see the trend more clearly. The calculation of a moving average is relatively straightforward using either a spreadsheet or statistical analysis software.

Once the trend has been established it is possible to forecast future values by continuing the trend forward for time periods for which data have not been collected. This involves calculating the long-term trend – that is, the amount by which values are changing each time period after variations have been smoothed out. Once again this is relatively straightforward to calculate using analysis software. Forecasting can also be undertaken using other statistical methods, including regression analysis.

If you are using regression for your time series analysis, the Durbin–Watson statistic can be used to discover whether the value of your dependent variable at time \(t \) is related to its value at the previous time period, commonly referred to as \(t-1 \). This situation, known as autocorrelation or serial correlation, is important as it means that the results of your regression analysis are less likely to be reliable. The Durbin–Watson statistic ranges in value from zero to four. A value of two indicates no autocorrelation. A value towards zero indicates positive autocorrelation. Conversely, a value towards four indicates negative autocorrelation. More detailed discussion of the Durbin–Watson test can be found in other, more specialised books on multivariate data analysis, for example Anderson (2003).

12.6 Summary

- Data for quantitative analysis can be collected and subsequently coded at different levels of numerical measurement. The data type (precision of measurement) will constrain the data presentation, summary and analysis techniques you can use.
- Data are entered for computer analysis as a data matrix in which each column usually represents a variable and each row a case. Your first variable should be a unique identifier to facilitate error checking.
- All data should, with few exceptions, be recorded using numerical codes to facilitate analyses.
- Where possible, you should use existing coding schemes to enable comparisons.
- For primary data you should include pre-set codes on the data collection form to minimise coding after collection. For variables where responses are not known, you will need to develop a codebook after data have been collected for the first 50 to 100 cases.
- You should enter codes for all data values, including missing data.
- Your data matrix must be checked for errors.
- Your initial analysis should explore data using both tables and diagrams. Your choice of table or diagram will be influenced by your research question(s) and objectives, the aspects of the data you wish to emphasise, and the level of measurement at which the data were recorded. This may involve using:
Subsequent analyses will involve describing your data and exploring relationships using statistics. As before, your choice of statistics will be influenced by your research question(s) and objectives and the level of measurement at which the data were recorded. Your analysis may involve using statistics such as:

- the mean, median and mode to describe the central tendency;
- the inter-quartile range and the standard deviation to describe the dispersion;
- chi square, Cramer’s V and phi to test whether two variables are significantly associated;
- Kolmogorov–Smirnov to test whether the values differ significantly from a specified population;
- t-tests and ANOVA to test whether groups are significantly different;
- correlation and regression to assess the strength of relationships between variables;
- regression analysis to predict values.

Longitudinal data may necessitate selecting different statistical techniques such as:

- index numbers to establish a trend or to compare trends between two or more variables measured in different units or at different magnitudes;
- moving averages and regression analysis to determine the trend and forecast.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

12.1 The following secondary data have been obtained from the Park Trading Company’s audited annual accounts:

<table>
<thead>
<tr>
<th>Year</th>
<th>Income (£)</th>
<th>Expenditure (£)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>11 000 000</td>
<td>9 500 000</td>
</tr>
<tr>
<td>1998</td>
<td>15 200 000</td>
<td>12 900 000</td>
</tr>
<tr>
<td>1999</td>
<td>17 050 000</td>
<td>14 000 000</td>
</tr>
<tr>
<td>2000</td>
<td>17 900 000</td>
<td>14 900 000</td>
</tr>
<tr>
<td>2001</td>
<td>19 000 000</td>
<td>16 100 000</td>
</tr>
<tr>
<td>2002</td>
<td>18 700 000</td>
<td>17 200 000</td>
</tr>
<tr>
<td>2003</td>
<td>17 100 000</td>
<td>18 100 000</td>
</tr>
<tr>
<td>2004</td>
<td>17 700 000</td>
<td>19 500 000</td>
</tr>
<tr>
<td>2005</td>
<td>19 900 000</td>
<td>20 000 000</td>
</tr>
</tbody>
</table>

a Which are the variables and which are the cases?

b Sketch a possible data matrix for these data for entering into a spreadsheet.
12.2 a How many variables will be generated from the following request?

Please tell me up to five things you like about this film. for office use

..
..
..
..
..

b How would you go about devising a coding scheme for these variables from a survey of 500 cinema patrons?

12.3 a Illustrate the data from the Park Trading Company’s audited annual accounts (self-check question 12.1) to show trends in income and expenditure.

b What does your diagram emphasise?

c What diagram would you use to emphasise the years with the lowest and highest income?

12.4 As part of research into the impact of television advertising on donations by credit card to a major disaster appeal, data have been collected on the number of viewers reached and the number of donations each day for the past two weeks.

a Which diagram or diagrams would you use to explore these data?

b Give reasons for your choice.

12.5 a What measures of central tendency and dispersion would you choose to describe the Park Trading Company's income (self-check question 12.1) over the period 1997–2005?

b Give reasons for your choice.

12.6 A colleague has collected data from a sample of 80 students. He presents you with the following output from the statistical analysis software:

Explain what this tells you about undergraduate and postgraduate students’ opinion of the information technology facilities.
12.7 Briefly describe when you would use regression analysis and correlation analysis, using examples to illustrate your answer.

12.8 a Use an appropriate technique to compare the following data on share prices for two financial service companies over the past six months, using the period six months ago as the base period:

<table>
<thead>
<tr>
<th></th>
<th>EJ Investment Holdings</th>
<th>AE Financial Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price 6 months ago</td>
<td>€10</td>
<td>€587</td>
</tr>
<tr>
<td>Price 4 months ago</td>
<td>€12</td>
<td>€613</td>
</tr>
<tr>
<td>Price 2 months ago</td>
<td>€13</td>
<td>€658</td>
</tr>
<tr>
<td>Current price</td>
<td>€14</td>
<td>€690</td>
</tr>
</tbody>
</table>

b Which company’s share prices have increased most in the last six months? (Note: you should quote relevant statistics to justify your answer.)

12.9 Use the Google search engine to discover coding schemes that already exist for ethnic group, family expenditure, industry group, socio-economic class and the like. To do this you will probably find it best to type the phrase “coding ethnic group” into the search box.

a Discuss how credible you think each coding scheme is with a friend. To come to an agreed answer pay particular attention to:
- the organisation (or person) that is responsible for the coding scheme;
- any explanations regarding the coding scheme’s design;
- use of the coding scheme to date.

b Widen your search to include coding schemes that may be of use for your research project. Make a note of the web address of any that are of interest.

12.10 With a friend, choose a large company in which you are interested. Obtain a copy of the annual report for this company. If it is not readily available in your university library, electronic versions can often be viewed using the Internet. Examine the use of tables, graphs and charts in your chosen company’s report.

a To what extent does the use of graphs and charts in your chosen report follow the guidance summarised in Box 12.8 and Table 12.2?

b Why do you think this is?

12.11 With a group of friends, each choose a different share price index. Well-known indices you could chose include the Nasdaq Composite Index, France’s CAC 40, Germany’s Xetra Dax, Hong Kong’s HIS-Hang Seng, Japan’s Nikkei Average Index, the UK’s FTSE 100 and the USA’s Dow Jones Industrial Average Index.

a For each of the indices, find out how it is calculated and note down its daily values for a one-week period.

b Compare your findings regarding the calculation of your chosen index with those for the indices chosen by your friends, noting down similarities and differences.

c To what extent do the indices differ in the changes in share prices they show? Why do you think this is?

12.12 Find out whether your university provides you with access to SPSS. If it does, visit this book’s companion website and download the self-teach package and associated data sets. Work through this to explore the features of SPSS.
Progressing your research project

Analysing your data quantitatively

- Examine the technique(s) you are proposing to use to collect data to answer your research question. You need to decide whether you are collecting any data that could usefully be analysed quantitatively.

- If you decide that your data should be analysed quantitatively, you must ensure that the data collection methods you intend to use have been designed to make analysis by computer as straightforward as possible. In particular, you need to pay attention to the coding scheme for each variable and the layout of your data matrix.

- Once your data have been entered into a computer, you will need to explore and present them. Bearing your research question in mind, you should select the most appropriate diagrams and tables after considering the suitability of all possible techniques. Remember to label your diagrams clearly and to keep an electronic copy, as they may form part of your research report.

- Once you are familiar with your data, describe and explore relationships using those statistical techniques that best help you to answer your research questions and are suitable for the data type. Remember to keep an annotated copy of your analyses, as you will need to quote statistics to justify statements you make in the findings section of your research report.

References

Further reading

Diamantopoulos, A. and Schlegelmilch, B.B. (1997) *Taking the Fear out of Data Analysis*, London, Dryden Press. This is a statistics book that is both humorous and informative. It assumes very little in the way of statistical knowledge, and is written for people who do not like data analysis and do not think they can understand numbers!

Field, A. (2005) *Discovering Statistics Using SPSS* (2nd edn), London, Sage. This book offers a clearly explained guide to statistics and using SPSS for Windows. It is divided into four levels, the lowest of which assumes no familiarity with the data analysis software and very little with statistics. It covers inputting data and how to generate and interpret a wide range of tables, diagrams and statistics using SPSS version 13. If you are using an earlier version of SPSS, particularly pre version 9, be sure to use a book written specifically for that version as there are a number of changes between versions.

Malcolm wanted to examine the impact of family ownership on the valuation and/or performance of newspaper publishing companies in Hong Kong for his research project. He decided to download data from a publicly available database on the Internet, and base his research entirely on secondary data.

Browsing the Internet, Malcolm found that information about family ownership of newspaper publishing companies in Hong Kong was available for 2003, whilst the relevant financial statements could be obtained for every year from 1990 to 2004. His total sample comprised 10 firms. Following an initial analysis Malcolm decided to use return on assets as a measure of each newspaper publishing company’s performance. This was calculated as the ratio of earnings before interest and taxes and average assets using the formula:

\[
\text{return on assets} = \frac{\text{earnings before interest and taxes}}{\text{average assets}}
\]

His independent variable was the level of family ownership, defined as the percentage of the newspaper publishing company owned by the family.

Malcolm represented his research ideas as a model using the regression equation:

\[
\text{ROA}_t = \alpha + \beta \text{Ownership}_t, \quad \text{(Equation 1)}
\]

where:

- \(\text{ROA}_t\) = Return on Assets
- \(\text{Ownership}_t\) = percentage of newspaper publishing company owned by the family
- \(\alpha\) and \(\beta\) = intercept and slope coefficients

After entering the data he had obtained for the 10 companies for 2003 in his statistical analysis software, Malcolm undertook a regression analysis. This calculated values for the \(\alpha\) (intercept) and \(\beta\) (slope) coefficients for his regression equation as well as providing the following statistics:

\[
\text{ROA}_t = 0.05 + 0.002 \times \text{Ownership}_t, \quad \text{(Equation 2)}
\]

Probability (p) for \(\alpha\):	0.01
Probability (p) for \(\beta\):	0.15
\(R^2\):	0.02
Durbin–Watson Statistic:	1.1
F-Statistic:	0.1

Based on these statistics, Malcolm felt that the value of the estimate of the beta coefficient was both economically and statistically significant.

Malcolm’s good friend, Hoza, agreed to take a look at his model and make suggestions regarding the inclusion of independent variables. After looking at Malcolm’s notes she asked: ‘Why don’t you examine this relationship over a longer period of time, rather than just for the one year . . . In addition, you don’t seem to have included any control variables in your regression model. I think it is generally advisable to control for firm size, industry affiliation and other factors that reflect a change in capital structure and future growth potential in order to single out the impact of ownership.’ After a long pause she added, ‘I know I’m not very good at suggesting these variables, but it seems like a good idea to include some.’

Malcolm decided to follow Hoza’s advice and re-examined his model. He discovered that he could obtain ownership data for 2002 if he contacted the Hong Kong Stock Exchange. However, he felt this would not provide sufficient data for longitudinal analysis. At the same time he found data on four more publishing companies, bringing his total sample to 14. He decided to measure firm size using data on earnings before interest and taxes that he had already collected and used to calculate return on assets. He justified this to Hoza, saying ‘Earnings before interest and taxes seems to be a great proxy for firm size, big firms will have big earnings.’ He also decided to include data on marketable securities, commenting ‘These indicate a company’s high liquidity and the fact that it may not be in...
need to further borrow funds. Therefore, leverage will decline as the amount of marketable securities increases.’ Hoza smiled and looked somewhat confused!

Based upon his discussion with Hoza, Malcolm presented his research idea to his supervisor at their next meeting, basing his presentation on equations 1 and 2 (outlined earlier) and the following model (equation 3):

\[
\text{ROA}_t = \alpha + \beta_1 \text{Ownership}_t + \beta_2 \text{EBIT}_t + \beta_3 \text{MarketSec} + \beta_4 \text{IndDummy}
\]

(Equation 3)

where:
- \(\text{ROA}_t \) = Return on Assets, calculated by dividing earnings before interest and taxes by average assets
- \(\text{Ownership}_t \) = percentage of newspaper publishing company owned by the family
- \(\text{EBIT}_t \) = Earnings before interest and taxes
- \(\text{MarketSec} \) = Amount of Marketable Securities in millions of Hong Kong dollars
- \(\text{IndDummy} \) = Dummy variable for industry. It equals one if a company is part of newspaper publishing sector, otherwise zero
- \(\alpha \) and \(\beta \) = intercept and slope coefficients

QUESTIONS

1a After Malcolm had explained his model to his supervisor he was asked, ‘What problems can you identify in testing the initial model in equation 1 with your data?’ Note down your answer to Malcolm’s supervisor’s question.

1b Malcolm’s supervisor’s next question focused upon the analysis associated with equation 2: ‘Why do you believe that 0.02 coefficient estimate is both economically and statistically relevant?’ Note down your answer to this question, using the \(R^2 \), Durbin–Watson and F-statistic results to support your answer.

2 Later in their supervision meeting, Malcolm’s supervisor tells him that the inclusion of the dummy and control variables in equation 3 adds nothing to the research. Why do you think his supervisor has said this?

SELF-CHECK ANSWERS

12.1 a The variables are ‘income’, ‘expenditure’ and ‘year’. There is no real need for a separate case identifier as the variable ‘year’ can also fulfil this function. Each case (year) is represented by one row of data.

b When the data are entered into a spreadsheet the first column will be the case identifier, for these data the year. Income and expenditure should not be entered with the £ sign as this can be formatted subsequently using the spreadsheet:
12.2 a There is no one correct answer to this question as the number of variables will depend on the method used to code these descriptive data. If you choose the multiple response method, five variables will be generated. If the multiple dichotomy method is used the number of variables will depend on the number of different responses.

b Your first priority is to decide on the level of detail of your intended analyses. Your coding scheme should, if possible, be based on an existing coding scheme. If this is of insufficient detail then it should be designed to be compatible to allow comparisons. To design the coding scheme you need to take the responses from the first 50–100 cases and establish broad groupings. These can be subdivided into increasingly specific subgroups until the detail is sufficient for the intended analysis. Codes can then be allocated to these subgroups. If you ensure that similar responses receive adjacent codes, this will make any subsequent grouping easier. The actual responses that correspond to each code should be noted in a codebook. Codes should be allocated to data on the data collection form in the ‘for Office use’ box. These codes need to include missing data, such as when four or fewer ‘things’ have been mentioned.

12.3 a Park Trading Company – Income and Expenditure 1997–2005:

b Your diagram (it is hoped) emphasises the upward trends of expenditure and (to a lesser extent) income. It also highlights the conjunction where income falls below expenditure in 2003.

c To emphasise the years with the lowest and highest income you would probably use a histogram because the data are continuous. A frequency polygon would also be suitable.

12.4 a You would probably use a scatter graph in which number of donations would be the dependent variable and number of viewers reached by the advertisement the independent variable.

b This would enable you to see whether there was any relationship between number of viewers reached and number of donations.

12.5 a The first thing you need to do is to establish the data type. As it is quantifiable, you could theoretically use all three measures of central tendency and both the standard deviation and inter-quartile range. However, you would probably calculate the mean and perhaps the median as measures of central tendency and the standard deviation and perhaps the inter-quartile range as measures of dispersion.

b The mean would be chosen because it includes all data values. The median might be chosen to represent the middle income over the 1997–2005 period. The mode would be of little use for these data as each year has different income values.

If you had chosen the mean you would probably choose the standard deviation, as this describes the dispersion of data values around the mean. The inter-quartile range is normally chosen where there are extreme data values that need to be ignored. This is not the case for these data.

12.6 The probability of a chi square value of 5.718 with 8 degrees of freedom occurring by chance alone for these data is 0.679. This means that statistically the association between type of student and their opinion of the information technology facilities is extremely likely to be explained by chance alone. In
addition, the assumption of the chi square test that no more than 20 per cent of expected values should be less than 5 has not been satisfied.

To explore this lack of association further, you examine the cell values in relation to the row and column totals. For all courses, over 80 per cent of respondents thought the information technology facilities were good or very good. The only course where respondents felt information technology facilities were poor was the BSc, but this represented only three respondents.

12.7 Your answer needs to emphasise that correlation analysis is used to establish whether a change in one variable is accompanied by a change in another. In contrast, regression analysis is used to establish whether a change in a dependent variable is caused by changes in one or more independent variables – in other words, a cause-and-effect relationship.

Although it is impossible to list all the examples you might use to illustrate your answer, you should make sure that your examples for regression illustrate a dependent and one or more independent variables.

12.8 a These quantitative data are of different magnitudes. Therefore, the most appropriate technique to compare these data is index numbers. The index numbers for the two companies are:

<table>
<thead>
<tr>
<th></th>
<th>EJ Investment Holdings</th>
<th>AE Financial Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price 6 months ago</td>
<td>100</td>
<td>100.0</td>
</tr>
<tr>
<td>Price 4 months ago</td>
<td>120</td>
<td>104.4</td>
</tr>
<tr>
<td>Price 2 months ago</td>
<td>130</td>
<td>112.1</td>
</tr>
<tr>
<td>Current price</td>
<td>140</td>
<td>117.5</td>
</tr>
</tbody>
</table>

b The price of AE Financial Services’ shares has increased by €103 compared with an increase of €4 for EJ Investment Holdings’ share price. However, the proportional increase in prices has been greatest for EJ Investment Holdings. Using six months ago as the base period (with a base index number of 100), the index for EJ Investment Holdings’ share price is now 140 while the index for AE Financial Services’ share price is 117.5.
13

Analysing qualitative data

LEARNING OUTCOMES

By the end of this chapter you should be able to:

➔ identify the main issues that you need to consider when preparing qualitative data for analysis, including when analysing these data using computer aided qualitative data analysis software (CAQDAS);
➔ transcribe an audio-recorded interview or interview notes and create a data file for analysis by computer;
➔ recognise the differences between qualitative and quantitative data and understand the implications of this for qualitative data analyses;
➔ discuss both deductive and inductive approaches to, and processes for, analysing qualitative data;
➔ use deductively based and inductively based analytical approaches to, and procedures for, analysing qualitative data;
➔ outline reasons for quantifying qualitative data as a means of analysis;
➔ identify the common functions of CAQDAS and the issues associated with its use.

13.1 Introduction

This chapter is designed to help you analyse the qualitative data that you collect. Qualitative data refers to all non-numeric data or data that have not been quantified and can be a product of all research strategies (Section 5.3). It can range from a short list of responses to open-ended questions in an online questionnaire to more complex data such as transcripts of in-depth interviews or entire policy documents. To be useful these data need to be analysed and the meanings understood. Qualitative data analysis procedures assist this, allowing you to develop theory from your data. They include both deductive and inductive approaches and, like the process you use to construct a jigsaw,
range from the simple categorisation of responses to processes for identifying relationships between categories.

Until the advent of powerful personal computers and readily available computer aided qualitative data analysis software (CAQDAS), qualitative data analysis was undertaken manually. Indeed, it is only comparatively recently that CAQDAS such as NVivo™, ATLAS.ti™, N6™ and HyperRESEARCH™ have begun to be made accessible to students taking undergraduate and masters programmes in universities. Consequently, at an increasing number of universities, it may no longer necessary for you to undertake routine qualitative data management tasks manually such as sorting your data into categories and locating subsets of these data according to specified criteria. However, we would like to sound a note of caution. Whilst the use of analysis software for quantitative data is almost universal, the use of CAQDAS for qualitative data is not so widely practised and the associated software is not always available.

This chapter builds upon the ideas outlined in earlier chapters about data collection. However, unlike Chapter 12, it does not assume that you will necessarily have access to, and will use, CAQDAS to organise and analyse your data. Consequently, although we make reference to, and include screenshots of, different software packages in some worked examples, these are used to illustrate generic issues associated with analysis rather than imply that you must use such software. If you wish to develop your skills in one of the more widely used CAQDAS packages called NVivo, a self-teach package is available.

Nearly all of us have, at some time in our lives, completed a jigsaw puzzle. As children we played with jigsaw puzzles and, as we grew older, those we were able to complete successfully became more complex. Qualitative data analysis can be likened to the process of completing a jigsaw puzzle in which the pieces represent data. These pieces of data and the relationships between them help us as researchers to create our picture, our understanding of what the data is telling us!

When trying to complete a jigsaw puzzle, most of us begin by looking at the picture on the lid of our puzzle’s box. Puzzles for which there is no picture are usually more challenging as we have no idea of the picture we are trying to create! Next we empty the pieces out of the box and turn them all picture side up, usually assuming that no pieces are missing! Pieces with similar features such as having an edge or a particular colour are grouped together. Subsequently we try to fit these similar pieces together. Sometimes we think that two similar pieces should fit together but, in trying to join them, discover that they do not, however hard we try to push them! Other pieces fit together easily. As we progress, the puzzle’s picture starts to become clearer to us. Certain pieces, such as those which link different groupings of pieces together, are extremely important in clarifying the picture. Eventually, we fit the last piece and complete our puzzle. Hopefully, when we look at the picture on the box, it matches perfectly.
via our companion website. In addition, books are starting to be published that concentrate on specific CAQDAS packages, in particular NVivo, for example Gibbs (2002).

Within the chapter we are therefore concerned with the issues that need to be considered at the planning and analysis stages of your research project and outlining a range of analytical procedures. In particular, we discuss:

- the differences between quantitative and qualitative data (Section 13.2);
- preparing your data for analysis, including data transcription and, where appropriate, CAQDAS requirements (Section 13.3);
- stages in the process of qualitative data analysis and different approaches (Sections 13.4 and 13.5);
- deductively based analytical procedures (Section 13.6);
- inductively based analytical procedures (Section 13.7);
- quantifying qualitative data (Section 13.8);
- using CAQDAS for qualitative analysis (Section 13.9).

13.2 Differences between qualitative and quantitative data

Many authors draw a distinction between qualitative and quantitative research (for example, Bryman, 1988; Easterby-Smith *et al.*, 2002). However, attempts to define the distinctiveness of qualitative research, and therefore the way in which it can be distinguished from quantitative research, can be problematic (Silverman, 1993). Nevertheless, when we look at the data produced by qualitative research we are able to draw some significant distinctions from those that result from quantitative work. These are helpful in terms of understanding what is necessary in order to be able to analyse these data meaningfully. Table 13.1 highlights three distinct differences between quantitative and qualitative data.

While ‘number depends on meaning’ (Dey, 1993:28), it is not always the case that meaning is dependent on number. Dey (1993:28) points out that ‘The more ambiguous and elastic our concepts, the less possible it is to quantify our data in a meaningful way.’ Qualitative data are associated with such concepts and are characterised by their richness and fullness based on your opportunity to explore a subject in as real a manner as is possible (Robson, 2002). A contrast can thus be drawn between the ‘thin’ abstraction or description that results from quantitative data collection and the ‘thick’ or ‘thorough’ abstraction or description associated with qualitative data (Dey, 1993; Robson, 2002; Box 13.1).

<table>
<thead>
<tr>
<th>Quantitative data</th>
<th>Qualitative data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on meanings derived from numbers</td>
<td>Based on meanings expressed through words</td>
</tr>
<tr>
<td>Collection results in numerical and standardised data</td>
<td>Collection results in non-standardised data requiring classification into categories</td>
</tr>
<tr>
<td>Analysis conducted through the use of diagrams and statistics</td>
<td>Analysis conducted through the use of conceptualisation</td>
</tr>
</tbody>
</table>

Table 13.1 Distinctions between quantitative and qualitative data

Sources: Developed from Dey (1993); Healey and Rawlinson (1994); authors’ experience
DIFFERENCES BETWEEN QUALITATIVE AND QUANTITATIVE DATA

Information that is more qualitative than quantitative has increasingly been included in annual reports and accounts in the UK over the past decade in an “operating and financial review”. Now new rules from both the government and the accountancy profession’s regulator are about to make producing an OFR mandatory. The whole game has changed.

The mandatory OFR is modelled on the section of disclosures required by US companies – “management discussion and analysis” – where broader information can be published and explained.

The OFR has grown out of demand for companies to produce more qualitative information. American companies have had to provide management discussion and analysis information since 1968; the UK followed, with a voluntary “statement of best practice” drawn up by the Accounting Standards Board, in 1993.

The growing number of people wanting to make use of corporate data were finding intangible items more valuable than traditional accounting information. Facts about customer satisfaction or benchmarking to competitors’ performance, for example, were seen as better indicators of how a particular company was faring.

Sixty per cent of UK companies already produce OFRs, says Nigel Sleigh-Johnson, head of financial reporting at the Institute of Chartered Accountants in England & Wales.

However, under the government’s rules, all quoted companies will have to produce an OFR for financial years starting on or after April 1 – tomorrow.

The ASB expects to have its own new standard on how companies should go about satisfying the government requirements in place by the end of April.

“The objective is to assist investors to assess the strategies adopted and the potential for those strategies to succeed,” says the ASB.

This has always been contentious. The idea that companies will provide enough information to allow such judgments when times are difficult is seen by many as far-fetched. To be useful, as one commentator put it recently, J.Sainsbury, the UK supermarket giant, would have had to issue an OFR 10 years ago that said: “Our years of arrogance as number one supermarket in the country have so alienated our suppliers that they are actively working with Tesco to topple us.”

Companies will be in a dilemma. They are unlikely to release information that could harm their reputation. Yet they must produce enough information to satisfy the law and the regulators. This dilemma has been at the heart of the arguments in favour of leaving the OFR free of mandatory rules but subject to broad principles and guidance. The argument was that such a system would allow the market to reward those that produced useful and valuable information and punish those that were niggardly.

Instead there are fears that strict, mandatory rules will mean directors phoning their lawyers for advice on how to minimise information while staying within the law rather than seeking to widen the range and value of the information made public. “There is a great fear that OFRs will be written by lawyers,” says Mr Sleigh-Johnson, “and in just trying to meet the letter of the law directors will be pushed towards prescription.” The lack of “safe harbour” rules, which under the American system allow directors to escape legal action if the future strategies outlined come unstuck later, has concentrated much of the argument on legal liability rather than expanding the useful information available.

“Companies will want to comply,” says Rod Armitage, head of company affairs at the CBI, the employers’ organisation. “The report and accounts is a most important promotional tool. The challenge is how it goes in the first year – either OFRs will be free descriptions of the business and its major risks or they will be legalese boilerplates.”

“The problem of the regulations is that they are new laws . . . People can be taken to court for the criminal offence of producing an OFR recklessly, knowingly and wrongly. The directors are liable so there is pressure on them to produce less,” says Martyn Jones, national audit technical partner with Deloitte in the UK.

The other issue for companies will be to whom they are liable. The government specifies “shareholders” as the key group and the ASB, when it meets to put the final touches to its standard on April 7, is expected to follow suit. But the real value of the OFR is to provide a wide range of information that would be useful to many outside organisations.

This has been given another boost by the latest consultation papers on company law reform published by the government in March. These make clear that relationships with employees, customers and suppliers,
The nature of the qualitative data collected has implications for its analysis. During analysis, the non-standardised and complex nature of the data that you have collected will probably need to be grouped into categories before they can be meaningfully analysed (discussed later), otherwise the most that may result may be an impressionistic view of what they mean. While it may be possible to make some use of diagrams and statistics at this stage, such as the frequency of occurrence of certain categories of data (Sections 12.3 and 12.4), the way in which you are likely to analyse the qualitative data that you collect is through the creation of a conceptual framework. This may be formulated before or during your data collection (discussed later).

The analysis of qualitative data involves a demanding process and should not be seen as an ‘easy option’. Yin (2003) refers to those who leave the data that they have collected unanalysed for periods of time because of their uncertainty about the analytical process required.

Where you have been through the various stages of formulating and clarifying your research topic (Chapter 2), reviewing appropriate literature (Chapter 3), deciding on your research design (Chapter 5), considering access and ethical issues and negotiating the former (Chapter 6) and collecting your data (Chapters 7–11), you clearly will not wish to be halted by an inability to analyse this type of data. Equally you will not wish to be ‘marked down’ because the analysis of the data collected is perceived to be a weak aspect of your work and one that casts doubt on the thoroughness and validity of the conclusions that you draw from the data.

Indeed, two further aspects arise from this cautionary note. First, you should take the advice of Marshall and Rossman (1999), who include data analysis as one of the issues that you should consider at the time you are formulating a proposal to undertake qualitative research. Second, the process of analysing qualitative data is very likely to begin at the same time as you collect these data as well as continue afterwards, and this is a matter that we discuss in the following sections, commencing with preparing your data for analysis.

13.3 Preparing your data for analysis

As we have seen in Chapters 8, 9, 10 and 11, qualitative data can be found in many forms. In Chapter 8, when we considered different secondary data, we highlighted how documentary data were available in both written form, including organisational documents, reports, emails and newspapers, and non-written form such as audio- and video-recordings. Subsequently, in Chapter 9, we noted how, in addition to recording...
your observation on a schedule, it could also be video-recorded. Chapter 10 highlighted
the role of audio-recording as well as note taking, emphasising the importance of tran-
scribing both recordings and notes made to ensure data were not lost. Finally, Chapter
11, although focusing on collecting quantitative data, noted that open questions could
be used to collect qualitative data from respondents, these being recorded in writing by
either the respondent or an interviewer. In this section we focus upon the conversion of
qualitative data to word-processed text, as this is the form that you are most likely to use
in your analysis. As part of this, we discuss the general requirements of CAQDAS pack-
ages.

Transcribing qualitative data

In Chapter 11 we emphasised that, in non-standardised (qualitative research) interviews,
the interview is normally audio-recorded and subsequently transcribed, that is, repro-
duced as a written (word-processed) account using the actual words. We also emphasised
that, as an interviewer, you would be interested not only in what participants said, but in
the way they said it as well. This means that the task of transcribing audio-recorded inter-
views is likely to be time consuming as you will need not only to record exactly what was
said and by whom, but also to try to give an indication of the tone in which it was said
and the participants’ non-verbal communications. You must also remember to ensure it
can be linked to the contextual information that locates the interview (Section 10.4).

Table 13.2 Alternative ways of reducing the time needed to transcribe audio-recordings

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Potential problems</th>
</tr>
</thead>
</table>
| Pay a touch typist to transcribe your audio-recordings. | ■ Expense of paying someone else.
■ Important data such as pauses, coughs, sighs and the like may not be included.
■ You will not be familiarising yourself with the data as you are not transcribing it yourself.
■ The transcription will still require careful checking as errors can creep in. |
| Borrow a transcription machine with a foot-operated start–play–stop play mechanism. | ■ Although this will allow you to control the audio-recorder more easily, the speed of transcription will still be dependent upon your typing ability.
■ The transcription will still require careful checking. |
| ‘Dictate’ your audio-recordings to your computer using voice recognition software. | ■ You will need to discover which voice recognition software works best with your voice.
■ You will need to teach the voice recognition software to understand your voice.
■ You will need to listen to and dictate the entire audio-recording.
■ The transcription will still require careful checking as the software is not entirely accurate. |
| Only transcribe those sections of each audio-recording that are pertinent to your research (data sampling). | ■ You will need to listen to the entire recording carefully first, at least twice.
■ You may miss certain things, meaning you will have to go back to the audio-recording later.
■ Those sections you transcribe will still require careful checking. |
Even if you are a touch typist, you will find the task of transcribing an audio-recording extremely time consuming. Most research methods texts suggest that it takes a touch typist between six and ten hours to transcribe every hour of audio-recording. Consequently, it is helpful if your interviews are transcribed as soon as possible after they are undertaken in order to avoid a build-up of audio-recordings and associated transcription work. Fortunately, there are a number of possible ways of reducing the vast amount of personal time needed to transcribe interviews verbatim. These are summarised in Table 13.2 along with some of the associated potential problems. As you will see in Table 13.2, one problem, however you choose to transcribe the data, is making sure that the transcription is accurate by correcting any transcription errors. This process is known as data cleaning. Once this has been done, some researchers send a copy of the transcript to the participant for final checking. Whilst this can be helpful for ensuring factual accuracy, we have found that interviewees often want to correct their own grammar and use of language as well! This is because spoken and written language are very different. For this reason, you need to think carefully before offering to provide each interviewee with a full copy of their transcript.

Each interview you transcribe should be saved as a separate word-processed file. As part of this we recommend that you use a filename that maintains confidentiality and preserves anonymity but that you can easily recognise and which codifies important information. When doing this Mark always starts his transcription filenames with the interview number and saves the word-processed transcripts for each research project in a separate subdirectory. Subsequent parts of the filename provide more detail. Thus the file ‘26MPNewc.doc’ is the transcript of the 26th interview, Male, Professional, undertaken at New county. As some CAQDAS programs require filenames of eight or fewer characters, you may need to limit your filenames to this length.

When transcribing interviews and group interviews you need to be able to distinguish between the interviewer and the participant or participants. This means you need to have clear speaker identifiers such as ‘17FA’ for the 17th interviewee who is a Female Administrator. This tends to be more visible in the transcript if they are in capitals (Box 13.2). Similarly, you need to be able to distinguish between any topic headings you use, questions and responses. One way of doing this, dependent upon the precise requirements of your CAQDAS, is to put topic headings in CAPITALS, questions in italics and responses in normal font. The most important thing is to be consistent within and across all your transcriptions.

BOX 13.2 WORKED EXAMPLE

Extract from an interview transcript

Martin had decided to use the code IV to represent himself in the transcripts of his in-depth interviews and 01FS to represent his first interviewee, a female student. By using capital letters to identify both himself and the interviewee Martin could identify clearly where questions and responses started. In addition, it reduced the chance of a mistype in the transcription as identifiers were always a combination of capital letters and numbers. Martin also included brief comments relating to his respondent’s actions in his interview transcript. These he enclosed with square brackets []. A brief extract from the transcript follows:

IV: So tell me, why do you use the Student Union Bar?

01FS: Well, erm [brief pause], a lot of my friends go there for the final drink of the evening ... there is an atmosphere and the drinks are cheap ... I don't feel embarrassed to walk in on my own and there's always someone to talk to and scrounge a fag off [laughs] ...
In a transcription of a more structured interview you also need to include the question number and the question in your transcription. For example, by including the question number ‘Q27’ at the start of the question you will be able to search for and find question 27 quickly. In addition, by having the full question in your transcript you will be far less likely to misinterpret the question your respondent is answering.

When transcribing audio recordings or your own notes you need to plan in advance how you intend to analyse your transcriptions. If you only have access to a black and white printer, there is little point in using different coloured fonts to distinguish between participants in a group interview or coloured highlighting to distinguish non-verbal responses such as nervous laughter in your transcripts as these will be difficult to discern when working from the paper copies. You need to also be careful about using these and other word-processing software features if you are going to analyse the data using a CAQDAS program. These programs often have precise file formats which can mean that word-processing software features such as bold and italics and coloured highlighting generated by your word-processing software will disappear when your data file is imported (Lewins and Silver, 2005). For example, although you may transcribe your interviews using a word processor such as Microsoft Word, your chosen CAQDAS software may require this textual data to be saved as a text-only file (.txt) or using rich text format (.rtf), resulting in the loss of some of these features. These are summarised as a checklist in Box 13.3.

BOX 13.3 CHECKLIST

Transcribing your interviews

- ✔ Have you thought about how you intend to analyse your data and made sure that your transcription will facilitate this?
- ✔ Have you chosen clear interviewer and respondent identifiers and used them consistently?
- ✔ Have you included the interviewer’s questions in full in your transcription?
- ✔ Have you saved your transcribed data using a separate file for each interview?
- ✔ Does your filename maintain confidentiality and preserve anonymity whilst still allowing you to recognise important information easily?
- ✔ Have you checked your transcript for accuracy and, where necessary, ‘cleaned up’ the data?
- ✔ (If you intend to use CAQDAS) Will the package you are going to use help you to manage and analyse your data effectively? In other words, will it do what you need it to do?
- ✔ (If you intend to use CAQDAS) Are your saved transcriptions compatible with the CAQDAS package you intend to use, so you will not lose any features from your word-processed document when you import the data?
- ✔ (If you intend to use CAQDAS) Have you checked your transcript for accuracy and ‘cleaned up’ the data prior to importing into your chosen CAQDAS?
- ✔ Have you stored a separate back-up or security copy of each data file on your USB mass storage device or burnt one onto a CD?
Using electronic textual data including scanned documents

For some forms of textual data such as, for example, email interviews (Section 10.8) or electronic versions of documents (Section 8.2), including organisational emails and web-based reports, your data may already be in electronic format. Although these data have already been captured electronically, you are still likely to need to spend some time preparing them for analysis. This is likely to involve you in ensuring that, where necessary, the data are:

■ suitably anonymised, such as by using separate codes for yourself and different participants;
■ appropriately stored for analysis, for example one file for each interview, each meeting’s minutes or each organisational policy;
■ free of typographical errors that you may have introduced, and, where these occurred, they have been ‘cleaned up’.

Consequently, you are likely to find much of the checklist in Box 13.3 helpful. If you intend to use CAQDAS to help you to manage and analyse documents which are not available electronically, you will need to scan these into your word processing software and ensure they are in a format compatible with your chosen package.

13.4 An overview of qualitative analysis

The features of qualitative data outlined in Table 13.1 indicate the diverse nature of qualitative analysis. To add to this, or because of it, there is no standardised approach to the analysis of qualitative data. There are many qualitative research traditions or approaches, with the result that there are also different strategies to deal with the data collected (e.g. Coffey and Atkinson, 1996; Dey, 1993; Miles and Huberman, 1994; Tesch, 1990). Tesch (1990) groups these strategies into four main categories:

■ understanding the characteristics of language;
■ discovering regularities;
■ comprehending the meaning of text or action;
■ reflection.

These categories indicate a number of broad ways of differentiating approaches to qualitative analysis. Some approaches to analysing qualitative data may be highly structured, whereas others adopt a much lower level of structure. Related to this, some approaches to analysing qualitative data may be highly formalised and proceduralised, whereas others rely much more on the researcher’s interpretation. In broad terms, the first two categories listed above are associated with analytic strategies that require greater structure and set procedures to follow, in comparison with the second two. As a further way of differentiating between them, some approaches begin deductively, whereas others begin inductively. Again, in broad terms, the first two categories in the list above are associated with some analytic strategies that commence deductively, whereas data categories and codes to analyse data are derived from theory and your predetermined analytical framework. In contrast, other analytic strategies associated with this list commence inductively, without predetermined, or a priori, categories and codes to direct your analysis. This distinction is discussed further in Section 13.5. These means of differ-
entiating approaches to qualitative analysis, while not comprehensive, are shown as three dimensions in Figure 13.1.

These means to differentiate approaches to qualitative analysis may themselves be problematic when used to map some analytic strategies or procedures. For example, variants of grounded theory (discussed in Section 13.7) may be more or less structured and proceduralised. However, in general terms the use of these dimensions should allow you to compare different approaches to qualitative analysis more easily. Care also needs to be taken in relation to any action that results from a consideration of these dimensions. For example, the adoption of a more ‘interpretivist’ approach should not be seen as implying less analytical rigour (Coffey and Atkinson, 1996; Tesch, 1990). These three dimensions are not therefore used to indicate higher quality at one end of a continuum.

While different approaches to qualitative analysis share several features, as we discuss later, they nevertheless allow us to outline a number of analytic strategies that you may consider using to analyse your qualitative data. We resume this discussion in Section 13.5.

Before outlining a number of reasonably distinct ways of analysing qualitative data using inductive or deductive approaches, we discuss procedures that are common to both or at least to those that are highly or fairly highly structured and proceduralised. One particular feature that is common to these analysis procedures involves you in organising the mass of qualitative data that you collect into meaningful and related parts or categories. This allows you to explore and analyse these data systematically and rigorously. Adopting this approach means transforming the data that you collect to allow you to:

1 comprehend and manage them;
2 integrate related data drawn from different transcripts and notes;
3 identify key themes or patterns from them for further exploration;
4 develop and/or test theories based on these apparent patterns or relationships;
5 draw and verify conclusions (Dey, 1993; Miles and Huberman, 1994).

The general set of procedures discussed below elaborates on these aspects of qualitative analysis, and involves the following activities:

- categorisation;
- ‘unitising’ data;
- recognising relationships and developing the categories you are using to facilitate this;
- developing and testing theories to reach conclusions.

Categorisation

The first activity involves classifying your data into meaningful categories, which may be derived from these data or from your theoretical framework (see Sections 13.6 and 13.7 for a discussion of this aspect) and which should in any case ‘fit’ what you have revealed.
These categories are in effect codes or labels that you will use to group your data. They provide you with an emergent structure that is relevant to your research project to organise and analyse your data further.

The identification of these categories will be guided by the purpose of your research as expressed through your research question and objectives. Another researcher, for example, with different objectives, may derive different categories from the same data (Dey, 1993). It is not that one researcher is right and the other wrong, rather they are interpreting the data differently. Strauss and Corbin (1998) suggest that there are three main sources to derive names for these categories:

- you utilise terms that emerge from your data;
- they are based on the actual terms used by your participants (‘in vivo’ codes);
- or they come from terms used in existing theory and the literature.

However, the categories that you devise need to be part of a coherent set so that they provide you with a well-structured, analytical framework to pursue your analysis. Dey (1993:96–7) states that ‘categories must have two aspects, an internal aspect – they must be meaningful in relation to the data – and an external aspect – they must be meaningful in relation to the other categories’. The categories you develop initially, especially where you use an inductive, grounded approach, are likely to be essentially descriptive. As your analysis develops you will develop a more hierarchical approach to the categorisation of your data, whereby some category codes or labels will be developed and used to indicate analytical linkages between, and interpretation of, the data emerging (King, 2004; Strauss and Corbin, 1998).

‘Unitising’ data

The next activity of the analytical process will be to attach relevant ‘bits’ or ‘chunks’ of your data, which we will refer to as units of data, to the appropriate category or categories that you have devised. A unit of data may be a number of words, a line of a transcript, a sentence, a number of sentences, a complete paragraph, or some other chunk of textual data that fits the category (Box 13.4).

You may use CAQDAS to help you to process your data (Section 13.9) or you may use a manual approach. Where you use the second approach, you can label a unit of data with the appropriate category (or categories) in the margin of your transcript or set of notes (Box 13.4). This may then be copied, cut up and stuck onto a data card, or otherwise transferred, and filed so that you end up with piles of related units of data. When doing this, it is essential to label each unit of data carefully so that you know its precise source (Section 13.3). An alternative is to index categories by recording precisely where they occur in your transcripts or notes (e.g. interview 7, page 2, line 16) on cards headed with particular category labels (Easterby-Smith et al., 2002). Undertaking this stage of the analytic process means that you are engaging in a selective process, guided by the purpose of your research, which has the effect of reducing and rearranging your data into a more manageable and comprehensible form.

One way of achieving this reduction and rearrangement of your data, depending on the suitability of the data, is to use one or more of the analytical techniques described by Miles and Huberman (1994). These include a range of different matrices, charts, graphs and networks to use as a means to arrange and display your data. Use of these may allow you to recognise emergent patterns in your data that will provide you with an indication about how to further your data collection. The approach of Miles and Huberman (1994) is considered in more detail in Section 13.7.
AN OVERVIEW OF QUALITATIVE ANALYSIS

BOX 13.4 WORKED EXAMPLE

Interview extract with categories attached

Adrian’s research project was concerned with how Human Resource Management professionals from a range of organisations had managed the downsizing process in their own organisation. He derived his initial categories from existing theory in the academic literature and attached them subsequently to units of each transcript. His initial categories were hierarchical, the codes he used being shown in brackets:

These were then attached to the interview transcript, using sentences as units of data. Like our jigsaw example at the start of this chapter, those units of data that were coded with more than one category suggested interrelationships:

```
| RED-CONS | Voluntary (RED-STR-VOL) |
| RED-CONS | RED-CONS (RED-STR-ISS) |
| RED-MGT-ROLE | Management (RED-MGT) |
| RED-MGT-VOL | Consultation (RED-CONS) |
| RED-MGT-ROLE | Psychological (SUR-REAC-PSY) |
| SUR-REAC-PSY | Behavioural (SUR-REAC-BEH) |
```

These were then attached to the interview transcript, using sentences as units of data. Like our jigsaw example at the start of this chapter, those units of data that were coded with more than one category suggested interrelationships:

RED-CONS	27MM The first stage is to find out what particular employees want for themselves and how they want this to happen. Staff are seen by their line manager and/or a member of personnel. An employee might want to talk to someone from personnel rather than talk with their line manager – well, you know, for obvious reasons, at least as they see it – and this would be acceptable to the organisation. This meeting provides them with the opportunity to opt for voluntary redundancy. We do not categorise employees into anything like core or non-core, although we will tell a group of employees something like ‘there are four of you in this particular function and we only need two of you, so you think about what should happen’. Sometimes when we attempt to give employees a choice about who might leave, they actually ask us to make the choice. This is one such situation where a compulsory selection will occur. We prefer to avoid this compulsory selection because of the impact on those who survive – negative feelings, guilt and so on.
RED-CONS	1
RED-CONS	2
RED-MGT-ROLE	3
RED-MGT-VOL	4
RED-STR-ISS	5
RED-CONS	6
RED-CONS	7
RED-MGT-VOL	8
RED-STR-ISS	9
RED-CONS	10
RED-CONS	1
RED-CONS	2
RED-CONS	3
RED-MGT-VOL	4
RED-MGT-ROLE	5
SUR-REAC-PSY	6
SUR-REAC-PSY	7

RESM_C13.QXP 3/30/07 7:02 AM Page 481
Recognising relationships and developing categories

Generating categories and reorganising your data according to them, or designing a suitable matrix and placing the data gathered within its cells, means that you are engaging in the process of analysing your data (Dey, 1993; Miles and Huberman, 1994; Yin, 2003). This analysis will continue as you search for key themes and patterns or relationships in your rearranged data. This may lead you to revise your categories and continue to rearrange your data as you search for meaning in your data set. You may decide to ‘sub-divide or integrate categories as ways of refining or focusing [your] analysis’ (Dey, 1993:95).

There may be practical reasons for seeking to divide or join your initial categories. Some categories, for example, may attract large numbers of units of data and prove to be too broad for further analysis without being subdivided. You may also gain new insights within existing categories that suggest new ones. Because of this we would strongly recommend you keep an up-to-date definition of each of the categories you are using, so that you can maintain consistency when assigning these to units of data as you continue to undertake interviews or observations (Miles and Huberman, 1994). According to several approaches to qualitative analysis, you will continue to generate a more hierarchical approach to the categorisation and coding of your data as you move towards the generation of an explanation for the research question and objectives that form the focus of your research.

Assigning data to and developing categories

‘After each interview, I transcribed the interview verbatim and filed its material according to the categorisation then in use. The material was typically in the form of paragraphs [that] were cross-classified to several categories. As I filed each statement, I compared it with previous statements in that category and kept running notes on the content of the category. The categories changed over time; some disappeared and were merged under more general titles. Some emerged out of previous categories that became too heterogeneous. Some categories became parts of matched pairs or triads in which any given comment would typically be filed in each constituent category. For example, comments [that] described instances of lax work or bad workmanship also typically mentioned abusive management. Similarly, statements that described devising one’s own procedures also typically included statements of satisfaction with the autonomy that provided. This helped to reveal connections between categories.’

Developing and testing hypotheses or propositions

As you seek to reveal patterns within your data and to recognise relationships between categories, you will be able to develop hypotheses in order to test these. Silverman (1993:1) defines a hypothesis as ‘a testable proposition’ (Box 13.6). The appearance of an apparent relationship or connection between categories will need to be tested if you are to be able to conclude that there is an actual relationship. However, this is not the same as the statistical hypothesis or significance testing we discussed in relation to quantitative analysis in Section 12.5.
It is important to test the hypotheses or propositions that inductively emerge from the data by seeking alternative explanations and negative examples that do not conform to the pattern or relationship being tested. Alternative explanations frequently exist, and only by testing the propositions that you identify will you be able to move towards formulating valid conclusions and an explanatory theory, even a simple one (Miles and Huberman, 1994). Dey (1993:48) points out that ‘the association of one variable with another is not sufficient ground for inferring a causal or any other connection between them’. The existence of an intervening variable may offer a more valid explanation of an association that is apparent in your data (Box 13.7).

BOX 13.6 WORKED EXAMPLE

Research propositions

During the process of qualitative data analysis a student evaluating the growth of online retailing formulated the following proposition:

Customers’ willingness to trust online retailers depends on the ease of use of their website.

A student exploring mortgage borrowers’ decision-making drew up this proposition:

Potential mortgage borrowers’ choice of lending institution is strongly affected by the level of customer service that they receive during the initial inquiry stage.

Another student investigating cause-related marketing formulated the following proposition:

Companies engaging in cause-related marketing are motivated principally by altruism.

A relationship is evident in each of these propositions. Each was tested using the data that had been collected or that were to be collected.

BOX 13.7 WORKED EXAMPLE

The impact of an intervening variable

Kevin’s research project involved looking at the use of subcontractors by an organisation. A relationship appeared to emerge between the total value of contracts a particular subcontractor had been awarded and the size of that contractor in terms of number of employees; in particular, those contractors with larger numbers of employees had a larger total value of contracts. This could have led Kevin to conclude that the value of work undertaken by a particular subcontractor was related to that organisation’s size and that, in particular, the organisation tended to use subcontractors with large numbers of employees.

The organisational reality was not so simple. The organisation had originally used over 2500 subcontractors but had found this exceedingly difficult to manage. To address this issue the organisation had introduced a system of preferred contractors. All 2500 subcontractors had been graded according to the quality of their work, those whose work had been consistently of high quality being awarded preferred contractor status. This meant that they were invited by the organisation Kevin was researching to tender for all relevant contracts. The intervening variable was therefore the introduction of preferred contractor status dependent upon the quality of work previously undertaken. The fact that the majority of these subcontractors also had relatively large numbers of employees was not the reason why the organisation had awarded them contracts.
By rigorously testing your propositions or hypotheses against your data, looking for alternative explanations and seeking to explain why negative cases occur, you will be able to move towards the development of valid and well-grounded conclusions. Thus the validity of your conclusions will be verified by their ability to withstand alternative explanations and the nature of negative cases. This important aspect of your analysis is considered further in Sections 13.6 and 13.7.

The interactive nature of the process

The process outlined earlier demonstrates that data collection, data analysis and the development and verification of relationships and conclusions are very much an interrelated and interactive set of processes. Analysis occurs during the collection of data as well as after it. This analysis helps to shape the direction of data collection, especially where you are following a more inductive, grounded approach (Section 13.7). As hypotheses or propositions emerge from your data, or if you commence your data collection with a theoretical framework or propositions already worked out (Section 13.6), you will seek to test these as you compare them against the cases in your study (Erlandson et al., 1993; Glaser and Strauss, 1967). The key point here is the relative flexibility that this type of process permits you.

The interactive nature of data collection and analysis allows you to recognise important themes, patterns and relationships as you collect data: in other words, to allow these to emerge from the process of data collection and analysis. As a result you will be able to re-categorise your existing data to see whether these themes, patterns and relationships are present in the cases where you have already collected data. You will also be able to adjust your future data collection to see whether they exist in cases where you intend to conduct your research (Strauss and Corbin, 1998).

The concurrent process of data collection and analysis also has implications for the way in which you will need to manage your time and organise your data and related documentation. As we discussed in Section 10.6, it will be necessary to arrange interviews or observations with enough space between them to allow yourself sufficient time to write up or type a transcript, or set of notes, and to analyse this before proceeding to your next data collection session. Where you conduct a small number of interviews in one day you will need time during the evening to undertake some initial analysis on these before carrying out further interviews. You may also be able to find a little time between interviews to carry out a cursory level of analysis. As part of this we have found it extremely helpful to listen to audio-recordings of interviews we have undertaken while travelling to and from work. However, there is a clear limit to the value of continuing to undertake interviews or observations without properly analysing these in the manner described earlier.

Analytical aids

In addition to transcribing your audio-recording or notes and assigning units of data to appropriate categories, it will also help your analysis if you make a record of additional contextual information (Section 10.4). This will help you to recall the context and content of the interview or observation as well as informing your interpretation as you will be more likely to remember the precise circumstances to which your data relate (Box 13.8). You may also consider other techniques aimed at helping you to analyse your qualitative data, such as those outlined by Riley (1996). Various researchers have advanced methods to help you to record information that will usefully supplement your
written-up notes or transcripts and your categorised data (for example, Glaser, 1978; Miles and Huberman, 1994; Riley, 1996; Strauss and Corbin, 1998). We consider the following suggestions:

- summaries, including those for interviews, observations and documents, and also interim ones;
- self-memos;
- a researcher’s diary.

BOX 13.8 RESEARCH IN THE NEWS

E-mails reveal that Swatch feared tax challenge

Senior financial executives at Swatch Group feared that the company’s global tax arrangements would be challenged by authorities if the accounting treatment applied to watches moving through the company became known.

The Swiss watch group, whose profits have benefited from a lowering of its overall tax rate, funneled the paperwork for many watches through a subsidiary called Swatch Group (Asia), based in Hong Kong and registered in the tax haven of the British Virgin Islands. SG (Asia) added significant mark-ups to the prices of goods sent to it from other parts of the group before sending them on internally.

Multinational companies are facing friction with tax authorities over transfer pricing – the practice whereby multinationals shift profits into low-tax jurisdictions by adjusting the prices of goods as they move around their global operations.

E-mails obtained by the *Financial Times* reveal that staff working for Swatch feared that the arrangements could invite scrutiny from tax authorities. Their e-mails acknowledge that the arrangements would be hard to defend under interrogation.

Hanspeter Rentsch, Swatch Group’s general counsel, said in an interview: “Within the legal boundaries, it is up to a company to optimise its tax situation. But that is always within the legal boundaries of all countries concerned.”

The e-mails paint a picture of concern, however. One exchange made last year involved Nicolette Ryan, head of the group’s Australian “service centre”, and in practice the country finance chief, and Guido Bollin, a head office finance department employee in Switzerland. Ms Ryan wrote: “The pricing on the order acknowledgment that Australia receives is the Swiss price charged to Swatch Group Asia. Australia then receives an invoice from Asia with a different price. If the tax authorities in Australia would have access to both of these documents they would want to know why we were not charged the price on the acknowledgment but the higher price.

“I would request that you remove the pricing from the order acknowledgment both faxed and e-mailed to Australia.”

Mr Bollin’s reply, on the same day, implied that the tax arrangements might be hard to justify: “A disclosure of such documents would have a very negative impact on the relationship between [Swatch] Australia and the [Australian tax authorities] as well as bring SG Asia in a hard defendable situation.”

Mr Rentsch said he had no reason to doubt the authenticity of the e-mails. But he said they were taken out of context, and “could be interpreted in any way”. He stressed there was no reason to assume the company had done anything wrong.

Summaries

After you have written up your notes, or produced a transcript, of an interview or observation session, you can also produce a summary of the key points that emerge from undertaking this activity. At this point you will be conversant with the principal themes that have emerged from the interview or observation and how you
would like to explore these further in forthcoming data collection sessions. You may be able to identify apparent relationships between themes that you wish to note down so that you can return to these to seek to establish their validity. It will also be useful to make some comments about the person(s) you interviewed or observed, the setting in which this occurred and whether anything occurred during the interview or observation that might have affected the nature of the data that you collected (Box 13.9).

BOX 13.9 WORKED EXAMPLE

Noting an event that affected the nature of data collection

Birjit was facilitating a focus group whose participants were the customers of a large department store. Approximately halfway through the allotted time, an additional participant joined the group. This person almost immediately took control of the discussion, two other participants appearing to become reticent and withdrawing from the group’s discussion. Despite this, all Birjit’s questions were answered fully and she felt the data she had obtained was valuable. However, she recorded this incident in a post-transcript summary in case any divergence was apparent between the nature of the data in the two parts of the focus group.

Once you have produced a summary of the key points that emerge from the interview or observation and its context, you should attach a copy to the set of your written-up notes or transcript for further reference (Robson, 2002).

Qualitative data may also include the use of organisational documentation. This may be an important source of data in its own right (for example, using minutes of meetings, internal reports, briefings, planning documents and schedules), or you may use such documentation as a means of triangulating other data that you collect (Section 8.2). Where you use any sort of documentation you should produce a summary that describes the purpose of the document, how it relates to your work and why it is significant, as well as providing a list of the key points that it contains. This type of summary may be useful when you undertake further analysis if you want to refer to sources of data (that is, the document) as well as the way in which your categorical data have been categorised into their component parts.

An **interim summary** is an attempt by you to take stock of your progress to date through the production of a written paper that looks at the following aspects:

- what you have found out so far;
- what level of confidence you have in your findings and conclusions to date;
- what you need to do in order to improve the quality of your data and/or to seek to substantiate your apparent conclusions, or to seek alternative explanations;
- how you will seek to achieve the needs identified by the above interim analysis.

This can become a working document to which you make continued reference as your research project continues to make progress (Robson, 2002).

Self-memos

Self-memos allow you to record ideas that occur to you about any aspect of your research, as you think of them. Where you omit to record any idea as it occurs to you it may well be lost. The occasions when you are likely to want to write a memo include:
when you are writing up interview or observation notes, or producing a transcript of
this event;
when you are categorising these data;
as you continue to categorise and analyse these data;
when you engage in the process of writing.

Most CAQDAS programs include some form of writing tool that allows you make
notes, add comments or write self-memos as you are analysing your data (Lewins and
Silver, 2005). This is extremely helpful and, as your self-memos are automatically dated,
you can also trace the development of your ideas. Ideas may also occur as you engage in
an interview or observation session. In this case you may record the idea very briefly as
a margin note and write it as a memo to yourself after the event. Similarly, ideas may
occur as you work through a documentary source. It may be useful to carry a reporter’s
notebook in order to be able to record your ideas, whenever and wherever they occur.
When you are undertaking the production of notes, or a transcript, or any aspect of
qualitative analysis, a notebook can be ready to hand to record your ideas.

Self-memos may vary in length from a few words to one or more pages. They can be
written as simple notes – they do not need to be set out formally. Miles and Huberman
(1994) suggest, however, that it will be useful to date them and to provide cross-references
to appropriate places in your written-up notes or transcripts, where appropriate.
Alternatively, an idea that is not grounded in any data (which may nevertheless prove to
be useful) should be recorded as such. Memos should be filed together, not with notes or
transcripts, and may themselves be categorised where this will help you to undertake
later stages of your qualitative analysis. Memos may also be updated as your research pro-
gresses, so that your bank of ideas continues to have currency and relevance (Glaser,
1978).

Researcher’s diary
An alternative approach to recording your ideas about your research is to maintain a
researcher’s diary. You may of course maintain such a diary alongside the creation of self-
memos. Its purpose will be similar to the creation of self-memos: to record your ideas and
your reflections on these, and to act as an aide-mémoire to your intentions about the
direction of your research. However, its chronological format may help you to identify
the development of certain ideas (such as data categories, hypotheses or propositions)
and the way in which your research ideas developed, as well as providing an approach
that suits the way in which you like to think (Riley, 1996).

13.5 Approaches to qualitative analysis

In our discussion of research approaches in Section 4.3 we highlighted how it was poss-
able to approach data collection and analysis from either a deductive or an inductive
perspective. Where you commence your research project from a deductive position you
will seek to use existing theory to shape the approach that you adopt to the qualitative
research process and to aspects of data analysis. Where you commence your research
project from an inductive position you will seek to build up a theory that is adequately
grounded in your data. In the remainder of this section we shall therefore discuss the dif-
ference between using theory at the commencement of your research to analyse
qualitative data and commencing your research by collecting and exploring your data
without a predetermined theoretical or descriptive framework (Yin, 2003). The design of
qualitative research requires you to recognise this choice and to devise an appropriate
strategy to guide your research project.

Using a theoretical or descriptive framework

Yin (2003) suggests that, where you have made use of existing theory to formulate your
research question and objectives, you may also use the theoretical propositions that
helped you do this as a means to devise a framework to help you to organise and direct
your data analysis. This approach demonstrates a preference for commencing with and
utilising theory in qualitative research, rather than allowing it to develop from the work.

There is a debate about this approach as applied to qualitative analysis (Bryman,
1988). Bryman (1988:81) sums up the argument against it as follows:

The prior specification of a theory tends to be disfavoured because of the possibility of
introducing a premature closure on the issues to be investigated, as well as the possibility
of the theoretical constructs departing excessively from the views of participants in a social
setting.

If this occurs when you use a theoretical framework to design and analyse your
research you will clearly need to adapt your approach (Box 13.10).

BOX 13.10 WORKED EXAMPLE

Incorporating an inductive approach

Phil commenced a research project by adopting a deductive approach, but found that the
theoretical framework he adopted did not yield a sufficiently convincing answer to his research
questions and objectives. He therefore decided to reanalyse his data inductively. This revealed
themes that had not figured prominently in the deductive analysis. A combination of the two
approaches generated a more convincing answer to Phil’s research questions and objectives.

Even though you may incorporate an inductive approach in your research, com-
mencing your work from a theoretical perspective may have certain advantages. It will
link your research into the existing body of knowledge in your subject area, help you to
get started and provide you with an initial analytical framework.

To devise a theoretical or descriptive framework you need to identify the main vari-
ables, components, themes and issues in your research project and the predicted or
presumed relationships between them (Yin, 2003). A descriptive framework will rely
more on your prior experience and what you expect to occur, although it is of course
possible to develop an explanatory framework based on a mixture of theory and your
own expectations. You will use this framework as the means to start and direct the
analysis of your data. A more detailed discussion regarding how to develop a theoretical
or descriptive framework is given by Miles and Huberman (1994).

Exploring without a predetermined theoretical or descriptive framework

The alternative to the deductive approach is to start to collect data and then explore
them to see which themes or issues to follow up and concentrate on (for example: Glaser
Yin (2003) believes that this inductive approach may be a difficult strategy to follow and
may not lead to success for someone who is an inexperienced researcher. This is likely to be the case where you simply go ahead and collect data without examining them to assess which themes are emerging from the data as you progress. Where you commence your data collection with this type of approach – related initially to an exploratory purpose – you will need to analyse the data as you collect them (Section 13.3) and develop a conceptual framework to guide your subsequent work. This is referred to as a grounded approach because of the nature of the theory or explanation that emerges as a result of the research process. In this way:

- theory emerges from the process of data collection and analysis;
- therefore you do not commence such a study with a clearly defined theoretical framework;
- instead you identify relationships between your data and develop questions and hypotheses or propositions to test these.

You will, however, still need to commence this type of approach with a clear research purpose. To use an inductive approach successfully may involve a lengthy period of time and prove to be resource intensive. It is also likely that this approach will combine some elements of a deductive approach as you seek to develop a theoretical position and then test its applicability through subsequent data collection and analysis. This suggests that, while you may commence with either an inductive or a deductive approach, in practice your research is likely to combine elements of both.

In the next two sections we describe and discuss specific analytic strategies and procedures related to a deductive approach and to an inductive approach to research. We also consider how these differing approaches are likely to affect the procedures for analysing qualitative data outlined in Section 13.4.

13.6 Deductively-based analytical procedures

Yin’s (2003) preference for devising theoretical propositions prior to data collection as a means to analyse data leads to a number of specific analytical procedures to achieve this. This section considers the specific analytical procedures described by Yin (2003) that are particularly applicable to qualitative analysis and examines how the deductive perspective that underpins these specific analytical procedures affects the process for analysing qualitative data (Section 13.4).

Pattern matching

Pattern matching involves predicting a pattern of outcomes based on theoretical propositions to explain what you expect to find. Using this approach, you will first need to develop a conceptual or analytical framework, utilising existing theory, and then test the adequacy of the framework as a means to explain your findings. If the pattern of your data matches that which has been predicted through the conceptual framework you will have found an explanation, where possible threats to the validity of your conclusions can be discounted. There are two variations to this procedure dependent upon the nature of the variables being considered.

The first variation is associated with a set of **dependent** variables where you suggest the likely outcomes arising from another, **independent** variable. For example, based on theoretical propositions drawn from appropriate literature you specify a number of
related outcomes (dependent variables) that you expect to find as a result of the implementation of a particular change management programme (independent variable) in an organisation where you intend to undertake research. Having specified these expected outcomes, you then engage in the process of data collection and analysis. Where your predicted outcomes are found, it is likely that your theoretically based explanation is appropriate to explain your findings. If, however, you reveal one or more outcomes that have not been predicted by your explanation, you will need to seek an alternative one (Yin, 2003).

The second variation is associated with variables that are independent of each other. In this case you would identify a number of alternative explanations to explain the pattern of outcomes that you expect to find (Box 13.11). As a consequence, only one of these predicted explanations may be valid. In other words, if one explanation is found to explain your findings then the others may be discarded. Where you find a match between one of these predicted explanations and the pattern of your outcomes you will have evidence to suggest that this is indeed an explanation for your findings. Further evidence that this is a correct explanation will flow from finding the same pattern of outcomes related to other similar cases (Yin, 2003).

BOX 13.11 WORKED EXAMPLE

Alternative predicted explanations

The objective of Linzi’s research project was to explain why productivity had increased in a case study organisation even though a number of factors had been held constant (technology, numbers of staff employed, pay rates and bonuses, and the order book) during the period of the increase in productivity. She developed two alternative explanations based on different theoretical propositions to explain why this increase in productivity had occurred in the organisation. Her explanations are related to the following propositions:

1. that the productivity increase is due to better management, which had been able to generate greater employee commitment, where this proposition is based on theory related to strategic human resource management;

2. that the increase is due to fears about change and uncertainty in the future, where this proposition is, in addition, based on theory related to organisational behaviour and the management of change.

These propositions offered her two possible and exclusive reasons why the described phenomenon has occurred, so that where evidence could be found to support one of these, the other, which did not match her outcomes, could be discounted.

Explanation building

Another pattern matching procedure, which Yin (2003) refers to as a special type, involves an attempt to build an explanation while collecting data and analysing them, rather than testing a predicted explanation as set out above. Yin (2003) recognises that this procedure, which he labels explanation building, appears to be similar to grounded theory (or analytic induction), which we discuss later (Section 13.7). However, he differentiates between these since explanation building is still designed to test a theoretical proposition, albeit in an iterative manner, rather than to generate ‘grounded’ theory (Section 13.7). Yin states that his hypothesis-testing approach is related to explanatory case studies, while the hypothesis-generating approach developed by Glaser and Strauss
(1967) is relevant for exploratory studies. The explanation-building procedure uses the following stages (Yin, 2003):

1. Devise a theoretically based hypothesis or proposition, which you will then seek to test.
2. Undertake data collection through an initial case study in order to be able to compare the findings from this in relation to this theoretically based proposition.
3. Where necessary, amend the theoretically based proposition in the light of the findings from the initial case study.
4. Undertake a further round of data collection in order to compare the findings from this in relation to the revised proposition.
5. Where necessary, further amend the revised proposition in the light of the findings from the second case study.
6. Undertake further iterations of this process until a satisfactory explanation is derived.

Impact of a deductive approach on the analysis process

In relation to pattern matching and explanation building, you will still be able to follow the general process outlined earlier for analysing qualitative data (Section 13.4), with some modification. First, you will be in a position to commence your data collection with a well-defined research question and objectives, and a clear framework and propositions, derived from the theory that you will have used. Second, with regard to sampling (Section 7.3), you will be in a position to identify the number and type of organisations to which you wish to gain access in order to undertake data collection. However, this strategy should not be used as a means to adopt a less than rigorous approach to selecting sufficient cases to test the propositions that have been advanced and to answer your research question and meet your objectives. Third, the literature that you used and the theory within it will shape the data collection questions that you wish to ask those who participate in your research project (Section 3.2). It is also to be expected that categories for analysis will emerge from the nature of your interview questions. Therefore you will be able to commence data collection with an initial set of categories derived from your theoretical propositions/hypotheses and conceptual framework, linked to your research question and objectives (Miles and Huberman, 1994).

Of course, these categories may be subject to change, depending on their appropriateness for the data that your participants provide (Dey, 1993). However, where your predicted theoretical explanations appear to fit the data being revealed, your predetermined categories may prove to be useful, subject to some revision and development (Miles and Huberman, 1994).

Your use of this analytic strategy will of course also provide you with key themes and patterns to search for in your data. Therefore as you carry out your research and conduct analysis through attaching units of data to categories, and examine these for emergent patterns, your analysis will be guided by the theoretical propositions and explanations with which you commenced. Your hypotheses or propositions will still need to be tested with rigour – associated with the thoroughness with which you carry out this analytical process and by seeking negative examples and alternative explanations that do not conform to the pattern or association being tested for.

However, the use of predicted explanations should mean that the pathway to an answer to your research question and objectives is a more defined one. This will of course depend on two factors:
your level of thoroughness in using existing theory to define clearly the theoretical propositions and conceptual framework that will guide your research project;

the appropriateness of these theoretical propositions and the conceptual framework for the data that you reveal.

In summary, this section has discussed briefly two of the analytic procedures suggested by Yin (2003) that are particularly relevant to the analysis of qualitative data. The use of these procedures is underpinned by the need to specify theoretical propositions before the commencement of data collection and its analysis. Even in explanation building, a theoretically based proposition is suggested initially even though this may be revised through the iterative stages of the process involved. It has also been shown that the general process outlined earlier for analysing qualitative data will be useful to you in carrying out these deductive analytical procedures. However, the stages of this process related to devising categories and identifying patterns are likely to be more apparent, at least initially, because this approach is based on existing theory.

13.7 Inductively-based analytical procedures

This section of the chapter outlines and briefly discusses a number of inductively based analytical procedures to analyse qualitative data. These are:

- data display and analysis;
- template analysis;
- analytic induction;
- grounded theory;
- discourse analysis;
- narrative analysis.

In practice, however, a number of these analytical procedures combine inductive and deductive approaches to analyse qualitative data, as we discuss later.

There may be a number of good reasons for adopting an inductive approach to your research project and the analysis of the data that are produced. First, as we discussed in Section 13.5, you may commence an exploratory project seeking to generate a direction for further work. Second, the scope of your research may be constrained by adopting restrictive theoretical propositions that do not reflect your participants’ views and experience (Bryman, 1988). In this case, the use of a theoretically based approach to qualitative analysis would prove to be inadequate, as we noted earlier (Section 13.5). The use of an inductive approach in such a case should allow a good ‘fit’ to develop between the social reality of the research participants and the theory that emerges – it will be ‘grounded’ in that reality. This relationship should also mean that those who participated in the research process would understand any theory that emerges. Third, the theory may be used to suggest subsequent, appropriate action to be taken because it is specifically derived from the events and circumstances of the setting in which the research was conducted. Finally, the theory’s generalisability may also be tested in other contexts (e.g. Glaser and Strauss, 1967; Strauss and Corbin, 1998).

However, you should not use an inductive approach as a means of avoiding a proper level of preparation before commencing your research project. Qualitative analysts who use such an approach do not start to research a subject area without a competent level of
knowledge about that area. Their research will commence with a clearly defined research question and objectives, even though this may be altered by the nature of the data that they collect. For example, Hodson (1991, cited in Erlandson et al., 1993) reported that his initial purpose was focused on organisational sabotage, although the research process led him to develop and seek to verify a hypothesis related to more subtle forms of non-cooperation with an employer. The avoidance of a predetermined theoretical basis in this type of approach is related to the desire to search for and recognise meanings in the data and to understand the social context and perceptions of your research participants. It is not to avoid the burden of producing this before the process of data collection! You will need to compare your explanations with existing theory once these have emerged. The use of an inductive approach may also involve you in a lengthy period of data collection and concurrent analysis in order to analyse a theme adequately or to derive a well-grounded theory. Strauss and Corbin (1990) suggest that this type of approach may take months to complete.

Data display and analysis

The data display and analysis approach is based on the work of Miles and Huberman (1994), whose book focuses on the process of ‘doing analysis’. For Miles and Huberman, the process of analysis is composed of three concurrent subprocesses:

- data reduction;
- data display;
- drawing and verifying conclusions.

As part of the process, *data reduction* includes summarising and simplifying the data collected and/or selectively focusing on some parts of this data. The aim of this process is to transform the data and to condense it. Miles and Huberman outline a number of methods for reducing data, some of which we have already referred to in Section 13.4. These include the production of interview or observation summaries, document summaries, interim summaries, coding and categorising data, and writing memos.

Data display involves organising and assembling your reduced or selected data into diagrammatic or visual displays. Miles and Huberman describe a number of ways of displaying data, and refer to two main families of data display: matrices and networks. Matrices are generally tabular in form, with defined columns and rows, where data are entered selectively into the appropriate cells of such a matrix. A network is a collection of nodes or boxes that are joined or linked by lines, perhaps with arrows to indicate relationships (Box 13.12). The boxes or nodes contain brief descriptions or labels to indicate variables or key points from the data.

Miles and Huberman believe that there are a number of advantages associated with using these forms of data display. Qualitative data collection tends to produce hours of audio-recorded interviews or extensive piles of notes (see Box 13.16 on page 502). Once these have been transcribed or word-processed, they are generally referred to as ‘extended text’. Extended text is considered an unreduced form of display that is difficult to analyse because it is both extensive and poorly ordered. Based on the logic that ‘you know what you display’, they believe that the analysis of data and the drawing of conclusions from these will be helped by using matrices, networks or other visual forms to display reduced or selected data drawn from your extended text. Miles and Huberman also believe that these forms of display are relatively easy to generate, can be developed to fit your data specifically, and will help you develop your analytical thinking as you work through several iterations to develop a visual form that represents your data well.
They also believe that recognising relationships and patterns in the data, as well as drawing conclusions and verifying these, will be helped by the use of data displays. The use of a display will allow you to make comparisons between the elements of the data that are included in it and to identify any relationships, key themes, patterns and trends.
that may be evident. These will be worthy of further exploration and analysis. In this way, the use of data displays will help you to interpret your data and to draw meaning from it. As is illustrated in Box 13.12, some CAQDAS programs, including ATLAS.ti, allow you to represent your data graphically (Lewins and Silver, 2005).

Use of this analytic strategy may provide you with an appropriate set of procedures to analyse your qualitative data, or alternatively one or more of the techniques that Miles and Huberman outline may be useful as part of your approach to analysing this type of data. They describe the analysis of qualitative data as an interactive process, and in this sense their approach includes many aspects of analysis that complement the generic process outlined in Section 13.4. Their approach is a systematic and structured one, and

BOX 13.13 FOCUS ON MANAGEMENT RESEARCH

Resistance to information technology implementation

Lapointe and Rivard (2005) used data from three longitudinal case studies of hospitals’ electronic medical records (EMRs) systems to examine models of resistance to information technology. EMRs are computer-based systems that allow access to patients’ records at all times from different locations to retrieve data, observe treatment programmes or obtain test results. In each of the three cases, Lapointe and Rivard focused on the implementation process from EMR software selection to its installation and use by the hospital’s physicians. Data were collected from three sources:

- direct observation over a period of days at each site observing how each EMR was used;
- system and project documentation, minutes of committee meetings, memoranda and letters;
- 43 semi-structured interviews with physicians (15), nurses (14) and managers (14).

One of the researchers subsequently produced and coded complete transcripts using the CAQDAS programme NUD*IST™ (subsequently developed as N6). Extracts of data from each of the cases were subsequently coded by other researchers to ensure validity of the coding process. This initial coding was based upon an analysis of the resistance to IT literature and ‘allowed for the identification of behaviours, precursors, threats, subject, and objects of resistance’ (Lapointe and Rivard, 2005:470). As part of this process, the coding structure was modified where it was felt it did not adequately represent the data.

Data analysis was conducted in two stages:

1. **within** each of the three cases to provide a rich understanding of the case and allow unique patterns within each case to emerge;
2. **across** the three cases to search for common patterns and unique features.

The first stage used data reduction and presentation techniques, creating separate tables to distinguish between different periods of resistance. Units of each transcript that reported specific resisting behaviours were identified and examined to establish the object of these behaviours, their associated threats and the conditions in which they had occurred. Similar behaviours were then clustered together, providing clear chains of evidence.

For the second stage, a number of categories of resisting behaviours were selected. Each of these was explored across the cases to identify similarities and differences between them. Through this a general explanation that could be applied to all cases was developed. Based on these analyses Lapointe and Rivard were able to develop a model that they argued both explained the dynamics of group-level resistance and showed how these emerged from individual resistance behaviours over time.
they recognise that the procedures that they outline are often associated with a fairly high level of formalisation (Box 13.13). However, unlike grounded theory, the exact procedures to be followed within their framework of data reduction, display and conclusion drawing and verification are not specified. Miles and Huberman refer to their work as a ‘sourcebook’, and as such they offer a number of possible techniques that may be appropriate within their overall approach. If you intend to use this book we suggest you take care in identifying what is useful for you in the context of your own research project.

The approach of Miles and Huberman is suited to an inductive strategy to analyse qualitative data, although it is also compatible with a more deductive strategy through use of many of the techniques that they outline. Their book is useful both for its overall discussion of the analysis of qualitative data and in relation to the many suggestions relating to particular aspects of, and techniques for, the successful conduct of this process.

Template analysis

This subsection is based on the work of King (2004). He describes and discusses a procedure to analyse qualitative data known as template analysis. A template is essentially a list of the codes or categories that represent the themes revealed from the data that have been collected. Like the data display approach just discussed, template analysis combines a deductive and an inductive approach to qualitative analysis in the sense that codes will be predetermined and then amended or added to as data are collected and analysed. In the worked example in this subsection we provide part of a predetermined template of codes that was derived deductively by considering existing literature and theory before proceeding to collect and analyse data.

King provides a number of ways of differentiating template analysis from grounded theory, which he says it resembles. Grounded theory, as we discuss later in this section, does not permit the prior specification of any codes to analyse data, holding as it does to a more purely inductive analytical approach as far as is practically possible. Grounded theory is also more structured than template analysis, with a set of procedures that must be used, according to Strauss and Corbin (1990). In this sense King comments that grounded theory is much more prescriptive. In contrast, template analysis is similar to the data display and analysis approach in that it offers a more flexible route to analysis, which would allow you to amend its use to the needs of your own research project (King, 2004).

Like the general approach to analysing qualitative data outlined earlier in Section 13.4, template analysis involves categorising and unitising data. Data are coded and analysed to identify and explore themes, patterns and relationships. The template approach allows codes and categories to be shown hierarchically to help this analytical process. In Box 13.14 a hierarchical relationship is shown between the codes listed, there being (in the example) three levels of codes and greater depth of analysis being indicated by the lower-order codes shown towards the right-hand side of the template. Codes are also grouped together in levels 2 and 3 to show how higher-order codes are constituted.

As data collection proceeds, your template will be subject to revision as part of the process of qualitative analysis. The process of analysing interview transcripts or observation notes will lead to some of the codes being revised and even changes to their place or level in the template hierarchy. This process will also involve unitising data according to the list of codes currently in use. Where you consider introducing a new code or altering the level of an existing code in the template, you will need to verify this action and explore its implications in relation to your previous coding activity. This is usually more straightforward using CAQDAS (Lewins and Silver, 2005). As part of this, it is helpful to use self-memos to remind you later of the reasons for these changes.
King outlines four ways in which a template may be revised:

- insertion of a new code into the hierarchy as the result of a relevant issue being identified through data collection for which there is no existing code;
- deletion of a code from the hierarchy if it is not needed;
- changing the scope of a code, that is altering its level within the hierarchy;
- reclassifying a code to a different category.

The issue or theme indicated by a lower-order code may assume a greater importance than expected once data collection and analysis occurs. For example, in Box 13.14, the third-level code ‘features’ may prove to be of greater importance in relation to the research project and therefore require to be reclassified as a level 1 code or category. Equally, the analytical relevance of some higher-order codes may be restricted in practice so that they are reclassified at a lower level as a subset of another higher-order code. A template may also be modified when a code originally included as a subcategory of one higher-order code is reclassified as a subcategory of another as you begin to immerse yourself in your transcripts more fully.

The template may continue to be revised until all of the data collected have been coded and analysed carefully. It will therefore serve as an analytical technique through which to devise an initial conceptual framework that will be subsequently revised and then finalised as a means to represent and explore key themes and relationships in your data. The template approach will also help you to select key themes to explore and to

BOX 13.14 WORKED EXAMPLE

Part of an initial template to analyse an advertising campaign’s impact

Joss had been asked to analyse the impact of a recent advertising campaign. Using her interview topic guide, she used the main questions to set higher-order codes (shown in CAPITALS). Subsidiary questions and probes were used to generate lower-order codes, shown in lower case and italic script. An extract of her initial template follows:

1 CONTEXTUAL FACTORS
 1 Reasons for campaign
 2 Environment
 1 Political
 2 Economic
 3 Socio-cultural
 4 Technological
 5 Legal
 3 Nature of the product
 1 Cost
 2 Features
 3 Target groups

2 NATURE OF THE CAMPAIGN
 1 Media
 2 Coverage

3 AWARENESS BY TARGET GROUPS AND OTHERS
 1 Those in target groups
 2 Others

identify emergent issues that arise through the process of data collection and analysis that you may not have intended to focus on as you commenced your research project (King, 2004).

Analytic induction

Analytic induction is an inductive version of the explanation-building procedure outlined earlier in Section 13.5 (Yin, 2003). Johnson (2004:165) defines analytic induction as ‘the intensive examination of a strategically selected number of cases so as to empirically establish the causes of a specific phenomenon’. As an inductively led approach to analyse qualitative data, it therefore commences with a less defined explanation of the phenomenon to be explored, which is not derived from existing theory. This explanation (sometimes termed a hypothesis) is then tested through a case study that is selected purposively (Section 7.3) to allow the phenomenon to be explored. Given the loosely defined nature of the explanation it is likely either that the explanation will need to be redefined or that the scope of the phenomenon to be explained will need to be narrowed (Box 9.5). Adopting one of these courses of action leads to a redefinition (of the phenomenon or its explanation) and the need to explore a second case study that will also be selected purposively. Where the explanation appears to be confirmed, you may either cease data collection on the basis that you believe that you have found a valid explanation or seek to test the explanation in other purposively selected cases to see whether it is still valid. Where the explanation is not adequate, it will again be necessary to revise it and to test this in the context of another purposively selected case. This process may continue until a refined explanation is generated that reasonably explains the phenomenon in relevant cases where you collected and analysed data.

As an inductive and incremental approach to the collection and analysis of qualitative data, this strategy has the capability of leading to the development of well-grounded explanations. In this way, analytic induction encourages the collection of data that are thorough and rich, based on the explored actions and meanings of those who participate in this process, whether through in-depth interviews or observation, or some combination of these methods. However, this approach has been evaluated in different ways in relation to the nature of the explanations that its use is likely to produce. On the one hand, it has been claimed that thorough and rigorous use of this approach may lead to unassailable explanations where all negative cases are either accounted for by the final revised explanation or excluded by redefining the phenomenon being studied (Johnson, 2004; Kidder, 1981). On the other hand, analytic induction has been criticised because it seeks to find an explanation for the necessary conditions that exist in cases where a phenomenon occurs, whereas there may well be other cases where the same conditions exist but the phenomenon does not occur. For example, an explanation may be developed to explain the conditions that exist in cases where organisational theft occurs, whereas there are likely to be other cases where the same conditions apply but where such theft may or may not occur. In this way, it would also be necessary to study a range of cases where such conditions apply, having identified these, to find out whether the phenomenon (theft) also exists in all or only some of these cases (Johnson, 2004). However, such an approach is likely to be highly time consuming and resource intensive and perhaps suitable only for major research projects. A more detailed discussion of analytic induction is given by Johnson (2004).
Grounded theory

Grounded theory as a strategy has already been outlined briefly in Section 5.3. As an analysis process it was developed to build an explanation or to generate a theory around the core or central theme that emerges from your data. Some prominent advocates of grounded theory state fairly precise procedures to be followed in relation to each of the stages of the qualitative analysis process that was outlined in general terms in Section 13.4. In this way, the grounded theory of Strauss and Corbin (1998) is structured and systematic, with set procedures to follow at each stage of analysis. Where you do not pay particular attention to the nature of the procedures outlined for grounded theory, you may not produce a research report that is sufficiently rigorous to substantiate the explanation or theory that you are seeking to advance. However, grounded theory may be approached as a strategy as much as a set of procedures. Such an approach may therefore result in the process of analysis being conducted in a less formalised and proceduralised way while still maintaining a systematic and rigorous approach to arrive at a grounded explanation or theory (Section 13.4).

In the grounded theory of Strauss and Corbin (1998) the disaggregation of data into units is called **open coding**, the process of recognising relationships between categories is referred to as **axial coding**, and the integration of categories to produce a theory is labelled **selective coding**. We shall briefly outline each of these in turn, drawing on the work of Strauss and Corbin (1990, 1998). Within grounded theory, choice of cases through which to gather data and refine concepts is termed **theoretical sampling** (Glaser and Strauss, 1967; Strauss and Corbin, 1998). In this way, sampling is purposive (Chapter 7.3), where critical cases are chosen to further the development of concepts and categories and to explore relationships between these to develop a theory. Underpinning this is the procedure of **constantly comparing** the data being collected with the concepts and categories being used, so as to aid the process of developing an emerging theory that will be thoroughly grounded in that data. Theoretical sampling continues until a situation of **theoretical saturation** is reached. This situation is reached when data collection ceases to reveal new data that are relevant to a category, where categories have become well developed and understood and relationships between categories have been verified (Strauss and Corbin, 1990, 1998).

Open coding

Open coding is similar to the unitisation and categorisation process outlined in Section 13.4. The data that you collect will be disaggregated into conceptual units and provided with a label. The same label or name will be given to similar units of data. However, because this research process commences without an explicit basis in existing theory, the result may be the creation of a multitude of conceptual labels related to the lower level of focus and structure with which you commence your research (Box 13.15). The emphasis in this grounded theory approach will be to derive meaning from the subjects and settings being studied. In Section 13.4 we stated that a unit of data might relate to a few words, a line, a sentence or number of sentences, or a paragraph. The need to understand meanings and to generate categories to encompass these in a grounded theory approach is likely to lead you to conduct your early analysis by looking at smaller rather than larger units of data. The resulting multitude of code labels will therefore need to be compared and placed into broader, related groupings or categories. This will allow you to produce a more manageable and focused research project and to develop the analytical process.
Strauss and Corbin (1998) suggest that there are three main sources to derive names for these categories: you utilise terms that emerge from your data; they are based on actual terms used by your participants (‘in vivo’ codes); or they come from terms used in existing theory and the literature. However, Strauss and Corbin counsel against names being derived from existing theory and literature in a grounded approach. This is because their use in the written account of your research may lead readers to interpret these according to their prior understanding of such theoretical concepts rather than the particular meaning now being placed on such terms.

Using theoretical propositions to guide codes

As part of her studies Maureen had become particularly interested in the difficulties her fellow students faced in writing. In preparation for a class exercise, her research methods tutor had asked each student to describe in writing how they prepared to write. As part of this they were instructed to pay particular attention to the details of the process. Each transcript was word-processed and imported into the CAQDAS program NVivo. Open codes were applied to each transcript using the CAQDAS program NVivo as illustrated in the extract shown.

Based upon their subsequent analysis, Maureen and her colleagues developed the theory that, when writing, students performed a series of rituals which they believed influenced their writing process positively.
The categorisation that you derive from your data will indicate significant themes and issues and help you to consider where data collection should be focused in the future. In conjunction with this, it will also help you to develop a sharper focus in relation to your research question. The nature of this research approach will inevitably mean that your initial research question will be broadly focused, although still within manageable exploratory confines. As you develop a narrower focus through this process you will be able to refine and limit the scope of your research question (Strauss and Corbin, 1998).

Axial coding

This stage refers to the process of looking for relationships between the categories of data that have emerged from open coding. It indicates a process of theoretical development. As relationships between categories are recognised, they are rearranged into a hierarchical form, with the emergence of subcategories. The essence of this approach is to explore and explain a phenomenon (the subject of your research project, or one of them) by identifying what is happening and why, the environmental factors that affect this (such as economic, technological, political, legal, social and cultural ones), how it is being managed within the context being examined, and what the outcomes are of the action that has been taken. Clearly there will be a relationship between these aspects, or categories, and the purpose of your analysis will be to explain this.

Once these relationships have been recognised, you will then seek to verify them against actual data that you have collected. Strauss and Corbin (1990, 1998) recommend that you undertake this by formulating questions or statements, which can then be phrased as hypotheses, to test these apparent relationships. As you undertake this process you will be looking for evidence that supports these questions and for negative cases that will demonstrate variations from these relationships.

Selective coding

Strauss and Corbin (1990) suggest that after a lengthy period of data collection, which may take several months, you will have developed a number of principal categories and related subcategories. The stage that follows is called *selective coding*. This is intended to identify one of these principal categories, which becomes known as the central or core category, in order to relate the other categories to this with the intention of integrating the research and developing a grounded theory (Strauss and Corbin, 1998). In the previous stage the emphasis was placed on recognising the relationships between categories and their subcategories. In this stage the emphasis is placed on recognising and developing the relationships between the principal categories that have emerged from this grounded approach in order to develop an explanatory theory. A detailed discussion of this approach, outlining the procedural steps, is given by Strauss and Corbin (1990, 1998).

Summary implications of using grounded theory

A number of implications have emerged from this brief outline of the main procedures involved in the use of grounded theory. These may be summed up by saying that the use of a grounded theory approach will involve you in a process that will be time consuming, intensive and reflective. Before you commit yourself to this particular approach, you will need to consider the time that you have to conduct your research, the level of competence you will need for this approach, your access to data, and the logistical implications of immersing yourself in such an intensive approach to research (Box 13.16). There may also be a concern that little of significance will emerge at the end of the research process, and this will be an important aspect for you to consider when determining the focus of your research if you use grounded theory.
Discourse analysis

Discourse analysis is a general term that covers an extremely wide variety of approaches to the analysis of language in its own right and is concerned with how and why individuals’ language is used by individuals in specific social contexts. In particular, it explores how language (discourse) in the form of talk and text both constructs and simultaneously reproduces and/or changes the social world rather than using it as a means to reveal the social world as a phenomenon (Phillips and Hardy, 2002). The focus is therefore on identifying how this reproduction or change occurs. Given these concerns, you will not be surprised that researchers using discourse analysis usually adopt a subjectivist ontology (Section 4.2). In choosing a discourse analysis approach you would explore the use of language in specific contexts such as holiday brochures to construct a social reality of a package holiday or the minutes of meetings to reflect the meaning of the meeting from the perspective of the chairperson. There are many forms of discourse analysis (Dick, 2004); however, within this subsection we will concern ourselves with one, critical discourse analysis.

Critical discourse analysis assumes that the constructions that individuals make operate not only in a sense-making way but also reproduce or challenge the underlying ideological belief systems of society at large (Dick, 2004). Consequently, different discourses will produce different explanations of the same practice such as a meeting, a holiday or a day at work. They will also produce different versions of the same concept.
For example, the discourse related to the norms of behaviour that are expected in a classroom are likely to differ between students attending primary school, secondary school and university. In addition, the concept of being a student in a classroom can only be constructed in those societies where some form of organised education exists.

The data that are analysed in critical discourse analysis are texts but can be, as discussed in Section 13.3, collected using a wide variety of sources. Within this, Dick (2004) argues that for some research it is useful to identify specific contexts such as the career identities of graduates or the resistance to diversity initiatives in a particular type of organisation. Interview data are transcribed in full prior to analysis, although as the focus is content, Dick (2004) advises that there is no need to indicate pauses or overlaps between speakers. She also suggests that it may be possible to use data sampling rather than transcribe and analyse entire interviews (Table 13.2). Once data have been collected, they are analysed qualitatively, using the procedures outlined in Section 13.4, through a three-dimensional analytical framework. This analyses each discourse from the perspectives of its being (Figure 13.2):

- text;
- discursive practice;
- social practice.

It is this final dimension, social practice, that highlights that discourses are likely to be multiple and contradictory. The extent to which the text defends a particular position provides a clear indication as to the degree to which that position is contested. Where positions are challenged or defended vigorously with the text, these are examples of hegemonic struggle where two or more ideologies compete for dominance.

Discourse analysis therefore focuses on understanding how language is used to construct and change aspects of the world. This means it encourages you not to accept your
research data at face value. Its main disadvantages are that it is time consuming and requires considerable experience before you feel comfortable with the process. In addition, it is a contentious method which is subject to much debate (Dick, 2004).

Narrative analysis

Grounded theory involved the fragmentation of qualitative data to further the process of analysis. However, some approaches to qualitative research consider the fragmentation of data to be inappropriate. More interpretative approaches advocate that researchers should retain the integrity of the data that they collect and commence analysis from the basis of the verbatim transcripts or complete sets of notes that are produced. Examples of this include phenomenological research (Moustakas, 1994) and the life history approach (Musson, 2004). These approaches to qualitative research are based on individuals’ accounts of their experiences and the ways in which they explain these through their subjective interpretations and relate them to constructions of the social world in which they live. This type of strategy commences inductively, and needs to remain sensitive to the social constructions and meanings of those who participate in the research.

The primary method to collect data during these approaches is by in-depth interviews. As part of this process, it is likely that participants will provide accounts that take the form of narratives, or stories. Researchers may also deliberately seek to encourage this by asking participants to provide responses in this form. A **narrative** is broadly defined as an account of an experience that is told in a sequenced way, indicating a flow of related events that, taken together, are significant for the narrator and which convey meaning to the researcher (e.g. Coffey and Atkinson, 1996). It follows that understanding and meaning are likely to be promoted through analysing narrative accounts in their originally told form rather than by seeking to fragment them through a process of coding and categorisation. This is not to say that such accounts cannot also be subjected to this type of analysis (that is, categorisation). However, a narrative account that clearly explains, for example, the social and organisational context within which a research participant operates, the nature of their engagement, the actions that they took, the consequences of these and events that followed may be analysed most effectively in its original form. This will retain the narrative flow of the account and avoid losing the significance of the social context within which these events occurred, or decontextualising the data.

A narrative, as a story with a beginning, middle and end, will broadly follow a perceptible structure. Coffey and Atkinson (1996) draw on previous research to outline the structural elements that are often present in narratives. These broadly take the following form:

- What is the story about?
- What happened, to whom, whereabouts, and why?
- What consequences arose from this?
- What is the significance of these events?
- What was the final outcome?

Coffey and Atkinson point out that these elements may not occur in the order listed and may also recur in a given narrative. Nevertheless, as they point out, the presence of structural elements in narratives may also be helpful in analysing this type of account.

Depending on the nature of your research question and objectives, the data collection methods used and the data that are produced, this type of analytical approach may be
suitable for you to use. It may be used either as the principal means to analyse your qualitative data, or as a complementary means by which some of your data are produced in the form of narrative accounts. In this way, narrative analysis may be used as a means to explore linkages, relationships and socially constructed explanations that naturally occur within narrative accounts, where fragmentation of these into categories and themes would therefore be rendered unnecessary. The structural elements that are present in narratives may also help you to analyse each narrative account and perhaps to compare the course of events in different narratives where there is likely to be some analytical benefit in comparing these.

13.8 Quantifying your qualitative data

There may be occasions when you decide to quantify some of your qualitative data. This is likely to be the case when you wish to count the frequency of certain events, or of particular reasons that have been given, or in relation to specific references to a phenomenon. These frequencies can then be displayed using a table or diagram (Section 12.3) and can usually be produced using CAQDAS programs and exported to statistical analysis software such as Excel and SPSS. They can also often be exported directly to your word processor.

This approach to describing and presenting your data will provide you with a very useful supplement to the principal means of analysing your qualitative data discussed above. It may also enable you to undertake other quantitative analyses, such as those discussed in Sections 12.4 to 12.6. However, it is indeed a supplementary means of achieving this, and there is clearly only limited purpose in collecting qualitative data if you intend to ignore the nature and value of these data by reducing most of them to a simplified form.

13.9 Using CAQDAS for qualitative analysis

The use of CAQDAS offers a number of advantages in relation to the analytical approaches we have been discussing. In particular, when used systematically, it can aid continuity and increase both transparency and methodological rigour. These latter points were summarised by one of our students as ‘it forces you to do your analysis properly!’ However, the use of this type of software may be problematic, not least due to its not being available at some universities!

The literature that evaluates CAQDAS raises a number of issues associated with its use. While there are a number of different CAQDAS programs available, these vary in relation to the type of facilities that they offer and therefore potentially in their usefulness for different analytic situations. Consequently, you need to develop some familiarity with a range of programs to be able to evaluate their applicability for the particular analyses you wish to undertake. At the same time it is likely that only one or perhaps two of these programs will be available for you to explore and evaluate in your university. Lewins and Silver (2005:1) summarise this situation, stating:

It is not always easy to visualise exactly what a CAQDAS package offers when exploring it for the first time yourself. Equally when asking someone else for their opinion, it is not always easy to know which questions you should be asking. Most of the software packages
we are aware of and discuss regularly are excellent products in one way or several! Sometimes you choose a package that is already in situ and make good use of it but if you have a choice about which software to purchase for your research project you may be in some uncertainty about how to proceed.

Functions

Despite differences between CAQDAS programs, the basic ways in which they can facilitate your qualitative data analysis are similar. Lewins and Silver (2005) summarise these as:

- **Project management and data organisation**: powerful means to manage the research project as a whole and organise your data. Data organisation allows you to focus on subsets of data;
- **Closeness to data and interactivity**: almost instantaneous access to all your data once it has been introduced;
- **Explore the data**: text search tools enable a word, a phrase or a collection of words to be searched and retrieved within context;
- **Code and retrieve**: complete freedom over the use of inductive, deductive or a combination of coding schema to code, retrieve, recode and output data;

CHAPTER 13 · ANALYSING QUALITATIVE DATA

Choosing a CAQDAS package

- How much data do you have that needs to be analysed qualitatively?
- How important are these data, relative to other data you have collected for your research project?
- How much time do you have to learn how to use the package?
- How much support is available in your university to help you learn to use the package?
- What is the operating system of your computer?
- How much memory does your computer have?
- How much time do you have to undertake your analysis?
- Do you want software that will allow you to take an inductive (or a deductive) approach to your analysis?
- Do you want a package that will help you manage your thinking and allow you to develop your own codes?
- Do you want a package that will allow you to explore the way language is used in your data?
- Do you want a package that allows you display relationships within your data diagrammatically?
- Do you want a package that will allow you to quantify your data?
Searching and interrogating: on basis of language used, including automatically coding data, on basis of relationships between codes, for different units of data to build hypotheses and theorise;

Writing memos, comments, notes, etc. to record thoughts systematically in relation to the data;

Output: reports allowing you to view material in hard copy or export it to other applications such as word processors and spreadsheets as well as produce tabular reports.

What is not apparent from this list is that the functions contained in some CAQDAS packages are better at supporting certain types of qualitative data analysis procedures than others. This means that you may need to experiment with more than one package before you find the CAQDAS that meets your needs. Your final choice of CAQDAS package will be dependent on a range of factors, including, not least, the relative benefits you will gain relative to the time you need to invest to learn a CAQDAS program. These factors are summarised in Box 13.17 as a checklist.

Exploring the latest versions of CAQDAS

Published information about CAQDAS programs is likely to become out of date fairly quickly. Fortunately, there is a wealth of up-to-date information available from the CAQDAS Networking project’s website hosted by the University of Surrey.1 If you are considering using CAQDAS, we would strongly recommend a visit to this website which, in addition to a wealth of useful articles, also contains weblinks to commercial software producers’ sites including downloadable demonstration versions of the software. We would also advise you to explore the Internet sites of CAQDAS producers to obtain details and demonstrations of the latest versions of these packages and the features that they offer. Some of those most widely used are listed in Table 13.3.

Table 13.3 Internet addresses for a range of selected CAQDAS producers

<table>
<thead>
<tr>
<th>Name</th>
<th>Internet address</th>
<th>Brief comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS.ti</td>
<td>http://www.atlasti.de</td>
<td>Windows version only, offers great flexibility</td>
</tr>
<tr>
<td>HyperRESEARCH</td>
<td>http://www.researchware.com</td>
<td>Windows and MAC versions, simple to use</td>
</tr>
<tr>
<td>MAXqda / MAXqda2</td>
<td>http://www.maxqda.com/ maxqda-eng/index.htm</td>
<td>Windows version only, intuitive, easy to get to grips with</td>
</tr>
<tr>
<td>NVivo</td>
<td>http://www.qsrinternational.com/</td>
<td>Windows version only, very powerful software, large range of searching possibilities</td>
</tr>
<tr>
<td>QSR N6</td>
<td>http://www.qsrinternational.com/</td>
<td>Windows version only, excellent range of search tools</td>
</tr>
</tbody>
</table>

Sources: developed from Lewins and Silver, 2005; authors

1 The Internet address for the CAQDAS Networking Project is http://caqdas.so.surrey.ac.uk/
13.10 Summary

- Qualitative data are non-numerical data that have not been quantified. They result from the collection of non-standardised data that require classification and are analysed through the use of conceptualisation.
- The process of qualitative analysis generally involves the development of data categories, allocating units of your original data to appropriate categories, recognising relationships within and between categories of data, and developing and testing hypotheses or propositions to produce well-grounded conclusions.
- The process of data analysis and data collection is necessarily an interactive one.
- There are a number of aids that you might use to help you through the process of qualitative analysis, including interview, observation, document and interim summaries, self-memos and maintaining a researcher’s diary.
- Different qualitative analytical strategies can be identified, related to using either a deductively based or an inductively based approach to research. The use of these different strategies has implications for the procedures involved in the analysis of qualitative data.
- Quantifying some categories of qualitative data may help you to analyse this.
- The use of computer-assisted qualitative data analysis software (CAQDAS) can help you during qualitative analysis with regard to project management and data organisation, keeping close to your data, exploration, coding and retrieval of your data, searching and interrogating to build hypotheses and theorise, and recording your thoughts systematically.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

13.1 Why do we describe qualitative analysis as an ‘interactive process’?
13.2 What types of data will you need to retain and file while you are undertaking qualitative research?
13.3 How would you differentiate between a deductive and an inductive analytical approach?
13.4 What are the main implications of using a deductive analytical approach for the way in which you conduct the process of qualitative analysis?
13.5 What are the main implications of using an inductive analytical approach for the way in which you conduct the process of qualitative analysis?

REVIEW AND DISCUSSION QUESTIONS

13.6 With a friend, obtain a transcript of an interview that has already been undertaken. If your university subscribes to online newspapers such as ft.com, these are a good source of business-related transcripts. Alternatively, typing ‘interview transcript’ into a search engine such as Google will generate numerous possibilities on a vast range of topics!
- With your friend, decide on the unit of analysis you wish to use. We suggest you use either lines or paragraphs and subsequently agree on a coding template.
b Independently apply your template to your transcript, using it to code your data units.
c How well did your coding template work?
d To what extent does your coding differ from that of your friend?
e Why do you think this is?

13.7 Visit one of the CAQDAS websites listed in Table 13.3. Find and download a demonstration version of the CAQDAS program and explore its features. How useful do you think this will be for analysing your research data?

13.8 Find out whether your university provides you with access to the NVivo CAQDAS. If it does, visit this book’s companion website and download the self-teach package and associated data sets. Work through this to explore the features of NVivo.
References

FURTHER READING

Further reading

Miles, M.B. and Huberman, A.M. (1994) *Qualitative Data Analysis* (2nd edn), Thousand Oaks, CA, Sage. Provides an excellent source of reference to the elements involved in qualitative research as well as offering a number of particular techniques that may help you to analyse your data.

Shanta was a part-time postgraduate student. One of the requirements of her programme was that the research project had to be based on an identified real-world organisational issue or problem.

As well as undertaking her studies, Shanta was employed full time as a Human Resources officer in a large university. During the course of her studies she had developed an interest in organisational misbehaviour and the use of information and communication technology (ICT) – specifically Internet abuse in the workplace. This seemed a possible area for research, particularly when she spoke to her Head of Department who told her there had been a recent disciplinary hearing in the university related to inappropriate material on a member of staff’s computer. However, when Shanta raised the possibility of undertaking a research project into this area at the university, her Head of Department was not very positive and began to argue why it would not be a suitable project. Nevertheless, Shanta persevered and persuaded her Head of Department not to condemn the research until she had done some exploration of the academic literature and considered further the focus of her research.

Shanta discovered that for many organisations the Internet is now a critical component of their business and is shaping the behaviour of many employees. In both the public and private sectors, organisations that operate at the forefront of the knowledge economy benefit greatly from the enhanced communications and extensive research capabilities brought by web technologies (Cohen, 2001:70). Despite this, from an employer perspective, using the Internet can also generate undesirable outcomes. These include loss of intellectual property, sexual and racial harassment, productivity loss due to excessive use of the web, and crime (Anandarajan and Simmers, 2001). Shanta also discovered that the vast majority of the academic research into Internet abuse had emanated from the USA and there was very little work based on her own country’s experience. The work of Siau et al. (2002) was of particular interest to her as they had synthesised a typology of Internet abuse and had developed a framework of best practice for Internet usage policies (IUPs).

Based on her initial review of the literature Shanta went back to her Head of Department with a proposed research question:

To what extent are the challenges facing Higher Education employers in the UK when developing and implementing Internet usage policies being addressed?

She suggested that her research would support her own organisation by investigating what other universities were doing about Internet abuse through policy development and that, after the research, she would be in a position to make some recommendations about implementation of the policy and monitoring of its success. Her Head of Department thought this was an excellent idea and agreed to support her project, offering limited resources to support the data collection.

Shanta began planning her research strategy by examining how previous studies into Internet use and abuse had been carried out. It appeared that data collection had predominantly been through questionnaires. Key issues had emerged from research that were pertinent to Shanta’s research, namely:

- organisations need to safeguard their reputation to stay in business;
- organisations need to have an appropriate Internet use policy (AIUP);
- organisations support their IUP with monitoring of employee Internet use;
- organisations see the prevention of employees’ access to pornographic material through workplace computers to be a priority.

Shanta’s interest lay not only on whether these were key issues here in her country, but also in the...
concerns that were emerging as organisations developed and implemented their IUPs. She therefore wanted to undertake a qualitative approach that allowed her to explore in detail some of the important issues. Her research plan had two phases and was intended to last six months.

Phase One: With the support of her Head of Department who was a member of a Senior Higher Education Human Resource Managers’ network she contacted by email all institutions in this network asking them to send her a copy of their organisation’s IUP and to answer some open-ended questions about the issues prompting their own development of their IUP. She also asked the recipients if she could carry out follow-up interviews to explore any issues that arose from her email.

Phase Two: In this phase Shanta intended to identify a sample of HE institutions based on the quality of their implementation policy. She thought that interviews with key personnel involved in developing, implementing and monitoring the IUP policy would shed light on many of the issues. She anticipated that, based on time and resources available, she could do about 15 interviews.

Shanta began Phase One with great hope, but planning research does not always mirror the reality of the data collection. Her Head of Department had provided a long list of individuals to email but only eight responses were received. She was also disappointed as out of the eight respondents, only one organisation was willing to allow her access to carry out follow-up interviews to explore any issues that arose from her email.

Shanta began Phase One with great hope, but planning research does not always mirror the reality of the data collection. Her Head of Department had provided a long list of individuals to email but only eight responses were received. She was also disappointed as out of the eight respondents, only one organisation was willing to allow her access to carry out follow-up interviews. The organisation would only allow interviews to take place if she agreed to sign an agreement to maintain confidentiality throughout and ensured that their university was never mentioned in the dissertation. Thus it became known as University A.

Access to University A in Phase Two provided Shanta with a rich source of data that she could never have anticipated in the planning of her research. She was offered the opportunity to interview staff who were responsible for the policy development and who had experience of the ‘policy in action’ – monitoring of staff and disciplining of staff for Internet abuse. She was given access to the following university staff:

- Vice Chancellor;
- Assistant Director of Information Services;
- Director of Human Resources;
- Registrar;
- two HR officers.

Each interview lasted over one hour and was recorded digitally. Her questions focused on the IUP, Internet usage within the university, monitoring and abuse and disciplinary issues where abuse was discovered. She found recording the interviews beneficial as she could focus completely on the interviewee and what they were saying. Each interview was transcribed immediately after the meeting and emailed to the interviewee with a request to check for accuracy. She was also given access to three case files of disciplinary proceedings where staff from different areas of the university had been involved in Internet abuse.

Analysis of her data took some time. On receipt of the eight emails with their IUPs attached in Phase One it became evident that each university had developed an IUP in reaction to specific cases of Internet abuse, ranging from downloading music and films illegally, excessive use of leisure facilities in work time to accessing pornographic material. She synthesised a suitable framework of best practice and then assessed each of the eight IUPs submitted. This highlighted that some policies were much better than others, whilst in some there were major shortcomings. University A had the most comprehensive policy and yet they had been unable to implement it effectively.

Before undertaking the interviews Shanta began to analyse in detail the disciplinary case files. This was not an easy process as the case files had been compiled by different Human Resources officers, they were in different formats and of varying lengths of detail. She began by reading each case thoroughly to get an understanding of the main issues. In helping her focus on the main points she would have liked to have used a highlighter pen on each case file. However, she had been asked to return them in the same condition she had been given them. Instead she drew up a matrix on a page of A4 paper where she noted and highlighted emerging themes. During this she noticed some inconsistencies that she wanted to explore with the interviewees. A major issue was the penalties imposed on different categories of staff. She therefore adapted her interview schedule to take account of this, carrying out the interviews with
substantially more background information than she had at the beginning of the data collection. One section of her interview checklist for staff at University A involved asking how they defined Internet abuse and then how they dealt with it. The following are short extracts from the interview transcripts:

Internet abuse

Internet abuse is classed as gross misconduct. We would undertake disciplinary proceedings against anyone found to be abusing their Internet access . . . it’s a matter of degree obviously, too much time (on the Internet) might be half an hour or it might be five days. If it was someone who was constantly visiting travel sites I would expect it to be dealt with in a slightly different way than if it was somebody downloading pornography. I would class that as more serious. To be honest until now I haven’t really given it much thought. *(HR Officer 1)*

Dealing with abuse

Erm . . . for academic and administrative staff it is consistent. They would be brought before a disciplinary panel of about four members of staff – one being from HR. Depending on the seriousness of the abuse they would probably get a warning or maybe their Internet access removed. I have to say I think that for ancillary staff we are probably slightly tougher. I think there is a tendency to be slightly more severe with some categories of staff. *(Do you think that’s fair?) No. I think there are differences in circumstances and types of jobs, but not sufficient to justify the differences in how we handle people currently. *(HR Officer 2)*

We don’t really like to go to a disciplinary panel as things might get out of hand – you know, solicitors, police etc. From the university’s point of view it is very much easier if someone just resigns than if we go through a full public hearing and disciplinary process. What’s happened in these severe cases is that there has been the threat of applying the disciplinary process rather than the application of it. *(Vice Chancellor)*

Besides writing her project report, Shanta was able to draw up a suitable IUP policy for her university and recommend a strategy for implementation that addressed many of the issues she uncovered. Unfortunately, with the implementation of many policies and recommendations there is often a requirement to invest substantial amounts of resources. Shanta has yet to report on the outcome.

References

QUESTIONS

1. Why do you think organisations might be reluctant to allow this type of research to be undertaken by students?

2. What are the key ethical issues raised in this case study?

3. With hindsight, how could Shanta have designed her research to avoid some of the difficulties encountered in her research?

4. Devise categories to label the short extracts from the interview transcripts. ‘Unitise’ or code these data, using these categories and using sentences as units.

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:

- Communicating bad news at Abco
- Paying for competence at Investco.
13.1 There are a number of reasons why we may describe qualitative analysis as an ‘interactive process’. Analysis needs to occur during the collection of data as well as after it. This helps to shape the direction of data collection, especially where you are following a grounded theory approach. The interactive nature of data collection and analysis allows you to recognise important themes, patterns and relationships as you collect data. As a result you will be able to re-categorise your existing data to see whether these themes, patterns and relationships are present in the cases where you have already collected data. In addition, you will be able to adjust your future data collection approach to see whether they exist in cases where you intend to conduct your research.

13.2 You will generate three broad types of data that you will need to retain and file as the result of undertaking qualitative research. The first of these may be referred to as raw data files. These are your original notes and audio-recordings made during the conduct of interviews or observations, or from consulting documentation. In addition, you will also retain transcripts and written-up notes of interviews and observations, although these may also be contained in a computer file. The second of these is analytical files containing your categorised data. These may of course also be contained in a computer file. The third of these may be referred to as a supporting file, or indeed it may be different files, containing working papers, self-memos, interim reports and so forth. Again, these may also be contained in a computer file. You are well advised to keep all of this until the end of your research project. Eventually you will create a fourth file – containing your finished work!

13.3 A deductive analytical approach is one where you will seek to use existing theory to shape the approach that you adopt to the qualitative research process and to aspects of data analysis. An inductive analytical approach is one where you will seek to build up a theory that is adequately grounded in a number of relevant cases. The design of qualitative research requires you to recognise this choice and to choose an appropriate approach to guide your research project.

13.4 There are a number of implications of using a deductive analytical approach for the way in which you conduct the process of qualitative analysis:
- You will be in a position to commence your data collection with a well-defined research question and objectives and a clear framework and propositions, derived from the theory that you will have used.
- With regard to sampling, you will be in a position to identify the number and type of organisations to which you wish to gain access in order to undertake data collection to answer your research question and meet your objectives.
- The use of literature and the theory within it will shape the data collection questions that you wish to ask those who participate in your research project.
- You will be able to commence data collection with an initial set of categories derived from your theoretical propositions/hypotheses and conceptual framework linked to your research question and objectives.
- This approach will provide you with key themes and patterns to search for in your data, and your analysis will be guided by the theoretical propositions and explanations with which you commenced.

13.5 The main implications of using an inductive analytical approach for the process of qualitative analysis are likely to be related to:
- managing and categorising a large number of code labels, which are likely to emerge from the data that you collect;
- working with smaller rather than larger units of data;
- recognising significant themes and issues during early analysis to help you to consider where data collection should be focused in the future;
- recognising the relationships between categories and rearranging these into a hierarchical form, with the emergence of subcategories;
- seeking to verify apparent relationships against the actual data that you have collected;
understanding how negative cases broaden (or threaten) your emerging explanation;
recognising the relationships between the principal categories that have emerged from this grounded approach in order to develop an explanatory theory;
being rigorous in your use of the procedures that are advocated in order to be able to produce a research report that contains findings that are sufficiently ‘grounded’ to substantiate the analysis or theory that you are seeking to advance.
LEARNING OUTCOMES

By the end of this chapter you should be able to:

➔ view the writing of the final project report as an exciting prospect;
➔ write in such a way that you can reflect on all you have learned while conducting the research;
➔ write a final project report that presents an authoritative account of your research;
➔ adopt an appropriate format, structure and style for the final project report;
➔ ensure that your report meets the necessary assessment criteria;
➔ plan and design an oral presentation of your report.

14.1 Introduction

Some of you may view the process of writing your project report and presenting it orally as an exciting prospect. However, it is more likely that you will approach this stage of your research with a mixture of resignation and trepidation. This is a great pity. We believe that writing about your work is the most effective way of clarifying your thoughts. This suggests that writing should not be seen as the last stage of your research but thought of as something that is continuous throughout the research process.

Writing is a powerful way of learning (Griffiths, 1993). Most teachers will tell you that the best way to learn is to teach. This is because of the necessity to understand something thoroughly yourself before you can begin to explain it to others. This is the position you are in as the writer of your project report. You have to explain a highly complex set of ideas and facts to an audience that you must assume has little or no knowledge of your subject. There is another problem here, which has a parallel with teaching. Often, the more familiar you are with a subject, the more difficult it is to explain it to others with no knowledge of that subject. You will be so familiar with your subject that, like the teacher, you will find it difficult to put yourself in the place of the reader. The result of
this is that you may fail to explain something that you assume the reader will know. Even worse, you may leave out important material that should be included.

However, why do most of us view writing with such concern? Veroff (2001) argues that much of this is rooted in the experience we have of writing. Many of us are afraid of exposing our efforts to an audience that we feel will be more likely to criticise than encourage. In our education much of our writing has been little more than rehashing the ideas of others. This has taught us to think of writing as a boring, repetitive process. Some of us are impatient. We are unwilling to devote the time and energy (and inevitable frustration) that is needed for writing.

This fear of criticism is captured perfectly by Richards (1986), who recites the story of being asked by the distinguished sociologist Howard Becker to adopt his method of sitting down and writing what came into her head about the research she had done without even consulting her notes. Her fears of producing poor-quality material, which would be derided by colleagues who saw her work, are described vividly. It is a fear most of us experience.

We agree with Phillips and Pugh (2005), who note that writing is the only time when we really think. This suggests that writing your project report is something that should not be left until every other part of your research has been completed. However, there will be more on that in the next section.

For many of us the fear of making an oral presentation is even more daunting. As we note in Section 14.7, some of this apprehension can be overcome by thorough

We all write a lot more than we think. We email; send endless numbers of text messages on our mobile phones; add comments to conversations on web pages. Now many of us are becoming ‘bloggers’. A blog, or web log, is a written account of a mixture of what is happening in a person’s life and what is happening on the Internet, published on the Internet. It’s a kind of hybrid diary/guide website, although there are as many unique types of blogs as there are people.

Blogging is an exciting way to publish on the Internet. You can share pictures, video, links, documents, newsletters, opinions and more, with family and friends. You can have a website without being a webmaster. There is no HTML to learn and no new software to download and install. Unlike traditional websites, web logs give you the opportunity to connect with others because they are a conversation rather than a billboard. You post content – others can post their responses. Moreover, privacy is not an issue. You control who is authorised to view personal photos or confidential documents by placing them in a private viewing area. Blogging will even allow you to ban undesirable users.

You can compose blogs on any topic you choose: travel (see photo), your hobby, photography, your family or even your research project! Above all, it’s a great way to get writing!
preparation. But at least you have the consolation of knowing that you will be an expert in your topic.

14.2 Getting started with writing

If writing is synonymous with thinking, it follows that writing is something you should do throughout the whole research process. Chapter 2 emphasises the need for clear ideas in writing about research questions and objectives. If you have done this already you will know the difficulty of committing your vague ideas to paper and amending them continually until they express your ideas with brevity, clarity and accuracy. However, there is no reason why your research proposal and plan should be the last writing you do before you finally write up your research in the project report. We encourage you to write as a continual process throughout the research.

Many researchers find it helpful to write the literature review early on in their research. This has clear benefits. It gets you writing on a part of the research process that necessarily comes early in that process. Also, it focuses your thinking on the way in which the literature will inform the research strategy you adopt. You will be pleased you wrote this part of the report when the time pressure is on as the submission deadline for your report approaches. Do not worry that early writing of the literature review means that subsequently published relevant literature is ignored in your review. It can always be incorporated at a later date. This is one of the advantages of using word processing, a topic that we shall cover later in this section.

Having discouraged you from thinking of writing as a process you leave until the end of your research, this section goes on to consider a number of practical hints to assist you to get started.

Create time for your writing

Writing is not an activity that can be allocated an odd half-hour whenever it is convenient. It requires sustained concentration. The amount of time needed to make real progress in your writing is dependent on the way in which you prefer to work. Most people find that it takes a day to write about 2000 words, but we all work in different ways. Once some people have started, they prefer to continue until they drop from exhaustion! Others like to set a strict timetable where three or four hours a day are devoted to writing. Whichever category you are in, make sure that you have time for writing allocated in your diary. We have found that it is helpful to have blocks of time where writing can take place on successive days. This ensures a degree of continuity of ideas, which is not as easy if you keep having to ‘think your way back’ into your research.

Write when your mind is fresh

We have emphasised so far in this chapter that writing should be a highly creative process. It is important, therefore, that you write at the time of day when your mind is at its freshest. All of us have jobs to do during the day that require little or no creativity. Arrange your day so that the uncreative jobs are done in the time when you are at your least mentally alert.
Find a regular writing place

Most of us have one place where we do our writing. It is so important that we often
cannot write in unfamiliar surroundings. If this is the case with you it is essential that
you combine this psychological comfort with a few practical features of your writing
place that will enhance your productivity. One of the most important of these is to
ensure that you are not interrupted. A simple ‘do not disturb’ sign on the door usually
works wonders. You may, like Phil, find a telephone-answering service useful. Remove all
distractions, such as television, magazines and computer games, from the room. It may
be that you need background noise, even your MP3 player, to help you concentrate. One
person’s distractions are another person’s necessities. What is important is to know what
distracts you and to remove those distractions.

Set goals and achieve them

This is the height of self-discipline. Most writers set themselves targets for the period of
writing. Usually this is a set number of words. It is better to be realistic about these goals.
If you are too ambitious the quality of your work may suffer as you rush to meet the goal.
You may be as self-disciplined as Mark, who sets himself subgoals during the day and
rewards the achievement of these goals with coffee breaks. What is important is that you
see this as entering into a contract with yourself. If you break this contract by not
meeting your goal you are the one who should feel guilty. You may like to enter into a
similar arrangement with a close friend on the understanding that each of you will insist
on the other meeting your goals.

Use word processing

Word processing has revolutionised writing (Box 14.1). There are still some who prefer to
write longhand before word-processing the final report. However, for those of us who
‘think onto the screen’ the main advantage of word processing is that it enables us to
keep amending copy without having to fill the waste paper basket with numerous unsatis-
factory attempts. In addition, word processing enables you to keep updating your
project report as you develop new ideas or become dissatisfied with old ones. There is,
however, a potential problem here. The ease with which you can keep inserting and
deleting text means that relevant ‘flagging’ material will need to be changed. At its

BOX 14.1 WORKED EXAMPLE

Using word processing to transcribe field notes to the final project report

Phil made interview notes in longhand during the interviews that he conducted with managers
about the pay system in their organisations. He was particularly careful to note verbatim
especially relevant comments from the managers.

Phil ensured that he word-processed these notes, either on his laptop on the return train
journey at the end of the day, or at home in the evening.

When writing the project report Phil found the word-processed notes invaluable. He wanted
to use some of the verbatim quotes to illustrate key arguments that he was developing from the
data. He was able to insert many of these into the report, thus saving time and ensuring
accuracy of transcription.
simplest this may be the contents page or the announcement at the beginning of a chapter that the chapter will cover certain ground. However, it is just as likely to be an obscure reference buried in the text to a table that you have deleted, thus making the reference redundant.

Two other advantages of word processing may have occurred to you. First, most packages have a word count facility. You can use this to check your progress towards the word goal you have set yourself for the writing session. The second advantage is the readability statistics that are a feature of Microsoft Word. This allows you to check not only spelling, but also the average number of sentences per paragraph and words per sentence. To do this click on the ‘Tools’ menu, click ‘Options…’, and then click the ‘Spelling & Grammar’ tab. Select the ‘Check grammar with spelling’ and the ‘Show readability statistics’ check boxes and click on ‘OK’. Next time you click on ‘Spelling & Grammar’ Word will display readability statistics.

The necessity of keeping back-up copies of your work should go without saying. However, do learn from the experience of one of our students, who lost all his research material as a consequence of not keeping adequate back-up copies. This led to him having to abandon his research project completely.

Generate a plan

Few of us can sit down and write without a lot of thought and planning. We all have our own systems for doing this. However, most people find it essential to construct a plan before they start writing. Veroff (2001) describes the ‘clustering’ method. This may be familiar to you. The method’s stages are:

1. Write the main topic in the middle of a sheet of paper.
2. Jot down the other ideas that occur to you at other points on the page.
3. As the page begins to fill, relationships between the ideas suggest themselves and lines between the ideas may be drawn.
4. This allows you to group the ideas into discrete but related ‘chunks’, which enables you to devise an outline structure for a section, or chapter.

This chapter started out as just such a pencilled plan written on four pieces of A4 held together with sticky tape. It is essential to get your ideas into some form of order at the outset. This will give you encouragement to start writing.

Finish the writing session on a high point

Many writers prefer to finish their writing session while they are in the middle of a section to which they will look forward to returning. This eases the way in next time. The worst thing you can do is to leave a complex section half completed. It will be difficult to pick up the threads.

Get friends to read your work

Writing is creative and exciting, but checking our work is not. The importance of getting someone else to read through your material cannot be overemphasised. Your project tutor should not be the first person who reads your report, even in its draft form.

Ask your friend to be constructively critical. Your friend must be prepared to tell you about things in the text that are not easy to understand – to point out omissions,
spelling, punctuation and grammatical errors. Overall, your friend must tell you whether the piece of writing makes sense and achieves its purpose.

This is not an easy process for you or your critical friend. Most of us are sensitive to criticism, particularly when the consequence of it is the necessity to do a lot more work. Many of us are also hesitant about giving criticism. However, if your project report does not communicate to the reader in the way it should, you will get it back for revision work in the long run. It is much better to try to ensure that this does not happen.

14.3 Structuring your project report

Suggested structure

Most writers agree with Robson (2002) on the general structure to adopt for a project report that is the end product of your research. This is:

- Abstract
- Introduction
- Literature review
- Method
- Results
- Conclusions
- References
- Appendices

However, this suggested structure should not inhibit you from adopting something different. The structure outlined above fits the deductive approach particularly closely. It assumes that the literature was reviewed to establish the current state of knowledge on the topic and this informed the method adopted. Reporting the findings in a factual manner gives rise to a detailed consideration of what these findings mean to the specific piece of research that has been conducted and to the current state of knowledge on the topic. However, if your research is essentially inductive, it may be that you prefer to structure the report in a different way. You may prefer to tell your story (that is, to explain your conclusions) in the early part of the report. This may include a clear explanation of how this story relates to the existing literature on the topic. This could be followed by a detailed explanation of how you arrived at these conclusions (a combination of an explanation of method adopted and findings established). The precise structure you adopt is less important than the necessity for your reader to be absolutely clear about what you are saying and for you to meet the assessment criteria.

Phillips and Pugh (2005) note that these general sections can be subdivided into one or more relevant chapters depending on the topic and the way in which you want to present your particular storyline. This is a vital point. Your structure should have a logical flow. Your readers should know the journey on which they are being taken, and should know at all times the point in the journey that has been reached. Above all, the structure you adopt should enable your reader, having read the report, to identify the storyline clearly.

We shall now explain how to distinguish between these broad sections by outlining their purpose and content.
The abstract

The abstract is probably the most important part of your report because it may be the only part that some will read. It is a short summary of the complete content of the project report. This enables those who are not sure whether they wish to read the complete report to make an informed decision. For those who intend to read the whole report the abstract prepares them for what is to come. It should contain four short paragraphs with the answers to the following questions:

1. What were my research questions, and why were these important?
2. How did I go about answering the research questions?
3. What did I find out in response to my research questions?
4. What conclusions do I draw regarding my research questions?

The academic publisher Emerald gives advice to potential academic authors on how to compile an abstract. This is shown in Box 14.2. Although referring to academic journal articles (papers), it is useful to consider in terms of preparation of your research report and any subsequent publication.

Smith (1991) lists five principles for the writing of a good abstract. He argues that:

BOX 14.2 FOCUS ON MANAGEMENT RESEARCH

Advice on the preparation of an abstract for publication

Abstracts should contain no more than 250 words. Write concisely and clearly. The abstract should reflect only what appears in the original paper.

Purpose of this paper
What are the reason(s) for writing the paper or the aims of the research?

Design/methodology/approach
How are the objectives achieved? Include the main method(s) used for the research. What is the approach to the topic and what is the theoretical or subject scope of the paper?

Findings
What was found in the course of the work? This will refer to analysis, discussion, or results.

Research limitations/implications (if applicable)
If research is reported on in the paper this section must be completed and should include suggestions for future research and any identified limitations in the research process.

Practical implications (if applicable)
What outcomes and implications for practice, applications and consequences are identified? Not all papers will have practical implications but most will. What changes to practice should be made as a result of this research/paper?

What is original/value of paper
What is new in the paper? State the value of the paper and to whom.

STRUCTURING YOUR PROJECT REPORT

1. It should be short. Try to keep it to a maximum of two sides of A4. (Some universities stipulate a maximum length, often 300–500 words.)

2. It must be self-contained. Since it may be the only part of your project report that some people see, it follows that it must summarise the complete content of your report.

3. It must satisfy your reader’s needs. Your reader must be told about the problem, or central issue, that the research addressed and the method adopted to pursue the issue. It must also contain a brief statement of the main results and conclusions.

4. It must convey the same emphasis as the project report, with the consequence that the reader should get an accurate impression of the report’s contents from the abstract.

5. It should be objective, precise and easy to read. The project report contents page should give you the outline structure for the abstract. Summarising each section should give you an accurate résumé of the content of the report. Do ensure that you stick to what you have written in the report. The abstract is not the place for elaborating any of your main themes. Be objective. You will need to write several drafts before you eliminate every word that is not absolutely necessary. The purpose is to convey the content of your report in as clear and brief a way as possible.

Writing a good abstract is difficult. The obvious thing to do is to write it after you have finished the report. We suggest that you draft it at the start of your writing so that you have got your storyline abundantly clear in your mind. You can then amend the draft when you have finished the report so that it conforms to the five principles above. Box 14.3 seems to us, as non-experts in the field of investor decision making, a good example of an abstract that meets most of the criteria for an effective abstract that we list above.

BOX 14.3 FOCUS ON MANAGEMENT RESEARCH

Abstract from a refereed journal article on investor decision making

Young firms going public are dependent upon the decisions of investors for a successful public offering. Yet convincing investors to invest is not easy, as young firms have limited track records and, thus, face challenges associated with gaining legitimacy in their respective industries. This paper examines ways in which select information about firms undertaking an initial public offering (IPO) can affect investor decisions. Building upon recent research on upper echelons and signaling theory, we propose that the composition of a firm’s top management team can signal organizational legitimacy that in turn affects investor decisions. In the context of young firms undertaking an IPO, such signals are critical, especially when objective measures of firm quality are not easily available. We introduce a typology of signals of organizational legitimacy to elaborate on our hypotheses. Analyses of a comprehensive set of data on the career histories of the top management teams of young biotechnology firms show that investor decisions are affected by the extent to which a firm’s top management team has employment affiliations with prominent downstream organizations (e.g., pharmaceutical companies), with a diverse range of organizations, and upon the role experience of one key member of the top management team – the Chief Scientific Officer. We assess and find that these effects are not mediated by the prestige of a firm’s lead underwriter. We conclude with a discussion of the implications of our study for strategy research on upper echelons and organizational legitimacy.

Chapter 14 · Writing and Presenting Your Project Report

The introductory chapter

The introduction should give the reader a clear idea about the central issue of concern in your research and why you thought that this was worth studying. It should also include a full statement of your research question(s) and research objectives. If your research is based in an organisation, we think that it is a good idea to include in this chapter some details of the organisation, such as its history, size, products and services. This may be a general background to the more specific detail on the research setting you include in the method chapter. It is also important to include in this chapter a ‘route map’ to guide the reader through the rest of the report. This will give brief details of the content of each chapter and present an overview of how your storyline unfolds.

This will usually be a fairly brief chapter, but it is vitally important.

The literature review

Chapter 3 deals in detail with the writing of a literature review. All that it is necessary to comment on here is the position of this chapter in the project report. We suggest that this is placed before the methodology chapter.

The main purposes of your literature review are to set your study within its wider context and to show the reader how your study supplements the work that has already been done on your topic. The literature review, therefore, may inform directly your research questions (see Box 14.4) and any specific hypotheses that your research is designed to test. These hypotheses will also suggest a particular research approach, strategy and data collection techniques. If, on the other hand, you are working induc-

Box 14.4 Worked Example

Using the literature review to inform the research questions

Guiyan was a Chinese student studying for an MA in a UK university. In her research dissertation she was interested to know whether Chinese managers would be able to conduct performance appraisal schemes effectively in China with Chinese employees. She was aware that there were certain aspects of Chinese culture that would make this difficult. Guiyan studied two bodies of literature: that relating to the managerial skills of performance appraisal, and a second concerned with the effects of Chinese culture on the ways in which Chinese managers manage their employees. She presented both in a literature review chapter. She structured her chapter around three questions:

1. What are the key skills needed by managers to conduct performance appraisal effectively?
2. What are the most important aspects of Chinese culture which impact upon the ways in which Chinese managers manage their employees?
3. To what extent will the aspects of Chinese culture, explained in the answer to question 2, affect the ability of Chinese managers to conduct performance appraisal effectively?

From this Guiyan developed a theoretical proposition that supported her initial idea that certain aspects of Chinese culture would make the conduct of performance appraisal by Chinese managers with Chinese employees difficult. She was then ready to move on to her method chapter, which was an explanation of the way in which she would test her theoretical proposition.
tively (that is, from data to theory) your literature review may serve the purpose of illuminating and enriching your conclusions.

The title of your literature review chapter should reflect the content of the chapter. It may draw on one of the main themes in the review. We recommend that you do not call it simply ‘literature review’. It may be that your literature is reviewed in more than one chapter. This would be the case, for example, where you were using more than one body of literature in your research.

The method chapter

This should be a detailed chapter giving the reader sufficient information to make an estimate of the reliability and validity of your methods. Box 14.5 provides a useful checklist of the points that you should include in the method chapter.

BOX 14.5 CHECKLIST

Points to include in your method chapter

Setting
- What was the research setting?
- Why did you choose that particular setting?
- What ethical issues were raised by the study, and how were these addressed?

Participants
- How many?
- How were they selected?
- What were their characteristics?
- How were refusals/non-returns handled?

Materials
- What tests/scales/interview or observation schedules/questionnaires were used?
- How were purpose-made instruments developed?
- How were the resulting data analysed?

Procedures
- What were the characteristics of the interviewers and observers, and how were they trained?
- How valid and reliable do you think the procedures were?
- What instructions were given to participants?
- How many interviews/observations/questionnaires were there; how long did they last; where did they take place?
- When was the research carried out?

The results chapter(s)

It may well be that your report will contain more than one results chapter. The question you should ask yourself is: ‘Is more than one results chapter necessary to communicate my findings clearly?’

The results chapter or chapters are probably the most straightforward to write. It is your opportunity to report the facts that your research discovered. This is where you will include such tables and graphs that will illustrate your findings (do not put these in the appendices). The chapter may also contain verbatim quotes from interviewees, or sections of narrative account that illustrate periods of unstructured observation. This is a particularly powerful way in which you can convey the richness of your data. It is the qualitative equivalent of tables and graphs. Often, a short verbatim quote can convey with penetrating simplicity a particularly difficult concept that you are trying to explain. Do not be afraid to capture precisely what the interviewee said. Slang and swear words are often the most revealing, and provide amusement for the reader!

There are two important points to bear in mind when writing your results. The first is to stress that the purpose is to present facts. It is normally not appropriate in this chapter to begin to offer opinions on the facts. This is for the following chapter. Many of us become confused about the difference between findings and conclusions. One way of overcoming the confusion is to draw up a table with two columns. The first should be headed ‘what I found out’ and the second ‘what judgements I have formed as a result of what I found out’. The first list is entirely factual (for example, 66 per cent of respondents indicated they preferred to receive email messages rather than paper memos) and therefore the content of your findings chapter. The second list will be your judgements based on what you found out (for example, it appears that electronic forms of communication are preferred to traditional) and therefore the content of your conclusions section.

The second point links to the first. Drawing up a table will lead you to a consideration of the way in which you present your findings. The purpose of your project report is to communicate the answer to your research question to your audience in as clear a manner as possible. Therefore you should structure your findings in a clear, logical and easily understood manner. There are many ways of doing this. One of the simplest is to return to the research objectives and let these dictate the order in which you present your findings. Alternatively, you may prefer to report your findings thematically. You could present the themes in descending order of importance. Whichever method you choose should be obvious to the reader. As with the literature review, the chapter(s) devoted to research should be titled in an interesting way that reflects the content of findings.

The clarity of your findings should be such that they may find their way into a news report similar to that in Box 14.6.

The conclusions chapter(s)

Logically, for each finding there should be at least one conclusion. This suggests that the conclusions chapter(s) should be at least as long as the findings chapter(s). This is certainly the case. Findings presented without reflective thought run the risk of your reader asking ‘so what?’

The conclusions chapter (which, again, should have a more interesting title than ‘conclusions’) is where you have the opportunity to shine. It is your conclusions that will demonstrate whether you have answered the research question and show the degree of insight that you exhibit in reaching your conclusions. However, it is the part of the report that most of us find difficult. It is the second major opportunity in the research process
to demonstrate real originality of thought (the first time being at the stage where you choose the research topic). Because of that, we urge you to pay due attention to the conclusions chapter. In the conclusions you are making judgements rather than reporting facts, so this is where your maturity of understanding can shine through. The key questions to ask of each of the findings are: ‘So what?’ and, importantly, ‘To what extent have I answered my research question(s) and met my research objective(s)?’ Often students do little more than write a conclusions section that is a rehash of their findings. It is essential that you give the content of this chapter careful thought over a long period of time. You may find that the clearest way to present your conclusions is to follow a similar structure to the one used in your findings section. If that structure reflects the research objectives then it should make certain that your conclusions would address the research question(s). Drawing up a matrix similar to that in Figure 14.1 may help you in structuring your findings and conclusions. The result should be a clear statement of conclusions drawn similar to that shown in Box 14.7.

You may also have a final section in your conclusion chapter(s) called ‘discussion’. Alternatively you may make this a separate chapter with this general heading. Here you would turn to your conclusions and ask such questions as: ‘What does this mean?’ ‘What

<table>
<thead>
<tr>
<th>Research questions</th>
<th>Results (what factual information did I discover in relation to the specific research questions?)</th>
<th>Conclusions (what judgements can I make about the results in relation to the specific research questions?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are the operational differences between different shifts in the production plant?</td>
<td>Cases of indiscipline in the last six months have been twice as frequent on the night shift as on the day shift</td>
<td>The night shift indiscipline problems may be due to the reluctance of operators to work on this shift</td>
</tr>
</tbody>
</table>

Figure 14.1 Using a matrix in the planning of the content for the results and conclusions chapters
Psychological and behavioural drivers of online clothes purchasing

Goldsmith and Flynn (2006) studied selected demographic and psychological characteristics that lead consumers to buy clothing online. They surveyed 805 consumers who described their online clothing buying as well as how innovative and involved they were for clothing and fashion, how innovative they were with regard to buying on the Internet, and how much they purchased clothing through catalogues.

The resulting article is structured along the classic lines of introduction, literature review, hypotheses, research method, results and discussion. We summarise here their discussion section to give you an understanding of the character of their conclusions.

The purpose of Goldsmith and Flynn’s study was to assess the relative influence of several key variables on the amount of online clothing buying. The data analysis revealed that three demographic variables (age, sex, and income) played a relatively minor role in explaining online clothing buying. Better predators were an enthusiasm and venturesomeness for online buying in general and a history of buying clothes from catalogues. Fashion innovativeness was weakly related to online buying, but fashion involvement was not. It appears that being an Internet innovator and an experienced catalogue shopper are more predictive of online clothing shopping than an interest in fashion.

Goldsmith and Flynn’s discussion section is based on the implications of their findings. These are summarised below.

First, being a catalogue shopper, a consumer with a previous history of shopping from home, is a significant predictor of shopping online. This is probably due to a general propensity or affinity for direct buying, but might also be due to the presence of many catalogue retailers on the web. If a shopper has experience with a direct merchant it is a smaller leap of faith to move from catalogue to online shopping with the same retailer. So the Land’s End catalogue buyer might be easily encouraged to buy from Land’s End online. It is also possible that circumstances leading one to buy via catalogues, such as time pressure or limited access to stores, would also lead to online purchasing.

Second, because innovativeness for online shopping predicts online clothing purchase, Goldsmith and Flynn conclude that shopping via the Internet is in its earlier stages of the diffusion process. If online shopping were more broadly diffused, innovators would not be so heavily represented among such shoppers. They conclude that as innovators are an important buying group, this implies that the phenomenon will grow in the future.

Third, the enduring involvement in a product category does not necessarily predict more buying of that category through a new medium. While personal importance of fashion is linked to more buying in that category, being a ‘clotheshorse’ was not a good indicator of shopping for clothing online. Increased shopping via the Internet appears to be better predicted by the tendency to be a home shopper than by strong interest in the product category. E-commerce clothing managers would do well to focus more effort on wooing Internet innovators than fashion innovators.

Fourth, the likelihood of a consumer shopping from home and their venturesomeness with regard to new shopping media seem to be the most prominent factors predicting online shopping. This is important because individual differences in these areas trump product-category-related differences in predicting medium choice. The implications are straightforward. Catalogue shoppers are likely to be the same as online shoppers. Catalogue managers should work to encourage their customers to migrate to the web.

Goldsmith and Flynn point out that their findings are limited by the sample and measures used. Studies of other populations of consumers using other measures should be done to confirm and expand these results. Another limitation lies in the self-report nature of the shopping variables that might introduce measurement error into the data. However, they claim that their findings do contribute to our understanding of online clothing shopping, and future studies can build on these results to complete this picture.
are the implications for organisations? ‘What are the implications for the current state of knowledge of the topic?’ ‘How does it add to the literature?’ ‘What are the implications for future research?’ The conclusions chapter should not include new material but the discussion may do so, as long as it is germane to the point you are making about your conclusions.

An alternative approach to the matrix is to draw a ‘mind map’ (see Section 2.3), which places the findings randomly on a blank page and links conclusions to these findings by way of lines and arrows. For some of you this may be a more creative approach, which enables you to associate groups of findings with conclusions and vice versa.

Answering the research question(s), meeting the objectives and, if appropriate, supporting or otherwise the research hypotheses is the main purpose of the conclusions chapter. This is where you will consider the findings presented in the previous chapter. You should also return to your literature review and ask yourself ‘What do my conclusions add to the understanding of the topic displayed in the literature?’

It may be that there are practical implications of your findings. In a management report this would normally form the content of a chapter specifically devoted to recommendations. We suggest that you check with your project tutor whether this is expected. In the reports that students are required to prepare on some professional courses this is an important requirement. For academic degree programmes it is often unnecessary.

Even if you do not specify any practical implications of your research you may comment in the conclusions chapter on what your research implies for any future research. This is a logical extension of a section in the conclusions chapter that should be devoted to the limitations of your research. These limitations may be the size of sample, the snapshot nature of the research, or the restriction to one geographical area of an organisation. Virtually all research has its limitations. This section should not be seen as a confession of your weaknesses, but as a mature reflection on the degree to which your findings and conclusions can be said to be the ‘truth’.

References

A range of conventions are used to reference the material of other writers’ material that you have cited in your text. Appendix 2 illustrates three of the most popular of these, the Harvard, footnotes and American Psychological Association (APA) systems. However, we suggest that you consult your project tutor about the system that is appropriate for your project report, as many universities require their own variation of these systems.

It is a good idea to start your references section at the beginning of the writing process and add to it as you go along. It will be a tedious and time-consuming task if left until you have completed the main body of the text. If you do leave it until the end, the time spent on compiling the reference section is time that would have been better spent on checking and amending your report.

At the start of your report you must acknowledge all those who have contributed to your research (including your project tutor!). In addition, you should ensure that you have cited in your reference section all those sources to which you have referred in the text. In order to avoid charges of plagiarism you should ensure that all data and material taken verbatim from another person’s published or unpublished written or electronic work is explicitly identified and referenced to its author. This also extends to work which is referred to in the written work of others. Even if this work is not quoted verbatim, the originator should be cited in your references. If you are in any doubt about this it is
important that you consult your tutor. The proliferation of online material now is such that all academic institutions are very mindful of plagiarism.

Appendices

In general, *appendices* should be kept to the minimum. If they are so important that your reader’s understanding of the points you are making in the text makes their inclusion in the report necessary, then they should be in the main body of the text. If, on the other hand, the material is ‘interesting to know’ rather than ‘essential to know’ then it should be in the appendices. Often we feel tempted to include appendices to ‘pad out’ a project report. Resist this temptation. Your readers will not be reading your report for leisure reading. They will be pressed for time and will probably not look at your appendices. Your project report will stand or fall on the quality of the main text. However, your appendices should include a blank copy of your questionnaire, interview or observation schedule. Where these have been conducted in a language different from that in which you write your submitted project report you will need to submit both this version and the translation.

The management report

You may have wondered why we made no reference to recommendations in the report structure. In the typical *management report* this may be the most important section. The hard-pressed executive reading your report may turn to your recommendations first to see what action needs to be taken to tackle the issue.

Whether you include a recommendation section depends on the objectives of your research. If you are doing exploratory research you may well write recommendations, among which will be suggestions for the pursuit of further research. However, if your research is designed to explain or describe, recommendations are less likely. For example, the research question ‘Why do small engineering companies in the UK reinvest less of their profits in their businesses than their German counterparts?’ may imply clear points for action. However, strictly speaking, recommendations are outside the scope of the research question, which is to discover ‘Why?’ not ‘What can be done about it?’ The message is clear. If you want your research to change the situation that you are researching, then include the need to develop recommendations in your research objectives.

Length of the project report

You will probably have guidelines on the number of words your project report should contain. Do stick to these. However interesting your report, your tutors will have others to read, so they will not thank you for exceeding the limit. Indeed, if you can meet your research objectives fully in a clear and absorbing report that is significantly shorter than the word limit, the good mood in which you put your tutors may be reflected in a higher grade. Reports that exceed the word limit are usually excessively verbose. It is more difficult to be succinct. Do not fall into the trap of writing a long report because you did not have the time to write a shorter one.
Choosing a title

This is the part of the project report on which most of us spend the least time. Yet it is the only knowledge that many people have of the project. Day (1998:15) comments that a good *title* is one that has the minimum possible number of words that describe accurately the content of the paper. Try choosing a title and then ask a colleague who knows your subject what she or he thinks the title describes. If her or his description matches your content then stick with your title.

Tell a clear story

Be prepared for your project tutor to ask you ‘What’s your main storyline?’ Your storyline (your central argument or thesis) should be clear, simple and straightforward. It should be so clear that you can stop the next person you see walking towards you and tell that person what your project report’s storyline is and he or she will say ‘Yes, I understand that’. This is where writing the abstract helps. It forces you to think clearly about the storyline because you have to summarise it in so few words.

A simple format for developing the storyline is shown in Figure 14.2.

Another way of checking to see whether your storyline is clear is to ‘reason backwards’. An example of this may be a report that ends in clear recommendations for action. Start by explaining your recommendations to the manager who, for example, may have to spend money on their implementation. This invites the question from that manager: ‘What makes you recommend this action?’ Your answer should be: ‘I came to the conclusion in my report that they are necessary.’ The follow-up question from the manager here could be: ‘On what basis do you draw these conclusions?’ Here your answer is, of course,
on the findings that you established. The next question asked by the manager is: ‘How did you arrive at these findings?’ in response to which you explain your method. The manager may counter by asking you why she should take any notice of your findings. The response to this is that you took care to design a research strategy that would lead to valid and reliable findings. Moreover, that research strategy is based on clear research objectives and a detailed review of the relevant literature.

Such ‘reasoning backwards’ is a useful check to see not only whether your storyline is clear but also that it stands up to logical analysis.

Helping the reader to get all the information out

Dividing your work

One of us once received the first draft of a 20,000-word project report that had virtually no divisions except the chapters. It was like looking at a road map that did not include any road numbers or towns. It was just as difficult to find your way around that report as it would be to journey between two cities using a townless road map. The content of the project report seemed fine. However, it was hard to be sure about this because it was so difficult to spot any gaps in the ground it covered. What was needed were some signposts and some town names. Do not think about how you can put in all your information. Instead, concentrate on helping the reader to get all the information out (Box 14.8).

BOX 14.8 WORKED EXAMPLE

Developing a storyline

Step 1
I wanted to know whether, as the literature suggested, organisational structures are determined by their strategies.

Step 2
The answer is that organisation structures are in part determined by strategies and in part by ad hoc factors that owe little to strategy considerations.

Step 3
I based this answer on interviews with senior managers in three large UK organisations and examination of the minutes of meetings at which structural issues were discussed. The particular focus was on the removal of management positions.

The message is simple. Divide your work in such a way that it is easy for readers to find their way round it and for them always to be clear where they are, where they have come from, and where they are going.

To do this you may find it helpful to return to the matrix idea in Figure 14.1. You will see that each column of the matrix represents the broad content of a chapter. The cells indicate the way in which the chapters may be divided. Each division may have a subdivision.

We hope that you have noticed that we have employed a similar system in this book. However, this book is printed in more than one colour. The equivalent would be that each chapter section is identified by bold upper-case letters. The subheadings are bold lower-
case, and further divisions of the subsection content are denoted by bold, lower-case italics. Smith (1991) explains various ways of organising and signposting text. It is not important which way you do this as long as your approach is consistent and it helps the reader around the report and matches the ways specified by your examining institution.

Previewing and summarising chapters

A further way in which you can signpost your work is to ‘top and tail’ each chapter. This is to include a few words at the beginning of the chapter (Smith, 1991) that provide a description of how the chapter is to contribute to answering the research question, the methods used in this part of the study, and the points that are covered. At the end of each chapter it is useful if the reader has a brief summary of the content of the chapter and a very brief indication of how this content links to the following chapter. This may seem like repetition. However, it helps the reader on her or his journey through your report and ensures that you, the writer, are on the correct road.

Tables and graphics

Your reader will find your project report more accessible and easier to read if you present some of your data and ideas in tables and graphics. It is not only numerical data that can be presented in tables. You can also present ideas that can be easily compared. Table 13.1 is an example of this.

Do not be tempted to put your numerical tables in the appendices. They will probably be some of your most important data. Include them and comment on them in the text. Your commentary should note the significance of the data in the tables. It should not simply describe the table’s contents.

Section 12.3 has detail on the presentation of tables and graphics.

A final note of caution should be sounded. To avoid confusing your reader, do make sure that, wherever possible, you have introduced the table or graphic before it appears in the text.

One report or two?

Many researchers of management topics face the dilemma of having to write for two audiences: the academic audience, who possibly will mark and grade the report for a degree or a diploma, and the organisation’s managers, who will be interested in the practical benefit that the report promises. This raises the thorny question, ‘For whom should the report be written?’

Many people have resolved this dilemma by writing two reports: one for each audience. The academic report will usually be much longer and contain contextual description that the organisational audience does not require. Similarly, those managers reading the report will probably be less interested in the literature review and the development of theory than the academic audience. If the research question did not imply the necessity for recommendations for future action, these may need to be written for the organisational version.

Fortunately, the advent of word processing makes this job easy. Some careful cutting and pasting will be necessary. However, what should always be kept in mind is the audience that each specific report is addressing. Take care not to fall between two stools. Write each report for its audience in style and content.

As well as presenting two written reports you may have to present your report orally. In the next two sections we address the writing of reports, and in the final section, Section 14.7, we turn our attention to their oral presentation.
Developing an appropriate writing style

Much of your concern in writing your project report will be about what you write. In this section of the chapter we ask you to think about the way you write. Your writing style is just as important as the content, structure and layout of your report. That said, it is often observed that good writing cannot substitute for flawed thinking (Phillips and Pugh, 2005). In fact, the clearer the writing the more flawed thinking is exposed. However, poor writing can spoil the effect of good-quality thought.

Clarity and simplicity

The . . . lack of ready intelligibility [in scholarly writing], I believe, usually has little or nothing to do with the complexity of the subject matter, and nothing at all to do with profundity of thought. It has to do almost entirely with certain confusions of the academic writer about his own status . . . To overcome the academic prose you first of all have to overcome the academic pose . . .

Wright Mills (1970:239–40)

Each Christmas Mark accompanies his Christmas cards with a family newsletter. It is written in a simple, direct and friendly manner that is easy and enjoyable to read. Few of the project reports we read are written in such a simple, direct manner. They are more elaborate in their explanation: they use difficult words where Mark’s family newsletter would use simple ones. They adopt the academic pose.

Phil tells a story that reinforces the point made by Wright Mills in the above quotation. He was asked by a student to comment on her thesis in progress, which was about the impact of a particular job advertising strategy. He thought that it was written in an over-elaborate and ‘academic’ way. After many suggestions for amendments Phil came across a sentence that explained that the strategy his student was studying ‘was characterised by factors congruent with the results of a lifestyle analysis of the target market’. Phil thought that this was too wordy. He suggested making it simpler. His student examined the sentence at length and declared she could see no way of improving it. Phil thought that it could say ‘it was a strategy that matched the lifestyles of those at whom it was aimed’. His student protested. She agreed it was shorter and clearer but protested that it was less ‘academic’. We think that clarity and simplicity are more important than wishing to appear academic. Your project report is a piece of communication in the same way as Mark’s Christmas newsletter.

Phillips and Pugh (2005) advise that you should aim to provide the reader with a report that she or he cannot put down until 2.00 a.m. or later for fear of spoiling the flow. (If you are reading this chapter at 2.30 a.m. we have succeeded!)

Write simple sentences

A common source of lack of clarity is the confusing sentence (see Box 14.9). This is often because it is too long. A simple rule to adopt is: one idea – one sentence. Mark reads his work out loud. If the sentences are too long he runs out of breath! This is another useful guide to sentence length.

Avoid jargon

Jargon should not be confused with technical terminology. Some technical terms are unavoidable. To assist your reader, it is best to put a glossary of such terms in the appen-
dices. However, do not assume that your reader will have such a full knowledge as you
of the subject and, in particular, the context. Here, and in all cases, try to put yourself in
the position of the reader. Phil makes this point to students who use organisations as
vehicles to write assignments. He asks them to ‘mark’ past (anonymous) assignments.
They are usually horrified at the assumptions that their fellow students make about the
tutor’s prior knowledge.

What can be avoided is the sort of jargon that
The New Oxford English Dictionary
(1998) defines as ‘gibberish’ and ‘debased language’. You will know the sort of phrases:
‘ongoing situation’; ‘going down the route of’; ‘at the end of the day’; ‘the bottom
line’; ‘at this moment in time’. It is not just that they are ugly but they are not clear
and simple. For example, ‘now’ is much clearer and simpler than ‘at this moment in
time’.

Beware of using large numbers of quotations from the literature

We believe that quotations from the literature should be used infrequently in your
project report. Occasionally we receive draft projects that consist of little more than a
series of quotations from books and journal articles that a student has linked together
with a few sentences of her or his own. This tells us very little about the student’s under-
standing of the concepts within the quotations. All it shows is that he or she has looked

BOX 14.9 WORKED EXAMPLE

Writing clearer sentences

Consider the following sentence.

> While it is true to say that researchers have illusions of academic grandeur when they sit down to
write their project report, and who can blame them because they have had to demonstrate skill
and resilience to get to this point in their studies, they nonetheless must consider that writing a
project report is an exercise in communication, and nobody likes reading a lot of ideas that are
expressed in such a confusing and pretentious way that nobody can understand them, let alone
the poor tutor who has to plough through it all to try and make some sense of it.

There appear to be at least six separate ideas in this sentence. It contains 101 words (when
marking, we sometimes come across sentences with over 150!). In addition, it contains a
common way of introducing multiple ideas into a sentence: the embedded clause. In the sen-
tence above the embedded clause is ‘... and who can blame them because they have had to
demonstrate skill and resilience to get to this point in their studies, ...’ The give-away is the
first word in the sentence: ‘While’. This invites an embedded clause. The point here is that
potentially rich ideas get buried away in the literary undergrowth. Dig them up and replant them.
Let them breathe in a sentence of their own.

The sentence needs to be clearer and simpler. However, it should not lose any of its
meaning. Halving the number of words and dividing up the sentence into smaller clearer sen-
tences results in the following:

> Researchers have illusions of academic grandeur when they write their project report. This is
understandable. They have demonstrated skill and resilience to reach this point in their
studies. However, writing a project report is an exercise in communication. Nobody likes
confusing and pretentious writing that is difficult to understand. Pity the tutor who has to make
sense of it.
at the book or journal article and, it is hoped, can acknowledge sources correctly! In addition, by using quotations in this way the student’s line of argument tends to become disjointed and less easy to follow. It is therefore usually better to explain other people’s ideas in your own words.

That is not to say that you should never use quotations. As you have seen, we have used direct quotations from other people’s work in this book. Rather we would advise you to use them sparingly to create maximum impact in supporting your storyline.

Check your spelling and grammar

Spelling is still a problem for many of us, in spite of the word processing software’s spelling check facility. It will not correct your ‘moral’ when you wished to say ‘morale’ or sort out when you should write ‘practise’ rather than ‘practice’. This is where the friend who is reading your draft can help, provided that friend is a competent speller. Tutors tend to be more patient with errors of this kind than those that reflect carelessness. However, the point remains that spelling errors detract from the quality of your presentation and the authority of your ideas.

Avoiding common grammatical errors

Grammatical errors threaten the credibility of our writing. In Table 14.1, we outline ten of the most common errors, most of which, with some careful checking, can be avoided.

It is not our intention here to conduct an English grammar lesson. Some of the common errors in Table 14.1 are self-explanatory.

You may argue that the split infinitive is not often thought of as an error these days. However, ‘to boldly go’ ahead with your project report ignoring this rule risks irritating

Table 14.1 Ten common grammatical errors

<table>
<thead>
<tr>
<th>Often we write</th>
<th>The correct way is</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Each pronoun should agree with their antecedent.</td>
<td>Each pronoun should agree with its antecedent.</td>
</tr>
<tr>
<td>2 Just between you and I, case is important.</td>
<td>Just between you and me, case is important.</td>
</tr>
<tr>
<td>3 A preposition is a poor word to end a sentence with.</td>
<td>A preposition is a poor word with which to end a sentence.</td>
</tr>
<tr>
<td>4 Verbs has to agree with their subject.</td>
<td>Verbs have to agree with their subject.</td>
</tr>
<tr>
<td>5 Do not use no double negatives</td>
<td>Do not use double negatives.</td>
</tr>
<tr>
<td>6 Remember to never split an infinitive.</td>
<td>Remember never to split an infinitive.</td>
</tr>
<tr>
<td>7 When dangling, do not use participles.</td>
<td>Do not use dangling participles.</td>
</tr>
<tr>
<td>8 Avoid clichés like the plague.</td>
<td>To avoid clichés like the plague!</td>
</tr>
<tr>
<td>9 Do not write a run-on sentence it is difficult when you got to punctuate it so it makes sense when the reader reads what you wrote.</td>
<td>Do not write a run-on sentence. It is difficult to punctuate it so that it makes sense to the reader.</td>
</tr>
<tr>
<td>10 The data is included in this section.</td>
<td>The data are included in this section.</td>
</tr>
</tbody>
</table>

Source: Developed from Day (1998:160)
your reader – something you can ill afford to do. You want the reader to concentrate on your ideas.

Day’s ‘dangling participle’ warning is amusingly illustrated by the draft questionnaire shown to us by a student. This asked for ‘the amount of people you employ in your organisation, broken down by sex’. We wrote on our copy: ‘We haven’t got people in that category: they’ve not got the energy when they work here!’ (Remember that when writing your questionnaire!)

Some of the more obvious grammatical errors you can spot by reading your text aloud to yourself. You need not know the grammatical rules; they often just sound wrong.

Person, tense and gender

Traditionally, academic writing has been dry and unexciting. This is partly because the convention has been to write impersonally, in the past tense and in the passive voice (for example, ‘interviews were conducted following the administration of questionnaires’).

The writer was expected to be distanced from the text. This convention is no longer as strong. It is a matter of preferred style rather than rules. The research approach that dominates your methods may dictate your choice of personal pronoun. Section 4.2 notes that one feature of positivism is that ‘the researcher is independent of, and neither affects nor is affected by, the subject of the research’. It follows from this that an impersonal style is more appropriate. By contrast, Section 9.2 notes that the participant observer ‘participates in the daily life of people under study’. The researcher is an intrinsic part of the research process. Use of the first person seems more logical here. However, style is important. Use of the term ‘the author’ sounds too impersonal and stilted. In contrast, excessive use of ‘I’ and ‘we’ may raise questions in your readers’ minds about your ability to stand outside your data and to be objective.

Day (1998) identifies rules for the use correct use of tense. He suggests that you should normally use the present tense when referring to previously published work (e.g. Day identifies) and the past tense when referring to your present results (e.g. I found that . . .). Although he notes exceptions to this rule, it serves as a useful guide.

Day (1998) and Becker (1986) both stridently attack the passive voice (it was found that) and champion the use of the active voice (I found that). Certainly it is clearer, shorter and unambiguous. It is a good idea to check with your project tutor here which is most likely to be acceptable.

Finally, a note about the use of language that assumes the gender of a classification of people. The most obvious example of these is the constant reference to managers as ‘he’. Not only is this inaccurate in many organisations, it also gives offence to many people of both sexes. Those offended will probably include your readers! It is simple enough to avoid (for example, ‘I propose to interview each executive unless he refuses’ becomes ‘I propose to interview each executive unless I receive a refusal’) but often less easy to spot.

The further reading section in the first draft of this chapter referred to Becker as a ‘master craftsman’. These notes on language and gender prompted us to change it to ‘an expert in the field’. Appendix 5 gives more detailed guidance on the use of non-discriminatory language.

It is a good idea to be aware of any specific discriminatory or potentially insulting concepts, terms and expressions which may be used in your research due to the particular context of the research (e.g. the industry or organisation in which you work). If your work has an international dimension, it is also a good idea to be aware of any country-specific or national guidelines on the non-discriminatory use of language.
Preserving anonymity

You may have given the participants (and the organisations) from whom you collected data an undertaking that you would not disclose their identity in anything you write. In this case you will need to conceal their identity in your project report. The usual way of doing this is to invent pseudonyms for organisations and not to name individual participants. This should not detract from the impact of your report.

Similarly, your sponsoring organisation(s) may have requested sight of your report before it is submitted. Should there be misgivings about the content of the report you should be able to alleviate these by the use of pseudonyms. This is usually a better option than significant text changes.

The need for continual revision

Adrian recently asked a group of undergraduate students how many of them did more than one draft of their assignment papers. He did not expect that many would reply that they did. What he did not predict was that many of them had not even thought that this was necessary.

Submitting the first attempt is due partly to the heavy assessment loads on many courses, which means that students are constantly having to ‘keep up with the clock’. On part-time courses, students these days have so many demands in their daily work that writing an assignment just once is all that is possible. Becker (1986) argues that this is the way most of us learned to write at school. The paper is usually seen only by the teacher. The arrangement is a private one.

However, project reports are different. They will be seen by an audience much wider than one tutor. They will usually be lodged in the library to be read by succeeding students. You will be judged on the quality of your work. For that reason we urge you most strongly to polish your work with successive drafts until you are happy that you can do no better.

The final version of this chapter (which, incidentally, even for the first edition of this book, was read by five people and is the last of seven or eight drafts) contains guidelines that you can use to evaluate your first draft. These are summarised in the checklist in Box 14.10.

Having been through this checklist you may decide to make minor alterations to your text. On the other hand you may rewrite sections or move sections within chapters to other chapters. Keep asking yourself ‘How can I make the reader’s task easier?’

After each successive draft do leave a space of time for your thoughts to mature. It is amazing how something you wrote a few days before will now make no sense to you. However, you will also be impressed with the clarity and insight of some passages.

Having completed a second draft you may now feel confident enough to give it to your colleague or friend to read. Ask your reader to use the checklist above, to which you can add specific points that you feel are important (for example, are my arguments well reasoned?).

14.6 Meeting the assessment criteria

Your readers will be assessing your work against the assessment criteria that apply to your research programme. Therefore it is essential that you familiarise yourself with these criteria. Easterby-Smith et al. (2002) cite Bloom’s (1971) well-known taxonomy of edu-
cational objectives to illustrate the level that project reports should meet. At the lower levels project reports should show knowledge and comprehension of the topic covered. At the intermediate levels they should contain evidence of application and analysis. Application is thought of as the ability to apply certain principles and rules in particular situations. Your method section should be the principal vehicle for demonstrating application. Analysis may be illustrated by your ability to break down your data and to clarify the nature of the component parts and the relationship between them. Whatever your assessment criteria, it is certain that you will be expected to demonstrate your ability at these lower and intermediate levels.

The higher levels are synthesis and evaluation. Rowntree (1987:103) defines synthesis as ‘the ability to arrange and assemble various elements so as to make a new statement or plan or conclusion – a unique communication’. The emphasis put on conclusions and, in particular, on the development of a storyline in your project report suggests that we feel that you should be showing evidence of synthesis. Evaluation refers to ‘the ability to judge materials or methods in terms of internal accuracy and consistency or by comparison with external criteria’ (Rowntree, 1987:103). You have the chance to show this ability in the literature review and in the awareness of the limitations of your own research (see Section 14.3).

In summary, we think that each of the levels of educational objectives should be demonstrated in your project report.

BOX 14.10 CHECKLIST

Evaluating your first draft

- Is there a clear structure?
- Is there a clear storyline?
- Does your abstract reflect accurately the whole content of the report?
- Does your introduction state clearly the research question(s) and objectives?
- Does your literature review inform the later content of the report?
- Are your methods clearly explained?
- Have you made a clear distinction between findings and conclusions in the two relevant chapters?
- Have you checked all your references and presented these in the required manner?
- Is there any text material that should be in the appendices or vice versa?
- Does your title reflect accurately your content?
- Have you divided up your text throughout with suitable headings?
- Does each chapter have a preview and a summary?
- Are you happy that your writing is clear, simple and direct?
- Have you eliminated all jargon?
- Have you eliminated all unnecessary quotations?
- Have you checked spelling and grammar?
- Have you checked for assumptions about gender?
- Is your report in a format that will be acceptable to the assessing body?
Oral presentation of the report

Many students, particularly on professional courses, have to present their project report orally as part of the assessment process. The skills required here are quite different from those involved with writing. We discuss them here under three headings: planning and preparation; the use of visual aids; and presenting.

Planning and preparing

We make no apology for starting this section with the old trainer’s adage ‘Failing to prepare is preparing to fail’. Your assessors will forgive any inadequacies that stem from inexperience, but they will be much less forgiving of students who have paid little attention to preparation. You can be sure of one thing about insufficient preparation: it shows, particularly to the experienced tutor.

All presentations should have clear aims and objectives. This is not the place to analyse the difference between these. Suffice to say that your aim should be to give the audience members an overview of your report in such a way that it will capture their interest. Keep it clear and simple. By doing so you will meet the most basic assessment criterion: that some time later the tutor in the audience can remember clearly your main project storyline. Your objectives are more specific. They should start you thinking about the interests of your audience. These should be phrased in terms of what it is you want your audience members to be able to do after your presentation. Since your presentation will usually be confined to the imparting of knowledge, it is sufficient to phrase your objectives in terms of the audience members being able, for example, to define, describe, explain or clarify. It is a good idea to share the objectives with your audience members so they know about the journey on which they are being taken (Box 14.11).

Setting clear objectives for your presentation leads you neatly to deciding the content. This should be straightforward because your abstract should serve as your guide to the content. After all, the purpose of the abstract is to give the reader a brief overview of the report, which is precisely the same purpose as the presentation. How much detail you go into on each point will be determined largely by the time at your disposal. But the audience member who wants more detail can always ask you to elaborate, or read it in the report.

The final point to note here is to think about the general approach you will adopt in delivering your presentation. It is a good idea to involve the audience members rather than simply tell them what it is you want them to know. Thirty minutes of you talking at the audience members can seem like an age, for you and sometimes for them! Asking them to ask questions throughout the presentation is a good way of ensuring that the talk is not all in one direction. Rarely will tutors miss the opportunity of asking you to ‘dig a little deeper’ to test your understanding, so don’t worry that no questions will arise. However, you must be careful to ensure that you do not let questions and answers run away with time. The more you open up your presentation to debate, the less control you have of time. In general we do not think it is a good idea to attempt to emulate tutors and turn your presentation into a teaching session. We have seen students set the audience mini-exercises to get them involved, but often these tend to fall flat. Play to your strengths and enjoy the opportunity to share your detailed knowledge with an interested audience.
Presenting the objectives for a project

Phil created the following slides as part of a lecture on project presentation. To help give a professional appearance to his slides he used the Microsoft PowerPoint™ program. This allows you to produce various designs of slide to meet your purpose, examples of which are shown in the following versions:

Version 1: Standard PowerPoint slide

![Version 1: Standard PowerPoint slide](image1)

Version 2: PowerPoint slide using design template

![Version 2: PowerPoint slide using design template](image2)
Chapter 14 · Writing and Presenting Your Project Report

Version 3: PowerPoint slide using more colour

Objectives for a presentation

- Describe the purpose of the research project.
- Explain the context in which the research project research was set.
- Identify the research strategy adopted and the reasons for its choice.
- List the main findings, conclusions and recommendations flowing from the research.

N.B. Detail related to the specific project may be added.

Version 4: PowerPoint slide with photograph inserted

Objectives for a presentation

- Describe the purpose of the research project.
- Explain the context in which the research project research was set.
- Identify the research strategy adopted and the reasons for its choice.
- List the main findings, conclusions and recommendations flowing from the research.

N.B. Detail related to the specific project may be added.

Version 5: PowerPoint slide printed with space for audience to add notes

Objectives for a presentation

- Describe the purpose of the research project.
- Explain the context in which the research project research was set.
- Identify the research strategy adopted and the reasons for its choice.
- List the main findings, conclusions and recommendations flowing from the research.

N.B. Detail related to the specific project may be added.

Using visual aids

Now another old adage: ‘I hear and I forget, I see and I remember’ (Rawlins, 1993:37). The use of visual aids will do more than enhance the understanding of your audience. It will help you to look better prepared and therefore more professional. It is unlikely that you will have the time to use elaborate media such as video or photographic slides, and often your subject matter will not lend itself to their use. So we shall confine our discussion here to the use of more prosaic media such as the overhead projector and the whiteboard.

A simple set of overhead slides will perform the same function as a set of notes, in that it will ensure that you do not forget key points, and will help you to keep your presentation on track. You will know the material so well that a key point noted on the overhead will be enough to trigger your thought process and focus the attention of the audience. Key points will also ensure that you are not tempted to read a script for your presentation, something that will not sustain the attention of your audience for very long.

The use of Microsoft PowerPoint™ has revolutionised the preparation of overhead projector transparencies. It is now easy to produce a highly professional presentation, which can include simple illustrations to reinforce a point or add a little humour. You may have the facility to project the slides direct to a screen using a computer, which clearly adds to the degree of professionalism (Box 14.11). This allows you electronically to reveal each point as you talk about it while concealing forthcoming points. Alternatively, you may need to print the slides from PowerPoint and copy these to acetates and show them using an overhead projector. The latter method means that you must ensure that your slides are numbered and kept in a neat pile when shown, otherwise you will be searching for the correct slide to show at a particular time. PowerPoint also allows you to print miniature versions of your slides as handouts (Version 5, Box 14.11) which is a very useful aide-mémoire for the audience.

You may want to supplement your pre-prepared slides with the use of the whiteboard. This may be useful for explaining points in relation to questions you receive. A word of warning here: ensure that you use dry markers that can be wiped from the board. A vain attempt to erase the results of a permanent pen in front of your audience will do nothing to enhance your confidence. Ensuring you have dry wipe markers (use only black and blue pens – red and green are too faint), and checking computers and overhead projectors before the presentation, serve to emphasise the need for careful preparation.

Making the presentation

The first thing to say here is: don’t worry about nerves. As Janner (1984:15) says: ‘Confidence comes with preparation, practice and training.’ Your audience will expect you to be a little nervous. Indeed, without some nervous tension before your presentation it is unlikely you will do yourself justice. Be positive about your presentation and your report. Trial your presentation on a friend to ensure that it flows logically and smoothly and that you can deliver it in the allotted time. In our experience most students put too much material in their presentations, although they worry beforehand that they have not got enough.

It is important that your presentation has a clear structure. We can do no better than repeat the words of a famous evangelist: when asked how he held the attention of his audience, he replied ‘First I tell them what I’m going to say, then I say it, then I tell them what I’ve said’ (Parry, 1991:17). Parry (1991) notes that audiences like to know where they are going, they like to know how they are progressing on the journey, and they like to know when they have arrived.

Finally some practical points that will help.
Think about whether you would prefer to sit or stand at the presentation. The former may be better to foster debate, the latter is likely to give you a sense of ‘control’ (Rawlins, 1993). Which you choose may depend upon the circumstances of the presentation, including the approach you wish to adopt, the room layout, the equipment you are using and your preferred style.

Consider how you will deal with difficult questions. Rehearse these and your answers in your mind so that you can deal with them confidently during the presentation.

Avoid jargon.

Check the room before the presentation to ensure you have everything you need, you are happy and familiar with the layout, and all your equipment is working.

14.8 Summary

- Writing is a powerful way of clarifying your thinking.
- Writing is a creative process, which needs the right conditions if it is to produce successful results.
- Your project report should have a clear structure that enables you to develop a clear storyline.
- Your report should be laid out in such a way that your reader finds all the information readily accessible.
- You should try to develop a clear, simple writing style that will make reading the report an easy and enjoyable experience.
- Spelling and grammatical errors should be avoided.
- Do not think of your first draft as your last. Be prepared to rewrite your report several times until you think it is the best you can do.
- Failing to prepare for your presentation is preparing to fail.
- Visual aids will enhance the understanding of your audience and lend your presentation professionalism.
- Remember: tell them what you’re going to say, say it, then tell them what you’ve said.

SELF-CHECK QUESTIONS

Help with these questions is available at the end of the chapter.

14.1 Your project tutor has returned your draft project report with the suggestion that you make a clearer distinction between your results and your conclusions. How will you go about this?

14.2 Why is it considered good practice to acknowledge the limitations of your research in the project report?

14.3 Look again at the quote from Wright Mills cited early in Section 14.5. Rewrite this so that his idea is communicated to the reader in the clearest way possible.

14.4 There are other problems that must be avoided when repositioning sections of your report in the redrafting processes. What are they?
14.5 Look at the PowerPoint slide below and comment on any weaknesses.

Writing and presenting your project report

- View the writing of the final project report as an existing prospect.
- Write in such a way that you can reflect on all you have learned while conducting the research.
- Write a final project report which presents an authoritative account of your research.
- Adopt an appropriate format, structure and style for the final project report.
- Ensure that your report meets the necessary assessment criteria.

14.6 Draft a plan for your dissertation, show it to your friends and compare your plan with those they have drafted. Explain the reason for any differences between your plan and those of your friends.

14.7 Look through several of the refereed academic journals that relate to your subject area. Choose an article that is based upon some primary research and note the structure of the article. Decide whether you agree with the way in which the author has structured the article and think of ways in which you may have done this differently.

14.8 Share pieces of your writing with a group of your friends. Look at the example in Box 14.9 and subject all the pieces to the ‘write clearer sentences’ test.

REVIEW AND DISCUSSION QUESTIONS

Writing your project report

- Design a clear structure for your report that broadly fits the structure suggested in Section 14.3. Ensure that the structure you design accommodates a clear storyline.
- Write the report’s abstract. Remember that you will need to rewrite this when you have finished your first draft.
- Compile the main body of the report. How will you ensure that the literature review relates to the following chapters? What method will you adopt to make the distinction between result and conclusions?
- Give your report the ‘reader-friendly’ test to ensure that the style is easy to read and free from avoidable errors.
References

Further reading

Becker, H. (1986) *Writing for Social Scientists*, Chicago, IL, University of Chicago Press. This is a highly readable book, full of anecdotes, from an expert in the field. It is rich in ideas about how writing may be improved. Most of these have been developed by Becker from his own writing and teaching. Such is the emphasis that Becker puts on rewriting that the title would more accurately be 'Rewriting for Social Scientists'.
Day, R. (1995) *How to Write and Publish a Scientific Paper* (4th edn), Cambridge, Cambridge University Press. This takes the reader through the whole process, with a host of useful advice. It is funny and irreverent but none the less valuable for that!

For WEB LINKS visit www.pearsoned.co.uk/saunders
Akasma’s draft disappointment

Akasma was a Turkish student studying for a degree in marketing at a major European university. She had completed all the taught modules and now was nearing the end of her course, and her return to Turkey. She had enjoyed her course very much and found the academic, as opposed to the practical, element of the course particularly rewarding.

Akasma’s family ran a very successful business. The main part of that business was the running of a fleet of buses which transported passengers around the city of Istanbul. The majority of the turnover came from the running of shuttle buses to and from the airport to the city centre. This was part of the business which had grown in recent years as the tourist trade had developed. Nonetheless, this was a competitive business because there are other ways for travellers to make the journey from the airport to the city. The principal competitor is the taxi. Arrivals may also take the Metro and tram to the centre of Istanbul.

Akasma’s dissertation had been suggested by her father. He was keen to understand why customers made their choice of transport to and from Istanbul airport. He felt that if he understood this he would be able to make changes, if they proved to be necessary, to the service the company provided and the way in which it was marketed.

Akasma was enthusiastic about this dissertation for two reasons. First, she was keen to do something that was of practical use to the family business. This was a natural desire as her father was soon to retire and Akasma would take over as the chief executive of the business. The second reason for Akasma’s keenness was that she had developed an interest in consumer decision theory. This was understandable since she had graduated with a first degree in psychology from one of Turkey’s most prestigious universities.

Akasma’s dissertation adviser was Professor Norrington. She had seen Professor Norrington regularly in the early stages of her dissertation. He was very helpful in assisting Akasma in defining her objectives and talking through the research approach and data collection techniques she would adopt. As she became more confident with her progress, Akasma saw less of Professor Norrington. This was only to be expected and was a situation with which Akasma and Professor Norrington were quite happy.

Akasma enjoyed the literature research and conducted this most diligently. She produced many thousands of words of literature review from which she intended to select the most pertinent for final inclusion in dissertation. She returned briefly to Turkey to complete the conduct of the primary research. This was based principally on the completion by travellers from the airport of a questionnaire on how they made their journey and why they had chosen their particular mode of transport. Akasma designed a questionnaire and piloted it before handing the implementation of the survey to her younger brother. In the event, the survey produced some very useful data, much to the delight of Akasma and her father.

Approximately two months before the final date when the dissertation had to be handed in Akasma delivered a draft to Professor Norrington. She was
happy with what she had produced and anticipated that little would need to be done by way of revision. Professor Norrington took a couple of weeks to read the draft and then made a time to see Akasma. She could tell as soon as she walked into his office that all was not well. Professor Norrington told her that the dissertation had some commendable features but, as it stood, it was not of pass standard. He explained that the main reason for this was the gross imbalance in the way in which the material was structured. He felt that Akasma had spent far too much time on her literature review at the cost of her findings, conclusions and recommendations. He had done a rough calculation and estimated that of the 15,000 words that Akasma had produced, 1500 were on the introduction and method chapters, 11,000 were devoted to the literature review and only 2500 on the findings, conclusions and recommendations. He told Akasma that he thought this was a great pity because it was clear that she had some excellent data, which would tell an interesting and useful story in the findings chapter. Moreover, the data would allow her to draw some insightful conclusions and make some practical recommendations, which would be of immediate benefit to the business.

Akasma could see the fault in her dissertation as soon as Professor Norrington started explaining it. The truth of the matter was that she had enjoyed researching the literature so much that she had concentrated too much on this to the detriment of the other, more practical aspects of the research. In addition, she had been too close to the writing process and not given herself time to sit back and think in a reflective way about how she was doing it. All this meant that Akasma now had just over a month to make some major revisions to her draft dissertation. Although very disappointed, she was really pleased that she submitted the draft in good time.

NB. This case is entirely fictional and bears no relation to either an individual or an organisation.

QUESTIONS

1. What do you think may be a more appropriate word allocation for Akasma’s dissertation?
2. How would you advise Akasma to go about shortening her literature review chapter?
3. What advice would you give to students approaching the writing up of their research to ensure that they don’t fall into the same trap as Akasma?

Additional case studies relating to material covered in this chapter are available via the book’s Companion Website, www.pearsoned.co.uk/saunders. They are:
- Writing Lata’s project report
- Amina’s story.

SELF-CHECK ANSWERS

14.1 This is easier said than done. Start by going through your results chapter, continually asking yourself ‘Did I find this out?’ You will probably weed out a lot of things that you have thought about that are related to points you found out. These belong in the conclusions (or discussion) chapter. Now turn to the conclusions chapter, asking yourself the question: ‘Is this a reflection of what I found out?’ If the points are a repeat of what you covered in your findings section then cut them out and make sure you write reflections on the findings.

14.2 It shows that you have thought about your research design. It demonstrates that you have insight into the various ways of pursuing research. Remember that there is no perfect research design. Look again at Section 5.4. This asked the question ‘How do you know that the answer to the research question(s) is the correct one?’ The answer, of course, is that in the literal sense of the question you cannot know. All you can do is reduce the possibility of getting the answer wrong.

14.3 Academic writing is often difficult to understand. This is not usually because the subject matter is complex or the thoughts profound. It is because the writer thinks it necessary to write in an ‘academic’ way.
14.4 The ‘road map’ you announced in the introduction may not now be correct. The previews and summaries at the beginning and end of the relevant chapters may need changing. A more serious potential problem is that the storyline may be altered. This should not be the case. Nonetheless, it is important to reread the whole report to ensure that the repositioning does not alter its sense of coherence.

14.5 Well, it looks a bit of a mess! The title is too big: it is out of proportion to the rest of the text. Not all the points are ‘bulleted’, and the spaces between the bullet and text are not consistent. There are three different fonts and, most importantly, there is too much text on the slide. All of these faults are easily rectifiable. It is worth playing around with it and making a few mistakes – it’s a good way of learning!
Bibliography

BIBLIOGRAPHY

Boddy, C. (2005) ‘A rose by any other name may smell as sweet but “group discussion” is not another name for “focus group” nor should it be’, *Qualitative Market Research* 8: 3, 248–55.

BIBLIOGRAPHY

Emerald (2006) ‘Writing for an Emerald publication: instructions for writing a structured

Healey, M.J. and Rawlinson, M.B. (1994) ‘Interviewing techniques in business and man-

BIBLIOGRAPHY

Lau, J. (2005) ‘In Hong Kong, women “just have to work harder”’, *Financial Times*, 20 October.

BIBLIOGRAPHY

BIBLIOGRAPHY

The following titles are included to help stimulate possible research ideas. You should not take the inclusion of a title as an indication of the quality of the title or any associated research project.

Accountability of accountants
Activity-based costing systems in small and medium-sized enterprises: benefits and barriers for implementations
Analysis of transformation of legacy systems
Competitor strategies in the mortgage market
Could the application of finance management tools aid decision making within the building industry?
Do financial reporting and other available communication channels meet informational needs of stakeholders in Kazakhstan?
Factors influencing income generation through knowledge transfer: a case study of a university department
Foreign direct investment in Nepal: a case study of the impact on investment flows of perceived political instability in a developing country
Harmonisation of national accounting standards: debates and multinational enterprises
How can the finance function add value in tomorrow’s organisation?
How do financial services market to the ‘youth’ market?
Human elements in the budgeting process
Intellectual capital as a challenge for accountants – its roots, measurement and recognition
Is the growth of the Islamic banking sector a credible threat to conventional banking?
Is there a funding gap for entrepreneurs? An analysis of the capital resources for funding the entrepreneurial venture
Latin America’s debts and the implications for its economies
Measuring the business value of IT investments: a case study
Pricing innovation: how might we value UK Biotech start-ups?
Revenue management from the employee perspective
The cashless society – imminent reality or impossible dream?
The Chinese banking industry – reform and developments
APPENDIX 1

The impact of the European Union process of membership on investment and employment in the tourism sector in Turkey

The implementation of principles of sound corporate governance within organisations

The importance of group personal pensions to individual employees at an organisation compared with company pension schemes

The reasons for non-adoption of activity-based cost management among manufacturing firms in Malaysia

To what extent can the effect of strategy on financial results be isolated and evaluated in [organisation name]?

Value added services (VAS) provided by UK life assurance companies for independent financial advisors: an exploration of their availability, quality and effectiveness in differentiating the life office

With ever-increasing improvements in modern technology, will a career in accountancy become a thing of the past?

An environmental analysis of Chinese jewellery market entry strategy

Exploring consumer ethics: is there a relationship between organic food buyers and ecotourists?

Global warming: what does it mean for commercial insurers?

Green revolution in the consumer goods market – a consumer-led phenomenon or the marketing industry’s profit-making creation?

How does recycled packaging in supermarkets affect buyer behaviour? A cultural comparison of Germany and the UK

How tourism in Oxford affects and is affected by the host population

Sustainable consumption in Europe – barriers, fields and opportunities

The evaluation of commercialisation of recycled plastics in the UK

To what effect will impending European Union environmental legislation affect the management of hazardous wastes in Europe? What are the implications for the marketing of clean environmental technologies?

To what extent do the actions and motivations of a mainstream entrepreneur differ from those working within the social enterprise sector? Are there crucial success factors that might encourage greater participation of entrepreneurs into the sector?

A comparative analysis of creative problem-solving techniques within British-based companies

A comparison between Japanese and Western leadership styles

A critical evaluation of performance management programs in three multinational organisations based in the Philippines

A critical evaluation of the effectiveness of cross-cultural virtual teams
A study of women managers in international non-governmental organisations
An evaluation of a coaching project within a national charity
An investigation into the relationship between part-time employee turnover and working patterns in large city centre stores
An investigation of the influence of Chinese cultural values on employee involvement implementation.
An investigation of trainees’ expectations about lifetime jobs in large Brazilian organisations
Are local government performance management systems effective?
Becoming a manager – the development of management competencies for local middle-level managers in Taiwan-based enterprises in China
By outsourcing key activities, is the organisation in danger of losing its competitive advantage?
Cross-cultural issues in performance management
Determining leadership development requirements for the UK management consulting industry
Do the disciplinary processes of the Institute of Chartered Accountants in England and Wales equate to best practice theory?
Does introducing change in small work groups change anything?
Effective leadership in times of rapid change: a study of the different leadership behaviours of first line managers and the effect on outcomes during the sales force restructuring
Employee attitudes towards commitment in a luxury sector in Thailand
Employee socialisation and training in the effective use of empowerment
Enhancing organisational performance and shareholder value through staff retention: the intellectual capital perspective
Expatriate managers in China
Exploration of cross-cultural management – the way of managing multinational teams in Chinese-based enterprise
Filipino nurse recruitment, selection, adaptation and integration at a hospital. A case study
How can a balanced scorecard improve performance management?
How can international human resource managers effectively manage diversity in multinational organisations?
How can multinational enterprises use reward to motivate their employees in different countries? A case study of a Chinese multinational enterprise in China, Japan and America
How do corporate trainers in Japan evaluate cross-cultural communication training?
How do inter-cultural factors affect negotiation? A case study
APPENDIX 1

How does the perceived value of company benefits change through the employment life cycle?

How effective are health and safety communication strategies in the UK construction industry?

How effective are virtual teams in a global organisation? A case study

Human resource function and small businesses: to what extent does the realisation of the founding entrepreneur for the need of human resource management affect business growth rate?

Improving the corporate culture of knowledge sharing through the introduction of collaborative tools: an action research study in a government office

Influences of human resource practices in the ethnic minority business growth: a study on recruitment, training and motivation

International investments by Icelandic entrepreneurs: an analysis of human resource management practices in those investments

Leadership and initial recruitment in small firms

Managing knowledge creation: an in-depth case study of knowledge creation during new technological development

Online/electronic selection methods

Outsourcing call centres to India and its implications for Indian businesses and the economy

Performance appraisal in an engineering environment: a case study of politics and practice of an implementation of motor sport engineering services

Personality type differences and psychological contracts

Resistance to change in a technological driven organisation

Tacit knowledge management: ways of encouraging tacit knowledge sharing within an organization

Talent management: what are the factors that affect an organisation’s ability to strive for competitive advantage?

The balanced scorecard – the success factors and impact on an organisation

The effects and implications of long working hours amongst retail management

The performance of emotional labour by Taiwanese hospitality employees

The relationship between the psychological contract and retention of staff

The role of human resource development in organisational development in China

The role of leadership in change management programmes: what constitutes ‘effect’ leadership?

The utilisation of formal and informal recruitment methods

To what degree does flexible working (flexi-time) act as an employee recruitment/retention tool in the public sector?

To what extent does network mapping give insight into relationship changes in a pre- and post-venture company?
To what extent is the 2006 age discrimination legislation likely to affect working practices?

What are the HR implications for career progression for female staff?

What are the major considerations in using appraisal as a mechanism for managing the performance of salespersons in the retail industry?

What investment are organisations making in retaining survivors of downsizing in comparison to investing in outplacement for those made redundant and why?

What lessons in HRM can Russian medium-sized enterprises learn from their British colleagues?

What role does ‘intellectual capital’ play within an ‘offshoring’ operational strategy?

Why do expatriate employees quit their international postings prematurely?

An analysis of the requirements of start-up firms specifically in the technology industry and the services supporting these needs

An evaluation of the development of entrepreneurial activity in sub-Saharan Africa: the case of Cameroon

An exploration of entry strategies into foreign markets for SMEs in China

An exploration of the phenomenon of succession in family business

Business networks and the factors associated with network participation and formation of small and medium-sized enterprises – the case study of small and medium software firms in Ho Chi Minh City

Chinese small business start-up in the 21st century

Entrepreneurial management – exploring the attitudes to resources and resource usage amongst owner-managers and corporate managers

Family firms and the effectiveness of non-executive directors: an assessment of the impact of non-executive directors on SME family firms, from the viewpoint of the practitioners

Franchise business – is it a successful way for organisations to grow in Japan?

Knowledge management in high-technology manufacturing sector SMEs: key strategies to maintain competitive advantage

Mapping out the ‘business evolution model’ for small firms in Pakistan by analysing the challenges they face during early growth

The rise in the number of female entrepreneurs: why is it happening and what problems are they facing?

Use of competitor collaboration in SME growth strategies within knowledge-based industries

What mechanisms can entrepreneurs instil within their companies to enable growth? Structuring the small to medium-sized enterprise for growth

Why do family businesses struggle to survive across the generations?
APPENDIX 1

Women entrepreneurs – push or pull? Identifying the drivers that motivate women to become entrepreneurs

A comparative analysis of the multi-level marketing business model to the conventional small business enterprises

A comparison of marketing policy of independent schools in Iran and England

A critical analysis of marketing strategy of Indian organic tea exporters: opportunities and challenges faced in the UK market

A study of consumer behaviour towards luxury products in the Polish market

A study of the effectiveness of marketing mix on buyer behaviour: a case study of domestic (Thai) package tours

An analysis of tourist experience of heritage travel

An evaluation of strategies to implement customer relationship management systems

An examination of airline industry market segmentation and relationship marketing

An exploratory study of the successful branding strategies used for video games; a comparative investigation into games that became icons and ones that have failed

An investigation into international marketing communications, the management of a global brand portfolio with reference to ensuring international brand consistency

An investigation into the factors that influence the decisions of Chinese students who come to the UK for undergraduate and postgraduate studies

An investigation of customer loyalty schemes in the grocery market

An investigation of the analysis of brand of Hong Kong since Special Administrative Region status

An investigation on the critical success factors for the design of 3G mobile services

Analysis of consumers’ behaviour in a clothing department with a view to encouraging brand loyalty

Attaining and retaining customers in the Chinese life insurance industry through relationship marketing – a cultural perspective

Consumer behaviour and marketing strategy for UK retail companies in Taiwan

Customer loyalty in the hotel industry: the role of customer satisfaction and image

Customer relationship marketing and branding interface

Does the use of humour in advertising achieve the main purpose of the advertisement?

Evaluation of customer buying motives in the Austrian market for sewing machines and iron-presses

Examining the attitudes of young people to the theatre arts
Factors affecting patient satisfaction for cancer patients
Factors influencing the demand for automated teller machines in Eastern Europe and strategic role of technological innovation in the Lithuanian banking industry
How can businesses continue to increase their use of the Internet for advertising while avoiding bad consumer response?
How do heritage publishers target their customers?
How does brand personality influence consumer attitudes in service industries?
How does celebrity endorsement impact on brand image?
How important is consumer buyer-behaviour to the sales-market share of Spanish wines within the UK?
How price competitive is [organisation name]?
Influence of customer satisfaction on loyalty
Is the existing consumer behaviour decision-making model applicable to the world? A case of Japanese female decision making with luxury brands in Japan
Marketing mobile phone services in the United Kingdom: what are the factors that affect customer switching behaviour?
Postmodern marketing and its implications for relationship marketing
Reputation management – a 21st century definition and its potential impact on profitability in business
Retail marketing strategy of charity shops in the UK and the possibility of setting up charity shops in China
Reversing the innovation tide: strategy and market entry issues facing fast-growing SME software and technology companies entering the US market
Role of loyalty programmes in customer retention in services industry
The brand effect on consumer behaviour for laptop purchase in the UK and mainland China
The effectiveness of market entry via a wholly owned subsidiary within existing markets in choice and conceptualisation
The impact of brand servicescapes on consumer behaviour and consumption culture in Moscow relative to social class
The impact of culture on customer satisfaction
The impact of generic drug sales on pharmaceutical companies – can branding prevail?
The implementation of marketing strategies within the UK gambling sector: a comparative study between online and traditional gambling establishments
The implication of tactical pricing strategies on long-term profitability
The importance of branding to new firms in emerging markets: evaluating brand equity within the electronic sports sector
The role, scope and importance of marketing in SMEs
APPENDIX 1

To what extent brand loyalty exists among Chinese consumers in car purchasing and the implication for car marketers in China

To what extent can internal marketing and increased motivation be used to improve customer service?

To what extent can the implementation of a support-driven CRM programme, within a medium-sized organisation, affect business performance and how can this be effectively measured in order to formulate a true impact analysis?

To what extent does client relationship marketing influence the loyalty of clients within the UK legal services sector?

Trust as a tool for the development of customer relationships

Visual merchandising and atmospherics – what is the impact of visual, aural, olfactory and tactile dimensions on consumers and their behaviour?

What determines the image of South Africa?

Which brand strategy would be more appropriate for a luxury goods industry launching new products?

A comparison of the complexities in footwear supply chain management in Turkey and Western developed countries

A review of the key elements of business to business (B2B) relationships in the UK medical device industry

A study of how Brazilian manufacturers in the food industry can best utilise supply chain management theory in order to be more closely aligned with European customers

An investigation into how the management of technical and cultural change can have an effect on the organisation

Are Internet use, communication and ethical concerns dynamic operatives in supply chain management?

Business process re-engineering for financial services: strategy formulation evaluating current practices

Can JIT be successfully implemented within service organisations?

Electronic data interchange (EDI) in the supply chain – the extent to which implementation of SEDI as part of a B2B e-business strategy has delivered on its promises

Improvement of quality management in Bosnia and Herzegovina with the aim of achieving total quality management

Is it possible to achieve total quality management and a high level of customer service within a commercial vehicle supplier?

Is there a link between benchmarking and total quality management (TQM)?

Operations management techniques in small-scale manufacturing companies: a case study

Quality initiatives within the insurance industry

The application of mass customisation principles in the mobile phone industry
The issues for development of logistics involved in transportation of cars within Western Europe and Eastern Europe

The study of outsourcing supply chain management – third party logistics in the Chinese automobile industry

To what extent can outsourcing sales help to achieve rapid economic growth for a small business?

To what extent does an organisation’s culture penetrate its delivery chain and how does this impact on performance?

To what extent is reliability-centred maintenance practised at [organisation name]?

What determines success? A multiple case study to identify key success factors in project management

What is the effect of e-business on supply chain management?

What is the role of knowledge management during the transition to potential new service vendors?

Corporate social responsibility in India: its evolution, business imperatives and emerging trends

Corporate social responsibility: a move towards hybridised business structures

Corporate social responsibility: winning the ethical debate with primary stakeholders

Ethnic minority entrepreneurship – Indian entrepreneurs

A critical analysis of key success factors of alliances and partnerships within the aerospace industry

A case study of Pakistan and India and an assessment of their business environment in attracting foreign direct investment

An analysis of the role of stakeholders in developing tourism destinations

An empirical investigation into franchising in the fast food retail sector in China

An evaluation of the enterprise architecture-based approach to aligning IT and business strategy

Are there different motivations between Western and Chinese investments in South Korea in relation to mergers and acquisitions?

Business barriers and trade expansion in the new European Union

Can IS (Information Services) become a catalyst for change in an organisation?

Change within the Scout Association – an interim critical evaluation of ‘Be prepared . . . for change’

Competition in the telecommunication industry: a case study of the impact of foreign direct investment on the Thai telecommunication industry

Competitive forces and technological innovation: an analysis of how key technology trends will impact upon the competitive forces acting upon the broadcast sector
Competitive positioning strategy for achieving competitive advantage: the literature review of assessing strategic concept

Competitive strategy in the Chinese fast food industry

Consolidation of the Internet audience measurement and analysis sector through mergers and acquisition between 1999 and 2003: a case study

Current issues in strategic alliances and mergers and acquisitions in three car companies

Defensive strategies against hostile takeovers

Does contemporary interior design and architecture provide a competitive advantage?

EU Directive 2002/14/EC on information and consultation: an assessment of the implications for [organisation name]

How does government action on privatisation affect competition in liberalising economies? A study of insurance markets in the European Union countries

How strategy is formulated in small start-up companies in Austria

How successful has the customer service of UK call centres off-shored to India been?

How town centre management helps traditional retailers reverse the declining business environment – a case study of Hsin-Chu City in Taiwan

IT offshore outsourcing – main drivers

Myth, magic or fundamental principles: an evaluation of the creation of modern gurus

Partner selection of strategic alliance in the automobile industry

Porter’s Five Fallacies – exploring the limits of Porter’s competitive strategies in a game context

Post mergers and acquisitions integration of corporate culture and brand management

Six sigma: critical success factors and action plan for implementation

Soft elements of success and failure in the merger integration process

Specialist retail in the e-commerce era: where to next?

Store location and store design of retailing industry in China

Technological change in the music industry

Testing the proposition that strategic alliances are fundamental to sustainable international leadership: the Renault/Nissan alliance – a pattern for the future or a one-off?

The alliance management process at the different stages of the strategic alliance life cycle – lessons to be learnt

The causes and effects of diversification in transition economy

The challenges of the music industry – the afterthought of mergers and acquisitions: brand management
The development of a model of crisis management for anti-terrorism policy in tourism destinations
The effectiveness of the corporate strategy of [company name]
The functions and benefits of strategic alliances – a critical analysis of consolidation in the worldwide airline industry
The impact of globalisation on business strategies of companies – a study of SMEs in Taiwan
The implementation of total quality management in a social services department
The implications of the European Union enlargement for the Bulgarian economy
The importance of information and communication technologies to the development of the agro tourism product in Italy
The influence of life-cycle concepts on strategic business decisions of a small high-technology SME
The persistence of strategic choice in deterministic settings: a case study
The relationship between strategic management of corporate real estate and corporate value and shareholders’ value
The role of management consulting in international mergers and acquisitions
The role of public and private sectors in the sustainable development of a tourist destination, Montego Bay, Jamaica
The role of public sector in tourism planning and development
The role of the textile industry in developing countries
The sum of its parts? To what extent can a health club group gain competitive advantage through the clustering of clubs and sharing of resources?
The viability of bio diesel as an alternative to fossil fuel – a scenario planning approach
To what extent do the directors of [organisation name] know what their responsibilities as directors are and to what extent do they fulfil these responsibilities?
To what extent is organisational culture a barrier to change?
UK misses out on China boom: corporate reluctance and the impact of government initiatives on investment in China
University spinout companies: an investigation of the factors perceived to inhabit successful technology transfer
What are the ‘trust’ expectations for start-up companies when forming strategic international business alliances?
What are the change management implications of ‘off-shoring’ research and development, and the consequential effects on innovation?
What is the content of awareness of IT-related issues amongst UK companies?
What is the future for solar power in the UK?
What is the impact of organisational cultures on mergers and acquisitions in the pharmaceutical industry?
Four points are important when referencing:

- Credit must be given when quoting or citing other work.
- Adequate information must be provided to enable a reader to locate each reference.
- References must be consistent and complete.
- References must be recorded in the precise format required by your university.

The Harvard system

Referencing in the text

The Harvard system is an author–date system, a variation of which we use in this book. It was developed at Harvard University in the 1930s (Anderson and Poole, 2001) and usually uses the author’s name and year of publication to identify cited documents within the text. The system for referencing work in the text is outlined in Table A2.1.

Referencing in the references or bibliography

In the references or bibliography the publications are listed alphabetically by author’s name, and all authors’ surnames and initials are listed in full. If there is more than one work by the same author, these are listed chronologically. The system for referencing work in the references or bibliography is outlined in Table A2.2. While it would be impossible for us to include an example of every type of reference you might need to include, the information contained in this table should enable you to work out the required format for all your references.

For copies of journal articles from printed journals that you have obtained electronically via the Internet it is usually acceptable to reference these using exactly the same format as printed journal articles (Table A2.2), provided you have obtained and read a facsimile (exact) copy of the article. Exact copies of journal articles have precisely the same format as the printed version, including page numbering, tables and diagrams. They are usually obtained by downloading the article via the Internet as a .pdf file that can be read on the screen and printed using Adobe Acrobat Reader.

Finally, remember to include a, b, c etc. immediately after the date when you are referencing different publications by the same author from the same year. Do not forget to ensure that these are consistent with the letters used for the references in the main text.
Table A2.1 Using the Harvard system to reference in the text

<table>
<thead>
<tr>
<th>To refer to</th>
<th>Use the general format</th>
<th>For example</th>
</tr>
</thead>
<tbody>
<tr>
<td>A single author</td>
<td>(Surname date)</td>
<td>(Saunders, 1993)</td>
</tr>
<tr>
<td>Dual authors</td>
<td>(Surname and Surname, date)</td>
<td>(Saunders and Thornhill, 2006)</td>
</tr>
<tr>
<td>More than two authors</td>
<td>(Surname et al., date)</td>
<td>(Lewis et al., 2004)</td>
</tr>
<tr>
<td>Work by different authors generally</td>
<td>(Surname, date; Surname, date)</td>
<td>(Cassell, 2004; Dillman, 2000; Robson, 2002)</td>
</tr>
<tr>
<td>Different authors with the same surname</td>
<td>(Surname, Initial., date)</td>
<td>(Smith, J., 2006)</td>
</tr>
<tr>
<td>Different publications by the same author</td>
<td>(Surname, date; date)</td>
<td>(Saunders, 2004; 2005)</td>
</tr>
<tr>
<td>Different publications by the same author from the same year</td>
<td>(Surname, date letter), make sure the letter is consistent throughout</td>
<td>(de Vita, 2005a)</td>
</tr>
<tr>
<td>An author referred to by another author where the original has not been read (secondary reference)</td>
<td>(Surname, date; cited by Surname, date)</td>
<td>(Granovetter, 1974; cited by Saunders, 1993)</td>
</tr>
<tr>
<td>A corporate author</td>
<td>(Corporate name, date)</td>
<td>(Harley-Davidson Inc., 2003)</td>
</tr>
<tr>
<td>A newspaper article with no obvious author</td>
<td>(Newspaper name, date)</td>
<td>(The Guardian, 2006)</td>
</tr>
<tr>
<td>Another type of publication with no obvious author</td>
<td>(Publication title, date)</td>
<td>(Labour Market Trends, 2005)</td>
</tr>
<tr>
<td>An internet site</td>
<td>(Site title, date)</td>
<td>(Financial Times, 2006)</td>
</tr>
<tr>
<td>A television or radio programme</td>
<td>(Television or radio programme series title, date)</td>
<td>(Little Britain, 2005)</td>
</tr>
<tr>
<td>A commercial DVD or video that is part of a series</td>
<td>(DVD or video series title, date)</td>
<td>(The Office, Series 1 and 2, 2005)</td>
</tr>
<tr>
<td>A commercial DVD or video that is not part of a series</td>
<td>(DVD or video title, date)</td>
<td>(One Flew Over the Cuckoo’s Nest, 2002)</td>
</tr>
<tr>
<td>A publication for which the year of publication cannot be identified</td>
<td>(Surname or Corporate name, nd), where ‘nd’ means no date</td>
<td>(Woolons, nd)</td>
</tr>
<tr>
<td></td>
<td>(Surname or Corporate name, c. date), where ‘c.’ means circa</td>
<td>(Hattersley, c. 2004)</td>
</tr>
<tr>
<td>A direct quotation</td>
<td>(Surname or Corporate name, date, p. number) where ‘p.’ means ‘page’ and number is the page in the original publication on which the quotation appears</td>
<td>‘Whenever an employee’s job ceases to exist it is potentially fair to dismiss that person.’ (Lewis et al., 2003, p. 350)</td>
</tr>
</tbody>
</table>
Table A2.2 Using the Harvard system to reference in the references or bibliography

<table>
<thead>
<tr>
<th>To reference</th>
<th>Use the general format</th>
<th>For example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Books and chapters in books</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Book (no obvious author)</td>
<td>Corporate name or Publication name (date) Title, Publisher, Place of publication</td>
<td>Mintel Marketing Intelligence (1998) Designerwear: Mintel Marketing Intelligence Report, Mintel International Group Ltd, London</td>
</tr>
<tr>
<td>Journal articles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government publications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others (with authors)</td>
<td>As for books</td>
<td>As for books</td>
</tr>
<tr>
<td>Others (no obvious authors)</td>
<td>Department name or Committee name (date) Title, Publisher, Place of publication</td>
<td>Department of Trade and Industry (1992) The Single Market: Europe Open for Professions, UK Implementation, HMSO, London</td>
</tr>
<tr>
<td>Newspapers, including CD-ROM databases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Newspaper article</td>
<td>Surname, Initials and Surname, Initials (date) ‘Title of article’, Newspaper name, place of printing, day, month, pages (where known)</td>
<td>Roberts, D (1998) ‘BAe sells property wing for £301m’, The Daily Telegraph, London, 10 October, p. 31</td>
</tr>
</tbody>
</table>
Table A2.2 (continued)

<table>
<thead>
<tr>
<th>To reference</th>
<th>Use the general format</th>
<th>For example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newspapers
including CD-Rom databases continued</td>
<td>Newspaper article (no obvious author)
Newspaper name (date) ‘Title of article’, Newspaper name, place of printing, day, month, pages (where known)</td>
<td>Guardian (1992) ‘Fraud trial at Britannia Theme Park’, The Guardian, Manchester, 5 February, p. 4</td>
</tr>
<tr>
<td>Other CD-ROM publications</td>
<td>Title of CD-ROM or Surname, Initials (date) (CD-ROM), Publisher, Place of publication</td>
<td>Encarta 2006 Encyclopaedia (2005) (CD-ROM), Microsoft, Redmond, WA</td>
</tr>
<tr>
<td></td>
<td>Personal email
Sender’s surname, Sender’s initials (sender’s email address) (date) ‘Subject of message’ (email to recipient’s initials and surname) (recipient’s email address)</td>
<td>McPartlin, A (amcpartlin@abcdef.com) (2005) ‘Reviewer’s feedback’ (email to MNK Saunders) (mnksaunders@abcdef.com)</td>
</tr>
<tr>
<td>Internet items excluding emails</td>
<td>Journal published on the Internet
<URL:http://www. remainder of full Internet electronic conference/bulletin board></td>
<td>URL:http://www.stingray.ivision.co.uk/groups/emu/frindex.htm</td>
</tr>
</tbody>
</table>
To reference | Use the general format | For example
---|---|---
Internet items excluding emails continued | Internet site/specific site pages | Site title (date) ‘Title of page within site where applicable’ [online] (cited day month year) Available from <URL:http://www. remainder of full Internet address>
Chartered Institute of Personnel and Development [online] (cited 7 January 2002) Available from <URL:http://www.cipd.co.uk>

Internet article | Surname, Initials and Surname, Initials (date) ‘Title of article’ [online] (cited day month year) Available from <URL:http://www.remainder of full Internet address>

Audio-visual material | Television or radio programme | Series title, Series number (Year of production) Programme title, Place of publication, transmitting organisation, date of transmission

Commercial DVDs and videos that are part of a series | DVD or video series title Series number (Year of production) Episode title, Place of publication, Publisher [medium: format]

Commercial DVDs and videos that are part of a series | DVD or video title (Year of production) DVD or video title, Place of publication, Publisher [medium: format]

The American Psychological Association (APA) system

The American Psychological Association system or APA system is a variation on the author–date system. Like the Harvard system it dates from the 1930s and 1940s, and has been updated subsequently. The latest updates are outlined in the latest edition of the American Psychological Association’s (2001) *Publication Manual of the American Psychological Association*, which is likely to be available for reference in your university’s library.

Relatively small but significant differences exist between the Harvard and APA systems, and many authors adopt a combination of the two systems. The key differences are outlined in Table A2.3.
Footnotes

Referencing in the text

When using footnotes, sometimes referred to as the Vancouver system, references within the research report are shown by a number. This number refers directly to the references, and it means it is not necessary for you to include the authors’ names or date of publication:

‘Recent research¹ indicates that . . .’

Referencing in the references

These list sequentially the referenced works in the order they are referred to in your research report. This can be useful as it enables you to include comments and footnotes as well as the references (Jankowicz, 2005). It does, however, mean that the references are unlikely to be in alphabetical order. When using the footnotes system you need to ensure that:

- the layout of individual references is the same as that for the Harvard system (Table A2.2), other than that they are preceded by a number, for example:

- the publications referred to include only those you have cited in your report. They should therefore be headed ‘References’ rather than ‘Bibliography’;

- you refer to the same item more than once using standard bibliographic abbreviations to save repeating the reference in full (Table A2.4).

Table A2.3 Key differences between Harvard and APA systems of referencing

<table>
<thead>
<tr>
<th>Harvard system</th>
<th>APA system</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referencing in the text</td>
<td>(Lewis, 2001)</td>
<td>(Lewis, 2001)</td>
</tr>
<tr>
<td>(Lewis and Williams 2001)</td>
<td>(Saunders & Williams, 2001)</td>
<td>‘&’ not ‘and’</td>
</tr>
<tr>
<td>(Williams et al. 1999)</td>
<td>(Williams, Saunders & Staughton, 1999)</td>
<td></td>
</tr>
<tr>
<td>(Williams et al. 1999)</td>
<td>(Williams et al., 1999)</td>
<td>For subsequent occurrences; note punctuation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note use of capitals in title</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note order, use of colon, comma and full stop</td>
</tr>
</tbody>
</table>

Footnotes

Referencing in the text

When using footnotes, sometimes referred to as the Vancouver system, references within the research report are shown by a number. This number refers directly to the references, and it means it is not necessary for you to include the authors’ names or date of publication:

‘Recent research¹ indicates that . . .’

Referencing in the references

These list sequentially the referenced works in the order they are referred to in your research report. This can be useful as it enables you to include comments and footnotes as well as the references (Jankowicz, 2005). It does, however, mean that the references are unlikely to be in alphabetical order. When using the footnotes system you need to ensure that:

- the layout of individual references is the same as that for the Harvard system (Table A2.2), other than that they are preceded by a number, for example:

- the publications referred to include only those you have cited in your report. They should therefore be headed ‘References’ rather than ‘Bibliography’;

- you refer to the same item more than once using standard bibliographic abbreviations to save repeating the reference in full (Table A2.4).
Table A2.4 Bibliographic abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation</th>
<th>For example</th>
</tr>
</thead>
<tbody>
<tr>
<td>op. cit.</td>
<td>Meaning ‘in the work cited’. This refers to a work previously referenced, and so you must give the author and date and, if necessary, the page number.</td>
<td>Robson (2002) op. cit. pp. 23–4</td>
</tr>
<tr>
<td>(opere citato)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>loc. cit.</td>
<td>Meaning ‘in the place cited’. This refers to the same page of a work previously referenced, and so you must give the author and date.</td>
<td>Robson (2002) loc. cit.</td>
</tr>
<tr>
<td>(loco citato)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ibid.</td>
<td>Meaning ‘the same work given immediately before’. This refers to the work referenced immediately before, and replaces all details of the previous reference other than a page number if necessary.</td>
<td>ibid.</td>
</tr>
<tr>
<td>(ibidem)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Further reading

American Psychological Association (2001) *Publication Manual of the American Psychological Association* (5th edn), Washington, American Psychological Association. The most recent version of this manual contains full details of how to use this form of the author–date system of referencing as well as how to lay out tables, figures, equations and other statistical data. It also provides guidance on grammar and writing.

Calculating the minimum sample size

In some situations, such as experimental research, it is necessary for you to calculate the precise minimum sample size you require. This calculation assumes that data will be collected from all cases in the sample and is based on:

- how confident you need to be that the estimate is accurate (the level of confidence in the estimate);
- how accurate the estimate needs to be (the margin of error that can be tolerated);
- the proportion of responses you expect to have some particular attribute.

Provided that you know the level of confidence and the margin of error it is relatively easy to estimate the proportion of responses you expect to have a particular attribute. To do this, ideally you need to collect a pilot sample of about 30 observations and from this to infer the likely proportion for your main survey. It is therefore important that the pilot sample uses the same methods as your main survey. Alternatively, you might have undertaken a very similar survey and so already have a reasonable idea of the likely proportion. If you do not, then you need either to make an informed guess or to assume that 50 per cent of the sample will have the specified attribute – the worst scenario. Most surveys will involve collecting data on more than one attribute. DeVaus (2002) argues that for such multi-purpose surveys you should determine the sample size on the basis of those variables in the sample that are likely to have the greatest variability.

Once you have all the information you substitute it into the formula

$$n = \frac{p\% \times q\% \times \left(\frac{z}{e\%}\right)^2}{\pi^2}$$

where

- n is the minimum sample size required
- $p\%$ is the proportion belonging to the specified category
- $q\%$ is the proportion not belonging to the specified category
- z is the z value corresponding to the level of confidence required (see Table A3.1)
- $e\%$ is the margin of error required.

Table A3.1 Levels of confidence and associated z values

<table>
<thead>
<tr>
<th>Level of confidence</th>
<th>z value</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% certain</td>
<td>1.65</td>
</tr>
<tr>
<td>95% certain</td>
<td>1.96</td>
</tr>
<tr>
<td>99% certain</td>
<td>2.57</td>
</tr>
</tbody>
</table>

Where your population is less than 10,000 a smaller sample size can be used without affecting the accuracy. This is called the adjusted minimum sample size (Box A3.1). It is calculated using the following formula:
where
\(n' \) is the adjusted minimum sample size
\(n \) is the minimum sample size (as calculated above)
\(N \) is the total population.

BOX A3.1 WORKED EXAMPLE

Calculating the minimum sample size

To answer a research question Jon needed to estimate the proportion of a total population of 4000 home care clients who receive a visit from their home care assistant at least once a week. Based on his reading of the research methods literature he decided that he needed to be 95 per cent certain that his 'estimate' was accurate (the level of confidence in the estimate); this corresponded to a \(z \) score of 1.96 (Table A3.1). Based on his reading he also decided that his 'estimate' needed to be accurate to within plus or minus 5 per cent of the true percentage (the margin of error that can be tolerated).

In order to calculate the minimum sample size, Jon still needed to estimate the proportion of respondents who received a visit from their home care assistant at least once a week. From his pilot survey he discovered that 12 out of the 30 clients receive a visit at least once a week – in other words, that 40 per cent belonged to this specified category. This meant that 60 per cent did not.

Jon substituted these figures into the formula:
\[
\frac{n}{N} = \frac{n}{1 + \frac{n}{N}}
\]

\[n = 40 \times 60 \times (\frac{1.96}{5})^2 \]
\[= 2400 \times 0.392 \]
\[= 2400 \times 0.154 \]
\[= 369.6 \]

His minimum sample size was therefore 370 returns.

As the total population of home care clients was 4000, Jon could now calculate the adjusted minimum sample size:
\[
\frac{n'}{N} = \frac{369.6}{1 + \frac{369.6}{4000}}
\]
\[= \frac{369.6}{1 + 0.092} \]
\[= \frac{369.6}{1.092} \]
\[= 338.46 \]

Because of the small total population Jon needed a minimum sample size of only 339. However, this assumed he had a response rate of 100 per cent!

Reference

Appendix 4

Random sampling numbers

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>41</td>
<td>11</td>
<td>62</td>
<td>72</td>
<td>18</td>
<td>66</td>
<td>69</td>
<td>58</td>
<td>71</td>
<td>31</td>
<td>90</td>
<td>51</td>
<td>36</td>
<td>78</td>
<td>09</td>
<td>41</td>
<td>00</td>
<td>70</td>
<td>50</td>
<td>58</td>
<td>19</td>
<td>68</td>
<td>26</td>
<td>75</td>
<td>69</td>
<td>04</td>
<td>00</td>
<td>25</td>
<td>29</td>
<td>16</td>
<td>72</td>
</tr>
<tr>
<td>32</td>
<td>78</td>
<td>14</td>
<td>47</td>
<td>01</td>
<td>55</td>
<td>10</td>
<td>91</td>
<td>83</td>
<td>21</td>
<td>13</td>
<td>32</td>
<td>59</td>
<td>53</td>
<td>03</td>
<td>38</td>
<td>79</td>
<td>32</td>
<td>70</td>
<td>50</td>
<td>58</td>
<td>19</td>
<td>68</td>
<td>26</td>
<td>75</td>
<td>69</td>
<td>04</td>
<td>00</td>
<td>25</td>
<td>29</td>
<td>16</td>
<td>72</td>
</tr>
<tr>
<td>71</td>
<td>60</td>
<td>20</td>
<td>53</td>
<td>86</td>
<td>78</td>
<td>50</td>
<td>57</td>
<td>42</td>
<td>30</td>
<td>73</td>
<td>48</td>
<td>68</td>
<td>09</td>
<td>16</td>
<td>35</td>
<td>71</td>
<td>88</td>
<td>78</td>
<td>09</td>
<td>41</td>
<td>00</td>
<td>70</td>
<td>50</td>
<td>58</td>
<td>19</td>
<td>68</td>
<td>26</td>
<td>75</td>
<td>69</td>
<td>04</td>
<td>00</td>
</tr>
<tr>
<td>35</td>
<td>50</td>
<td>15</td>
<td>57</td>
<td>69</td>
<td>78</td>
<td>33</td>
<td>25</td>
<td>56</td>
<td>43</td>
<td>65</td>
<td>67</td>
<td>51</td>
<td>45</td>
<td>37</td>
<td>99</td>
<td>54</td>
<td>63</td>
<td>82</td>
<td>47</td>
<td>01</td>
<td>55</td>
<td>10</td>
<td>91</td>
<td>83</td>
<td>21</td>
<td>13</td>
<td>32</td>
<td>59</td>
<td>53</td>
<td>03</td>
<td>38</td>
</tr>
</tbody>
</table>

Reference

Writing in a non-discriminatory manner is important in all areas of business and management. For example, in Section 14.5 we noted how the use of language that assumes the gender of a group of people, such as referring to a clerical assistant as ‘she’, not only is inaccurate but also gives offence to people of both sexes. Similar care needs to be exercised when using other gender-based terms, referring to people from different ethnic groups, and people with disabilities. Without this, the language used may reinforce beliefs and prejudices, as well as being oppressive, offensive, unfair or even incorrect. The impact of this is summarised clearly by Bill Bryson (1995:425) in his book Made in America when he observes: ‘...at the root of the bias-free language movement lies a commendable sentiment: to make language less wounding or demeaning to those whose sex, race, physical condition or circumstances leave them vulnerable to the raw power of words’.

Therefore, although the task of ensuring the language you use is non-discriminatory may at first seem difficult, it is important that you do so. Some universities have developed their own guidelines, which are available via their intranet or the Internet. However, if your university has not developed its own guidelines, we hope those in this appendix will help you to ensure that your language is not discriminatory.

Guidelines for gender

When referring to both sexes it is inappropriate to use the terms ‘men’ or ‘women’ and their gender-based equivalents; in other words, do not use gender specific terms generically. Some of the more common gender-neutral alternatives are listed in Table A5.1.

Guidelines for ethnicity

Attention needs to be paid when referring to different ethnic groups. This is especially important where the term used refers to a number of ethnic groups. For example, the term ‘Asian’ includes a number of diverse ethnic groups that can be recognised with the terms ‘Asian peoples’ or ‘Asian communities’. Similarly, the diversity of people represented by the term ‘Black’ can be recognised by referring to ‘Black peoples’ or ‘Black communities’. Where possible the individual groups within these communities should be identified separately.

‘Black’ as a term used to be regarded as offensive. More recently it has acquired connotations of unity against racism and has been reclaimed as a source of pride and identity. ‘Afro-Caribbean’ is a term that is also associated with a commitment to anti-racism and is used to describe black people from the Caribbean islands. Increasingly,
GUIDELINES FOR NON-DISCRIMINATORY LANGUAGE

hyphenated terms such as ‘Black-British’ are being used to refer to second- or third-generation people, many of whom have been born in a country but wish to retain a sense of their origins.

Terms that are regarded as offensive include ‘civilised’, ‘coloured’, ‘half-caste’, ‘host society’ as opposed to a society receiving immigrants; ‘mixed race’, ‘native’ unless used to refer to people born in a particular place; ‘Negress’, ‘Negro’ and ‘West Indian’. Similarly, although the terms ‘developing nations’ and ‘less developed countries’ are used to refer to less industrialised, non-western or southern parts of the world, their use is questionable where there is an implicit hierarchy with developed countries placed at the top. In addition, you need to try to ensure that the language you are using is not inadvertently reinforcing racism or xenophobia.

If you are unsure of the term to use then ask someone from the appropriate community for the most acceptable current term. Alternatively, consult the British Sociological Association’s (2004c) guidelines which are available via the Internet and contain a useful guide to further reading.

Table A5.1 Gender-specific terms and gender-neutral alternatives

<table>
<thead>
<tr>
<th>Gender-specific term</th>
<th>Gender-neutral alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>chairman</td>
<td>chair, chairperson</td>
</tr>
<tr>
<td>Dear Sir</td>
<td>Dear Sir/Madam</td>
</tr>
<tr>
<td>disseminate</td>
<td>broadcast, inform, publicise</td>
</tr>
<tr>
<td>forefathers</td>
<td>ancestors</td>
</tr>
<tr>
<td>foreman</td>
<td>supervisor</td>
</tr>
<tr>
<td>layman</td>
<td>lay person</td>
</tr>
<tr>
<td>man</td>
<td>person</td>
</tr>
<tr>
<td>man hours</td>
<td>work hours</td>
</tr>
<tr>
<td>mankind</td>
<td>humanity, humankind, people</td>
</tr>
<tr>
<td>man-made</td>
<td>manufactured, synthetic</td>
</tr>
<tr>
<td>manning</td>
<td>resourcing, staffing</td>
</tr>
<tr>
<td>manpower</td>
<td>human resources, labour, staff, workforce</td>
</tr>
<tr>
<td>master copy</td>
<td>original, top copy</td>
</tr>
<tr>
<td>masterful</td>
<td>domineering, very skilful</td>
</tr>
<tr>
<td>policewoman/policeman</td>
<td>police officer</td>
</tr>
<tr>
<td>rights of man</td>
<td>people’s/citizens’ rights, rights of the individual</td>
</tr>
<tr>
<td>seminal</td>
<td>classical, formative</td>
</tr>
<tr>
<td>women</td>
<td>people</td>
</tr>
<tr>
<td>working man/working woman</td>
<td>worker, working people</td>
</tr>
</tbody>
</table>

Guidelines for disability

Disability is also an area where terminology is constantly changing as people voice their own preferences. Despite this, general guidelines can be offered:

- Avoid the use of medical labels as they promote the view of disabled people as patients.
Where it is necessary to refer to a person’s medical condition, make the person explicit (see Table A5.2).
Where referring to historical and some contemporary common terms, place speech marks around the term.

There are non-disablist alternatives for the more common disablist terms. These are summarised in Table A5.2. However, if you are unsure of the term to use, ask someone from the appropriate group for the most acceptable current term.

Table A5.2 Disablist terms and non-disablist alternatives

<table>
<thead>
<tr>
<th>Disablist term</th>
<th>Non-disablist alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>the blind</td>
<td>blind and partially sighted people, visually impaired people</td>
</tr>
<tr>
<td>cripple</td>
<td>mobility impaired person</td>
</tr>
<tr>
<td>the deaf</td>
<td>deaf or hard of hearing people</td>
</tr>
<tr>
<td>the disabled, the handicapped, invalid</td>
<td>disabled people, people with disabilities, employees with disabilities</td>
</tr>
<tr>
<td>dumb, mute</td>
<td>person with a speech impairment</td>
</tr>
<tr>
<td>epileptic, epileptics</td>
<td>person who has epilepsy</td>
</tr>
<tr>
<td>handicap</td>
<td>disability</td>
</tr>
<tr>
<td>mentally handicapped</td>
<td>person with a learning difficulty or learning disability</td>
</tr>
<tr>
<td>mentally ill, mental patient</td>
<td>mental health service user</td>
</tr>
<tr>
<td>patient</td>
<td>person</td>
</tr>
<tr>
<td>spastic</td>
<td>person who has cerebral palsy</td>
</tr>
<tr>
<td>wheelchair-bound</td>
<td>wheelchair user</td>
</tr>
<tr>
<td>victim of, afflicted by, suffering from, crippled by</td>
<td>person who has, person with</td>
</tr>
</tbody>
</table>

References

abstract (1) Summary, usually of an article or book, also containing sufficient information for the original to be located. (2) Summary of the complete content of the project report.

access (1) The process involved in gaining entry into an organisation to undertake research. (2) The situation where a research participant is willing to share data with a researcher. See also cognitive access, continuing access, physical access.

action research Research strategy concerned with the management of a change and involving close collaboration between practitioners and researchers. The results flowing from action research should also inform other contexts.

active response rate The total number of responses divided by the total number in the sample after ineligible and unreachable respondents have been excluded. See ineligible respondent, unreachable respondent.

active voice The voice in which the action of the verb is attributed to the person. For example, ‘I conducted interviews’.

analysis The ability to break down data and to clarify the nature of the component parts and the relationship between them.

analysis of variance Statistical test to determine the probability (likelihood) that the values of a quantifiable data variable for three or more independent samples or groups are different. The test assesses the likelihood of any difference between these groups occurring by chance alone.

analytic induction Analysis of qualitative data that involves the iterative examination of a number of strategically selected cases to identify the cause of a particular phenomenon.

analytic reflection The process of enquiry often used in the participant as observer role whereby key informants are encouraged to reflect analytically on the processes in which they are involved. This stems from the fact that research subjects know the identity of the researcher and, consequently, the researcher asks questions of those subjects promoting in the research subjects’ the process of analytic reflection. See also participant as observer.

ANOVA See analysis of variance.

appendix A supplement to the project report. It should not normally include material that is essential for the understanding of the report itself, but additional relevant material in which the reader may be interested.

application The ability to apply certain principles and rules in particular situations.

applied research Research of direct and immediate relevance to practitioners that
addresses issues they see as important and is presented in ways they can understand and act upon.

archival research Research strategy that analyses administrative records and documents as principal source of data because they are products of day-to-day activities.

asynchronous Not undertaken in real time, working offline.

attribute variable Variable that records data about respondents’ characteristics, in other words things they possess.

autocorrelation The extent to which the value of a variable at a particular time \(t\) is related to its value at the previous time period \(t-1\).

axiology A branch of philosophy that studies judgements about value.

bar chart Diagram for showing frequency distributions for a categorical or grouped discrete data variable, which highlights the highest and lowest values.

base period The period against which index numbers are calculated to facilitate comparisons of trends or changes over time. *See also* index number.

basic research Research undertaken purely to understand processes and their outcomes, predominantly in universities as a result of an academic agenda, for which the key consumer is the academic community.

behaviour variable Variable that records what respondents actually do.

bibliographic details The information needed to enable readers to find original items consulted or used for a research project. These normally include the author, date of publication, title of article, title of book or journal. Full details are given in Table 3.6.

bibliography Alphabetical list of the bibliographic details for all relevant items consulted and used, including those items not referred to directly in the text. The university will specify the format of these.

blog Usually refers to a written account of a mixture of what is happening in a person’s life and what is happening on the Internet, published on the Internet.

Boolean logic System by which the variety of items found in a search based on logical propositions that can be either true or false can be combined, limited or widened.

box plot Diagram that provides a pictorial representation of the distribution of the data for a variable and statistics such as median, inter-quartile range, and the highest and lowest values.

brainstorming Technique that can be used to generate and refine research ideas. It is best undertaken with a group of people.

broker *See* gatekeeper.

CAQDAS Computer Aided Qualitative Data Analysis Software.

case (1) Individual element or group member within a sample or population such as an employee. (2) Individual unit for which data have been collected.

case study Research strategy that involves the empirical investigation of a particular contemporary phenomenon within its real-life context, using multiple sources of evidence.
categorical data Data whose values cannot be measured numerically but can either be classified into sets (categories) or placed in rank order.

category question Closed question in which the respondent is offered a set of mutually exclusive categories and instructed to select one.

causal relationship Relationship between two or more variables in which the change (effect) in one variable is caused by the other variable(s).

census The collection and analysis of data from every possible case or group member in a population.

central limit theorem The larger the absolute size of a sample, the more closely its distribution will be to the normal distribution. See normal distribution.

central tendency measure The generic term for statistics that can be used to provide an impression of those values for a variable that are common, middling or average.

chat room An online forum operating in synchronous mode. See also synchronous.

chi square test Statistical test to determine the probability (likelihood) that two categorical data variables are associated. A common use is to discover whether there are statistically significant differences between the observed frequencies and the expected frequencies of two variables presented in a cross-tabulation.

classic experiment Experiment in which two groups are established and members assigned at random to each. See also experiment, experimental group.

closed question Question that provides a number of alternative answers from which the respondent is instructed to choose.

cluster sampling Probability sampling procedure in which the population is divided into discrete groups or clusters prior to sampling. A random sample (systematic or simple) of these clusters is then drawn.

codebook Complete list of all the codes used to code data variables.

code of ethics Statement of principles and procedures for the design and conduct of research. See also privacy, research ethics, research ethics committee.

coefficient of determination See regression coefficient.

coefficient of multiple determination See multiple regression coefficient.

coefficient of variation Statistic that compares the extent of spread of data values around the mean between two or more variables containing quantifiable data.

cognitive access The process of gaining access to data from intended participants. This involves participants agreeing to be interviewed or observed, within agreed limits. See also informed consent.

cohort study Study that collects data from the same cases over time using a series of ‘snapshots’.

comparative proportional pie chart Diagram for comparing both proportions and totals for all types of data variables.

compiled data Data that have been processed, such as through some form of selection or summarising.
complete observer Observational role in which the researcher does not reveal the purpose of the research activity to those being observed. However, unlike the complete participant role, the researcher does not take part in the activities of the group being studied.

complete participant Observational role in which the researcher attempts to become a member of the group in which research is being conducted. The true purpose of the research is not revealed to the group members.

computer-aided personal interviewing (CAPI) Type of interviewing in which the interviewer reads questions from a computer screen and enters the respondent’s answers directly into the computer.

computer-aided telephone interviewing (CATI) Type of telephone interviewing in which the interviewer reads questions from a computer screen and enters the respondent’s answers directly into the computer.

conclusion The section of the project report in which judgements are made rather than just facts reported. New material is not normally introduced in the conclusion.

consent See informed consent.

construct validity Extent to which your measurement questions actually measure the presence of those constructs you intended them to measure.

content validity See face validity.

contextual data Additional data recorded when collecting primary or secondary data that reveals background information about the setting and the data collection process.

contingency table Technique for summarising data from two or more variables so that specific values can be read.

continuing access Gaining agreed research access to an organisation on an incremental basis.

continuous data Data whose values can theoretically take any value (sometimes within a restricted range) provided they can be measured with sufficient accuracy.

control group Group in an experiment that, for the sake of comparison, does not receive the intervention in which you are interested. See also experiment, experimental group.

controlled index language The terms and phrases used by databases to index items within the database. If search terms do not match the controlled index language, the search is likely to be unsuccessful.

controls to allow the testing of hypotheses Ways of being sure that the outcome being measured (the dependent variable) is caused by the predicted phenomena alone (the independent variable) rather than extraneous unpredicted variables.

convenience sampling Non-probability sampling procedure in which cases are selected haphazardly on the basis that they are easiest to obtain.

correlation The extent to which two variables are related to each other. See also correlation coefficient, negative correlation, positive correlation.

correlation coefficient Number between −1 and +1 representing the strength of the relationship between two ranked or quantifiable variables. A value of +1 represents a
perfect positive correlation. A value of -1 represents a perfect negative correlation. Correlation coefficients between -1 and $+1$ represent weaker positive and negative correlations, a value of 0 meaning the variables are perfectly independent. See also negative correlation, Pearson's product moment correlation coefficient, positive correlation, Spearman's rank correlation coefficient.

coverage The extent to which a data set covers the population it is intended to cover.

covering letter Letter accompanying a questionnaire, which explains the purpose of the survey. See also introductory letter.

covered research Research undertaken where those being researched are not aware of this fact.

Cramer's V Statistical test to measure the association between two variables within a table on a scale where 0 represents no association and 1 represents perfect association. Because the value of Cramer's V is always between 0 and 1, the relative strengths of significant associations between different pairs of variables can be compared.

creative thinking technique One of a number of techniques for generating and refining research ideas based on non-rational criteria. These may be, for example, biased heavily in favour of the individual's preferences or the spontaneous ideas of the individual or others. See also brainstorming, Delphi technique, relevance tree.

criterion-related validity Ability of a statistical test to make accurate predictions.

critical incidence technique A technique in which respondents are asked to describe in detail a critical incident or number of incidents that is key to the research question. See also critical incident.

critical incident An activity or event where the consequences were so clear that the respondent has a definite idea regarding the effects.

critical literature review Detailed and justified analysis and commentary of the merits and faults of the literature within a chosen area, which demonstrates familiarity with what is already known about your research topic.

critical realism The epistemological position that what we experience are sensations, the images of the things in the real world, not the things directly. See also direct realism, realism.

cross-posting Receipt by individuals of multiple copies of an email, often due to the use of multiple mailing lists on which that individual appears.

cross-sectional research The study of a particular phenomenon (or phenomena) at a particular time, i.e. a ‘snapshot’.

cross-tabulation See contingency table.

data Facts, opinions and statistics that have been collected together and recorded for reference or for analysis.

data display and analysis A process for the collection and analysis of qualitative data that involves three concurrent subprocesses of data reduction, data display, and drawing and verifying conclusions.

data matrix The table format in which data are usually entered into analysis software consisting of rows (cases) and columns (variables).
Glossary

data requirements table A table designed to ensure that, when completed, the data collected will enable the research question(s) to be answered and the objectives achieved.

data sampling The process of only transcribing those sections of an audio-recording that are pertinent to your research, having listened to it repeatedly beforehand.

debriefing Providing research participants with a retrospective explanation about a research project and its purpose where covert observation has occurred.

deception Deceiving participants about the nature, purpose or use of research by the researcher(s). See also informed consent, research ethics.

deductive approach Research approach involving the testing of a theoretical proposition by the employment of a research strategy specifically designed for the purpose of its testing.

deliberate distortion Form of bias that occurs when data are recorded inaccurately on purpose. It is most common for secondary data sources such as organisational records.

delivery and collection questionnaire Data collection technique in which the questionnaire is delivered to each respondent. She or he then reads and answers the same set of questions in a predetermined order without an interviewer being present before the completed questionnaire is collected.

Delphi technique Technique using a group of people who are either involved or interested in the research topic to generate and select a more specific research idea.

deontological view View that the ends served by research can never justify research which is unethical.

dependent variable Variable that changes in response to changes in other variables.

descriptive data Data whose values cannot be measured numerically but can be distinguished by classifying into sets (categories).

descriptive observation Observation where the researcher concentrates on observing the physical setting, the key participants and their activities, particular events and their sequence and the attendant processes and emotions involved.

descriptive research Research for which the purpose is to produce an accurate representation of persons, events or situations.

descriptive statistics Generic term for statistics that can be used to describe variables.

direct realism The epistemological position that what you see is what you get: what we experience through our senses portrays the world accurately. See also critical realism, realism.

discourse analysis General term covering a variety of approaches to the analysis of language in its own right. It explores how language constructs and simultaneously reproduces and/or changes the social world rather than using it as a means to reveal the social world as a phenomenon.

discrete data Data whose values are measured in discrete units and therefore can take only one of a finite number of values from a scale that measures changes in this way.

discussion The section of the project report in which the wider implications of the findings (and conclusions) are considered.
dispersion measures Generic term for statistics that can be used to provide an impression of how the values for a variable are dispersed around the central tendency.

dissertation The usual name for research projects undertaken as part of undergraduate and taught masters degrees. Dissertations are usually written for an academic audience.

documentary secondary data Written documents such as notices, minutes of meetings, diaries, administrative and public records and reports to shareholders as well as non-written documents such as tape and video recordings, pictures, films and television programmes.

Durbin–Watson statistic Statistical test to measure the extent to which the value of a dependent variable at time \(t \) is related to its value at the previous time period, \(t−1 \) (autocorrelation). The statistic ranges in value from zero to four. A value of two indicates no autocorrelation. A value of towards zero indicates positive autocorrelation. A value towards four indicates negative autocorrelation. See also autocorrelation.

ecological validity A type of external validity referring to the extent to which findings can be generalised from one group to another. See also external validity.

electronic interview An Internet- or intranet-mediated interview conducted through either a chat room, Internet forum, web conferencing or email. See also email interview, chat room, Internet forum.

electronic questionnaire An Internet- or intranet-mediated questionnaire. See also Internet-mediated questionnaire, intranet-mediated questionnaire.

email interview A series of emails each containing a small number of questions rather than one email containing a series of questions.

epistemology A branch of philosophy that studies the nature of knowledge and what constitutes acceptable knowledge in a field of study.

ethics See research ethics, research ethics committees, code of ethics.

ethnography Research strategy that focuses upon describing and interpreting the social world through first-hand field study.

evaluation The process of judging materials or methods in terms of internal accuracy and consistency or by comparison with external criteria.

experiential data Data about the researcher’s perceptions and feelings as the research develops.

experiential meaning The equivalence of meaning of a word or sentence for different people in their everyday experiences.

experiment Research strategy that involves the definition of a theoretical hypothesis; the selection of samples of individuals from known populations; the allocation of samples to different experimental conditions; the introduction of planned change on one or more of the variables; and measurement on a small number of variables and control of other variables. See also control group, experimental group.

experimental group Group in an experiment that receives the intervention in which you are interested. See also control group, experiment.

expert system Computer-based system that contains much of the knowledge used by experts in a specific field and is designed to assist non-experts in problem solving.
explanation building Deductive process for analysing qualitative data that involves the iterative examination of a number of strategically selected cases to test a theoretical proposition.

explanatory study Research that focuses on studying a situation or a problem in order to explain the relationships between variables.

exploratory data analysis (EDA) Approach to data analysis that emphasises the use of diagrams to explore and understand the data.

exploratory study Research that aims to seek new insights into phenomena, to ask questions, and to assess the phenomena in a new light.

external researcher Researcher who wishes to gain access to an organisation for which she or he does not work. See also access, internal researcher.

external validity The extent to which the research results from a particular study are generalisable to all relevant contexts.

face validity Agreement that a question, scale, or measure appears logically to reflect accurately what it was intended to measure.

filter question Closed question that identifies those respondents for whom the following question or questions are not applicable, enabling them to skip these questions.

focus group Group interview, composed of a small number of participants, facilitated by a ‘moderator’, in which the topic is defined clearly and precisely and there is a focus on enabling and recording interactive discussion between participants. See also group interview.

follow-up Contact made with respondents to thank them for completing and returning a survey and to remind non-respondents to complete and return their surveys.

forced-choice question See closed question.

forum See Internet forum.

free text searching Feature that allows searching of an entire database rather than just those terms included in the controlled index language.

frequency distribution Table for summarising data from one variable so that specific values can be read.

functionalist paradigm A philosophical position which is concerned with a rational explanation of behaviours and institutions such as why a particular organisational problem is occurring in terms of the functions they perform.

fundamental research See basic research.

Gantt chart Chart that provides a simple visual representation of the tasks or activities that make up a project, each being plotted against a time line.

gatekeeper The person, often in an organisation, who controls research access.

general focus research question Question that flows from the research idea and may lead to several more detailed questions or the definition of research objectives.

generalisability The extent to which the findings of a research study are applicable to other settings.
generalisation The making of more widely applicable propositions based upon the process of deduction from specific cases.

Goldilocks test A test to decide whether research questions are either too big, too small, too hot or just right. Those that are too big probably demand too many resources. Questions that are too small are likely to be of insufficient substance, while those that are too hot may be so because of sensitivities that may be aroused as a result of doing the research.

grammatical error Error of grammar that detracts from the authority of the project report.

grey literature See primary literature.

grid question Series of two or more closed questions in which each respondent’s answers are recorded using the same matrix.

grounded theory Research strategy in which theory is developed from data generated by a series of observations or interviews principally involving an inductive approach. See also deductive approach, inductive approach.

group interview General term to describe all non-standardised interviews conducted with two or more people.

habituation Situation where, in observation studies, the subjects being observed become familiar with the process of observation so that they take it for granted. This is an attempt to overcome ‘observer effect’ or reactivity.

heteroscedasticity Extent to which the data values for the dependent and independent variables have unequal variances. See also variance.

histogram Diagram for showing frequency distributions for a grouped continuous data variable in which the area of each bar represents the frequency of occurrence.

homoscedasticity Extent to which the data values for the dependent and independent variables have equal variances. See also variance.

hypothesis Testable proposition about the relationship between two or more events or concepts.

idiomatic meaning The meaning ascribed to a group of words that are natural to a native speaker, but which is not deducible from the individual words.

independent groups t-test Statistical test to determine the probability (likelihood) that the values of a quantifiable data variable for two independent samples or groups are different. The test assesses the likelihood of any difference between these two groups occurring by chance alone.

independent variable Variable that causes changes to a dependent variable or variables.

in-depth interview See unstructured interview.

index number Summary data value calculated from a base period for quantifiable variables, to facilitate comparisons of trends or changes over time. See also base period.

inductive approach Research approach involving the development of a theory as a result of the observation of empirical data.
ineligible respondent Respondent selected for a sample who does not meet the requirements of the research.

inference, statistical See statistical inference.

informant interview Interview guided by the perceptions of the interviewee.

informant verification Form of triangulation in which the researcher presents written accounts of, for example, interview notes to informants for them to verify the content. See also triangulation.

informed consent Position achieved when intended participants are fully informed about the nature, purpose and use of research to be undertaken and their role within it, and where their consent to participate, if provided, is freely given. See also deception.

integer A whole number.

intelligence gathering The gathering of facts or descriptive research.

inter-library loan System for borrowing a book or obtaining a copy of a journal article from another library.

internal researcher Person who conducts research within an organisation for which they work. See also cognitive access, external researcher.

internal validity Extent to which findings can be attributed to interventions rather than any flaws in your research design.

Internet forum Commonly referred to as web forums, message boards, discussion boards, discussion forums, discussion groups and bulletin boards. Usually only deal with one topic and discourage personal exchanges.

Internet-mediated questionnaire Questionnaire administered electronically using the Internet.

interpretive paradigm A philosophical position which is concerned with understanding the way we as humans make sense of the world around us.

interpretivism The epistemological position that advocates the necessity to understand differences between humans in their role as social actors.

inter-quartile range The difference between the upper and lower quartiles, representing the middle 50% of the data when the data values for a variable have been ranked.

interviewee bias Attempt by an interviewee to construct an account that hides some data or when she or he presents herself or himself in a socially desirable role or situation.

interviewer bias Attempt by an interviewer to introduce bias during the conduct of an interview, or where the appearance or behaviour of the interviewer has the effect of introducing bias in the interviewee’s responses.

interviewer-administered questionnaire Data collection technique in which an interviewer reads the same set of questions to the respondent in a predetermined order and records his or her responses. See also structured interview, telephone questionnaire.
intranet-mediated questionnaire Questionnaire administered electronically using an organisation’s intranet.

introduction The opening to the project report, which gives the reader a clear idea of the central issue of concern of the research, states the research question(s) and research objectives, and explains the research context and the structure of the project report.

introductory letter Request for research access, addressed to an intended participant or organisational broker/gatekeeper, stating the purpose of the research, the nature of the help being sought, and the requirements of agreeing to participate. See also covering letter, gatekeeper.

intrusive research methods Methods that involve direct access to participants, including qualitative interviewing, observation, longitudinal research based on these methods and phenomenologically based approaches to research. See also access, cognitive access.

investigative question One of a number of questions that need to be answered in order to address satisfactorily each research question and meet each objective.

journal See professional journal, refereed academic journal.

judgemental sampling See non-probability sampling.

key word Basic term that describes the research question(s) and objectives, which can be used in combination to search the tertiary literature.

knobs Processes that establish and define a causal and functional relationship between the process cause and its outcome.

Kolmogorov–Smirnov test Statistical test to determine the probability (likelihood) that an observed set of values for each category of a variable differs from a specified distribution. A common use is to discover whether a sample differs significantly from the population from which it was selected.

law of large numbers Samples of larger absolute size are more likely to be representative of the population from which they are drawn than smaller samples and, in particular, the mean (average) calculated for the sample is more likely to equal the mean for the population, providing the samples are not biased.

lexical meaning The precise meaning of an individual word.

Likert-style rating scale Scale that allows the respondent to indicate how strongly she or he agrees or disagrees with a statement.

linearity Degree to which change in a dependent variable is related to change in one or more independent variables. See also dependent variable, independent variable.

line graph Diagram for showing trends in longitudinal data for a variable.

list question Closed question, in which the respondent is offered a list of items and instructed to select those that are appropriate.

literature review See critical literature review.

longitudinal study The study of a particular phenomenon (or phenomena) over an extended period of time.
long-term trend The overall direction of movement of quantifiable data values for a single variable after variations have been smoothed out. See also moving average.

lower quartile The value below which a quarter of the data values lie when the data values for a variable have been ranked.

management report Abbreviated version of the project report, usually written for a practitioner audience. Normally includes a brief account of objectives, method, findings, conclusions and recommendations.

mean The average value calculated by adding up the values of each case for a variable and dividing by the total number of cases.

measurement validity The extent to which a scale or measuring instrument measures what it is intended to measure.

median The middle value when all the values of a variable are arranged in rank order; sometimes known as the 50th percentile.

method The techniques and procedures used to obtain and analyse research data, including for example questionnaires, observation, interviews, and statistical and non-statistical techniques.

methodology The theory of how research should be undertaken, including the theoretical and philosophical assumptions upon which research is based and the implications of these for the method or methods adopted.

minimal interaction Process in which the observer tries as much as possible to 'melt into the background', having as little interaction as possible with the subjects of the observation. This is an attempt to overcome observer effect. See also observer effect.

mixed-method research Use of quantitative and qualitative data collection techniques and analysis procedures either at the same time (parallel) or one after the other (sequential) but not in combination.

mixed-methods approach General term for approach when both quantitative and qualitative data collection techniques and analysis procedures are both used in a research design.

mixed-model research Combination of quantitative and qualitative data collection techniques and analysis procedures as well as combining quantitative and qualitative approaches in other phases of the research such as research question generation.

mode The value of a variable that occurs most frequently.

Mode 1 knowledge creation Research of a fundamental rather than applied nature, in which the questions are set and solved by academic interests with little, if any, focus on exploitation of research by practitioners.

Mode 2 knowledge creation Research of an applied nature, governed by the world of practice and highlighting the importance of collaboration both with and between practitioners.

Mode 3 knowledge creation Research growing out of Mode 1 and Mode 2 whose purpose is 'to assure survival and promote the common good at various levels of social aggregation' (Huff and Huff, 2001:S53).

moderator Facilitator of focus group interviews. See also focus group, group interview.
mono method Use of a single data collection technique and corresponding analysis procedure or procedures.

moving average Statistical method of smoothing out variations in quantifiable data recorded for a single variable over time to enable the long-term trend to be seen more clearly. See also long-term trend.

multicollinearity Correlation between two or more independent variables. See also correlation.

multi-method Use of more than one data collection technique and corresponding analysis procedure or procedures.

multi-method qualitative study Use of more than one quantitative data collection technique and corresponding quantitative analysis procedure or procedures.

multi-method quantitative study Use of more than one qualitative data collection technique and corresponding qualitative analysis procedure or procedures.

multiple bar chart Diagram for comparing frequency distributions for categorical or grouped discrete or continuous data variables, which highlights the highest and lowest values.

multiple-dichotomy method Method of data coding using a separate variable for each possible response to an open question or an item in a list question. See also list question, open question.

multiple line graph Diagram for comparing trends over time between quantifiable data variables.

multiple methods Use of more than one data collection technique and analysis procedure or procedures.

multiple regression analysis The process of calculating a coefficient of multiple determination and regression equation using two or more independent variables and one dependent variable. For data collected from a sample, there is also a need to calculate the probability of the regression coefficient having occurred by chance alone. See also multiple regression coefficient, regression analysis, regression equation.

multiple regression coefficient Number between 0 and +1 that enables the strength of the relationship between a quantifiable dependent variable and two or more quantifiable independent variables to be assessed. The coefficient represents the proportion of the variation in the dependent variable that can be explained statistically by the independent variables. A value of 1 means that all the variation in the dependent variable can be explained statistically by the independent variables. A value of 0 means that none of the variation in the dependent variable can be explained by the independent variables. See also multiple regression analysis.

multiple-response method Method of data coding using the same number of variables as the maximum number of different responses to an open question or a list question by any one case. See also list question, open question.

multiple source secondary data Secondary data created by combining two or more different data sets prior to the data being accessed for the research. These data sets can be based entirely on documentary or on survey data, or can be an amalgam of the two.

multi-stage sampling Probability sampling procedure that is a development of cluster
sampling. It involves taking a series of cluster samples, each of which uses random sampling (systematic or simple).

narrative account The researcher’s detailed account of the research process, written in much the same style as that used by an investigative journalist.

narrative analysis The collection and analysis of qualitative data that preserves the integrity and narrative value of data collected, thereby avoiding their fragmentation.

negative correlation Relationship between two variables for which, as the values of one variable increase, the values of the other variable decrease. See also correlation coefficient.

negative skew Distribution of quantifiable data for a variable in which the majority of the data are found bunched to the right, with a long tail to the left.

netiquette General operating guidelines for using the Internet, including not sending junk emails.

nominal data See descriptive data.

non-maleficence Avoidance of harm.

non-parametric statistic Statistic designed to be used when data are not normally distributed. Often used with categorical data. See also categorical data.

non-probability sampling Selection of sampling techniques in which the chance or probability of each case being selected is not known.

non-random sampling See non-probability sampling.

non-standardised interview See semi-structured interview, unstructured interview.

normal distribution Special form of the symmetric distribution in which the quantifiable data for a variable can be plotted as a bell-shaped curve.

notebook of ideas Technique for noting down any interesting research ideas as you think of them.

numeric rating scale Rating scale that uses numbers as response options to identify and record the respondent’s response. The end response options, and sometimes the middle, are labelled.

objectivism An ontological position that asserts that social entities exist in a reality external to, and independent of, social actors concerned with their existence. See also ontology, subjectivism.

objectivity Avoidance of (conscious) bias and subjective selection during the conduct and reporting of research. In some research philosophies the researcher will recognise that interpretation is likely to be related to a set of values and therefore will attempt to recognise and explore this.

observation The systematic observation, recording, description, analysis and interpretation of people's behaviour.

observer as participant Observational role in which the researcher observes activities without taking part in those activities in the same way as the ‘real’ research subjects. The researcher’s identity as a researcher and research purpose is clear to all concerned. See also participant as observer.
observer bias This may occur when observers give inaccurate responses in order to distort the results of the research.

observer effect The impact of being observed on how people act. See also habituation, reactivity.

observer error Systematic errors made by observers, as a result of tiredness, for example.

one-way analysis of variance See analysis of variance.

online questionnaire Data collection technique in which the questionnaire is delivered via the Internet or an intranet to each respondent. She or he then reads and answers the same set of questions in a predetermined order without an interviewer being present before returning it electronically.

ontology A theory concerning the nature of social phenomena as entities that are to be admitted to a knowledge system. See also objectivism, pragmatism, subjectivism.

open question Question allowing respondents to give answers in their own way.

operationalisation The translation of concepts into tangible indicators of their existence.

opinion variable Variable that records what respondents feel about something or what they think or believe is true or false.

optical mark reader Data input device that recognises and converts marks on a data collection form such as a questionnaire into data that can be stored on a computer.

ordinal data See ranked data.

paired t-test Statistical test to determine the probability (likelihood) that the values of two (a pair of) quantifiable data variables collected for same cases are different. The test assesses the likelihood of any difference between two variables (each half of the pair) occurring by chance alone.

paradigm A way of examining social phenomena from which particular understandings of these phenomena can be gained and explanations attempted.

parametric statistic Statistic designed to be used when data are normally distributed. Used with quantifiable data. See also quantifiable data.

participant The person who answers the questions, usually in an interview or group interview.

participant as observer Observational role in which the researcher takes part in and observes activities in the same way as the ‘real’ research subjects. The researcher’s identity as a researcher and research purpose is clear to all concerned. See also observer as participant.

participant information sheet Information required by gatekeepers and intended participants in order for informed consent to be given.

participant observation Observation in which the researcher attempts to participate fully in the lives and activities of the research subjects and thus becomes a member of the subjects’ group(s), organisation(s) or community. See also complete observer, complete participant, observer as participant, participant as observer.

participant researcher See internal researcher.
passive voice The voice in which the subject of the sentence undergoes the action of the verb: for example, ‘interviews were conducted’.

pattern matching Analysis of qualitative data involving the prediction of a pattern of outcomes based on theoretical propositions to seek to explain a set of findings.

Pearson’s product moment correlation coefficient Statistical test that assesses the strength of the relationship between two quantifiable data variables. For data collected from a sample there is also a need to calculate the probability of the correlation coefficient having occurred by chance alone.

percentage component bar chart Diagram for comparing proportions for all types of data variables.

personal data Category of data, defined in law, relating to identified or identifiable persons.

personal entry Situation where the researcher needs to conduct research within an organisation, rather than rely on the use and completion of self-administered, postal questionnaires or the use of publicly available secondary data. See access.

personal pronoun One of the pronouns used to refer to people: I, me, you, he, she, we, us, they, him, her, them.

phenomenology Research philosophy that sees social phenomena as socially constructed, and is particularly concerned with generating meanings and gaining insights into those phenomena.

Phi Statistic to measure association between two variables using a scale between -1 (perfect negative association), through 0 (no association) to $+1$ (perfect association).

physical access The initial level of gaining access to an organisation to conduct research. See also cognitive access, continuing access, gatekeeper.

pie chart Diagram frequently used for showing proportions for a categorical data or a grouped continuous or discrete data variable.

pilot test Small-scale study to test a questionnaire, interview checklist or observation schedule, to minimise the likelihood of respondents having problems in answering the questions and of data recording problems as well as to allow some assessment of the questions’ validity and the reliability of the data that will be collected.

population The complete set of cases or group members.

positive correlation Relationship between two variables for which, as the value of one variable increases, the values of the other variable also increase. See also correlation coefficient.

positive skew Distribution of quantifiable data for a variable in which the majority of the data are found bunched to the left, with a long tail to the right.

positivism The epistemological position that advocates working with an observable social reality. The emphasis is on highly structured methodology to facilitate replication, and the end product can be law-like generalisations similar to those produced by the physical and natural scientists.

postal questionnaire Data collection technique in which the questionnaire is delivered by post to each respondent. She or he then reads and answers the same set of questions.
in a predetermined order without an interviewer being present before returning it by post.

PowerPoint™ Microsoft computer package that allows the presenter to design overhead slides using text, pictures, photographs etc., which lend a professional appearance.

practitioner-researcher Role occupied by a researcher when she or he is conducting research in an organisation, often her or his own, while fulfilling her or his normal working role.

pragmatism An ontological position that argues that the most important determinant of the research philosophy adopted is the research question, arguing that it is possible to work within both positivist and interpretivist positions. It applies a practical approach, integrating different perspectives to help collect and interpret data. See also interpretivism, positivism.

pre-coding The process of incorporating coding schemes in questions prior to a questionnaire's administration.

predictive validity See criterion-related validity.

preliminary search This way of searching the literature may be a useful way of generating research ideas. It may be based, for example, on lecture notes or course textbooks.

preliminary study The process by which a research idea is refined in order to turn it into a research project. This may be simply a review of the relevant literature.

pre-set codes Codes established prior to data collection and often included as part of the data collection form.

pre-survey contact Contact made with a respondent to advise them of a forthcoming survey in which she or he will be asked to take part.

primary data Data collected specifically for the research project being undertaken.

primary literature The first occurrence of a piece of work, including published sources such as government white papers and planning documents and unpublished manuscript sources such as letters, memos and committee minutes.

primary observation Observation where the researcher notes what happened or what was said at the time. This is often done by keeping a research diary.

privacy Primary ethical concern relating to the rights of individuals not to participate in research and to their treatment where they agree to participate. See also research ethics, informed consent.

probability sampling Selection of sampling techniques in which the chance, or probability, of each case being selected from the population is known and is not zero.

probing questions Questions used to further explore responses that are of significance to the research topic.

professional journal Journals produced by a professional organisation for its members, often containing articles of a practical nature related to professional needs. Articles in professional journals are usually not refereed.

project report The term used in this book to refer generally to dissertations, theses and management reports. See also dissertation, management report, thesis.
GLOSSARY

pure research See basic research.

purposive sampling Non-probability sampling procedure in which the judgement of the researcher is used to select the cases that make up the sample. This can be done on the basis of extreme cases, heterogeneity (maximum variation), homogeneity (maximum similarity), critical cases, or typical cases.

qualitative data Non-numerical data or data that have not been quantified.

qualitative interview Collective term for semi-structured and unstructured interviews aimed at generating qualitative data.

qualitise Conversion of quantitative data into narrative that can be analysed qualitatively.

quantifiable data Data whose values can be measured numerically as quantities.

quantitative data Numerical data or data that have been quantified.

quantitise Conversion of qualitative data into numerical codes that can be analysed statistically.

quantity question Closed question in which the respondent’s answer is recorded as a number giving the amount.

questionnaire General term including all data collection techniques in which each person is asked to respond to the same set of questions in a predetermined order. See also delivery and collection questionnaire, interviewer-administered questionnaire, online questionnaire, postal questionnaire, self-administered questionnaire.

quota sampling Non-probability sampling procedure that ensures that the sample represents certain characteristics of the population chosen by the researcher.

radical change A perspective which relates to a judgement about the way organisational affairs should be conducted and suggests ways in which these affairs may be conducted in order to make fundamental changes to the normal order of things.

radical humanist paradigm A position concerned with changing the status quo, of existing social patterns.

radical structuralist paradigm A position concerned with achieving fundamental change based upon an analysis of underlying structures that cannot be easily observed, for example organisational phenomena as power relationships and patterns of conflict.

random sampling See simple random sampling.

range The difference between the highest and the lowest values for a variable.

ranked data Data whose values cannot be measured numerically but which can be placed in a definite order (rank).

ranking question Closed question in which the respondent is offered a list of items and instructed to place them in rank order.

rating question Closed question in which a scaling device is used to record the respondent’s response. See also Likert-type rating scale, numeric rating scale, semantic differential rating scale.
rational thinking technique One of a number of techniques for generating and refining research ideas based on a systematic approach such as searching the literature or examining past projects.

raw data Data for which little, if any, data processing has taken place.

reactivity Reaction by research participants to any research intervention that affects data reliability. See also habituation, observer effect.

realism The epistemological position that objects exist independently of our knowledge of their existence. See also critical realism, direct realism.

re-coding The process of grouping or combining a variable’s codes to form a new variable, usually with less detailed categories.

reductionism The idea that problems as a whole are better understood if they are reduced to the simplest possible elements.

refereed academic journal Journal in which the articles have been evaluated by academic peers prior to publication to assess their quality and suitability. Not all academic journals are refereed.

references, list of Bibliographic details of all items referred to directly in the text. The university will specify the format required.

regression analysis The process of calculating a regression coefficient and regression equation using one independent variable and one dependent variable. For data collected from a sample, there is also a need to calculate the probability of the regression coefficient having occurred by chance alone. See also multiple regression analysis, regression coefficient, regression equation.

regression coefficient Number between 0 and +1 that enables the strength of the relationship between a quantifiable dependent variable and a quantifiable independent variable to be assessed. The coefficient represents the proportion of the variation in the dependent variable that can be explained statistically by the independent variable. A value of 1 means that all the variation in the dependent variable can be explained statistically by the independent variable. A value of 0 means that none of the variation in the dependent variable can be explained by the independent variable. See also regression analysis.

regression equation Equation used to predict the values of a dependent variable given the values of one or more independent variables. The associated regression coefficient provides an indication of how good a predictor the regression equation is likely to be. See regression coefficient.

regulatory perspective A perspective that seeks to explain the way in which organisational affairs are regulated and offer suggestions as to how they may be improved within the framework of the way things are done at present.

relevance tree Technique for generating research topics that starts with a broad concept from which further (usually more specific) topics are generated. Each of these topics forms a separate branch, from which further sub-branches that are more detailed can be generated.

reliability The extent to which data collection technique or techniques will yield consistent findings, similar observations would be made or conclusions reached by other researchers or there is transparency in how sense was made from the raw data.
GLOSSARY

representative sample Sample that represents exactly the population from which it is drawn.

representative sampling See probability sampling.

research The systematic collection and interpretation of information with a clear purpose, to find things out. See also applied research, basic research.

research approach General term for inductive or deductive research approach. See also deductive approach, inductive approach.

research ethics The appropriateness of the researcher's behaviour in relation to the rights of those who become the subject of a research project, or who are affected by it. See also code of ethics, privacy, research ethics committee.

research ethics committee Learned committee established to produce a code of research ethics, examine and approve or veto research proposals and advise in relation to the ethical dilemmas facing researchers during the conduct and reporting of research projects. See also code of ethics.

research idea Initial idea that may be worked up into a research project.

research objectives Clear, specific statements that identify what the researcher wishes to accomplish as a result of doing the research.

research population Set of cases or group members that you are researching.

research question One of a number of key questions that the research process will address. These are often the precursor of research objectives.

research strategy General plan of how the researcher will go about answering the research question(s).

respondent The person who answers the questions usually either in an interview or on a questionnaire.

respondent interview Interview directed by the questions posed by the interviewer, to which the interviewee responds.

response bias See interviewee bias.

response rate See active response rate.

review article Article, normally published in a refereed academic journal, that contains both a considered review of the state of knowledge in a given topic area and pointers towards areas where further research needs to be undertaken. See also refereed academic journal.

sample Subgroup or part of a larger population.

sampling fraction The proportion of the total population selected for a probability sample.

sampling frame The complete list of all the cases in the population, from which a probability sample is drawn.

scale Measure of a concept, such as customer loyalty or organisational commitment, created by combining scores to a number of rating questions.

scale question See rating question.
scatter graph Diagram for showing the relationship between two quantifiable or ranked data variables.

scientific research Research that involves the systematic observation of and experiment with phenomena.

search engine Automated software that searches an index of documents on the Internet using key words and Boolean logic.

search string Combination of key words used in searching online databases.

secondary data Data used for a research project that were originally collected for some other purpose. See also documentary secondary data, multiple source secondary data, survey-based secondary data.

secondary literature Subsequent publication of primary literature such as books and journals.

secondary observation Statement made by an observer of what happened or was said. By necessity this involves that observer’s interpretations.

self-administered questionnaire Data collection technique in which each respondent reads and answers the same set of questions in a predetermined order without an interviewer being present.

self-selection sampling Non-probability sampling procedure in which the case, usually an individual, is allowed to identify their desire to be part of the sample.

semantic differential rating scale Rating scale that allows the respondent to indicate his or her attitude to a concept defined by two opposite adjectives or phrases.

semi-structured interview Wide-ranging category of interview in which the interviewer commences with a set of interview themes but is prepared to vary the order in which questions are asked and to ask new questions in the context of the research situation.

sensitive personal data Category of data, defined in law, that refers to certain specified characteristics or beliefs relating to identified or identifiable persons.

serial correlation See autocorrelation.

shadowing Process that the researcher would follow in order to gain a better understanding of the research context. This might involve following employees who are likely to be important in the research.

simple random sampling Probability sampling procedure that ensures that each case in the population has an equal chance of being included in the sample.

snowball sampling Non-probability sampling procedure in which subsequent respondents are obtained from information provided by initial respondents.

social constructionism Research philosophy that views the social world as being socially constructed.

social norm The type of behaviour that a person ought to adopt in a particular situation.

socially desirable response Answer given by a respondent due to her or his desire, either conscious or unconscious, to gain prestige or appear in a different social role.
source questionnaire The questionnaire that is to be translated from when translating a questionnaire.

Spearman's rank correlation coefficient Statistical test that assesses the strength of the relationship between two ranked data variables. For data collected from a sample, there is also a need to calculate the probability of the correlation coefficient having occurred by chance alone.

split infinitive Phrase consisting of an infinitive with an adverb inserted between ‘to’ and the verb: for example, ‘to readily agree’.

stacked bar chart Diagram for comparing totals and subtotals for all types of data variable.

standard deviation Statistic that describes the extent of spread of data values around the mean for a variable containing quantifiable data.

statistical significance The likelihood of the pattern that is observed (or one more extreme) occurring by chance alone, if there really was no difference in the population from that which the sample was drawn.

storyline The way in which the reader is led through the research project to the main conclusion or the answer to the research question. The storyline is, in effect, a clear theme that runs through the whole of the project report to convey a coherent and consistent message.

stratified random sampling Probability sampling procedure in which the population is divided into two or more relevant strata and a random sample (systematic or simple) is drawn from each of the strata.

structured interview Data collection technique in which an interviewer physically meets the respondent, reads them the same set of questions in a predetermined order, and records his or her response to each.

structured methodology Data collection methods that are easily replicated (such as the use of an observation schedule or questionnaire) to ensure high reliability.

subject directory Hierarchically organised index categorised into broad topics, which, as it has been compiled by people, is likely to have its content partly censored and evaluated.

subject or participant bias Bias that may occur when research subjects are giving inaccurate responses in order to distort the results of the research.

subject or participant error Errors that may occur when research subjects are studied in situations that are inconsistent with their normal behaviour patterns, leading to atypical responses.

subjectivism An ontological position that asserts that entities are created from the perceptions and consequent actions of those social actors responsible for their creation. See also ontology, objectivism.

survey Research strategy that involves the structured collection of data from a sizeable population. Although the term ‘survey’ is often used to describe the collection of data using questionnaires, it includes other techniques such as structured observation and structured interviews.

survey-based secondary data Data collected by surveys, such as by questionnaire, which have already been analysed for their original purpose.
symbolic interactionism Social process through which the individual derives a sense of identity from interaction and communication with others. Through this process of interaction and communication the individual responds to others and adjusts his or her understandings and behaviour as a shared sense of order and reality is ‘negotiated’ with others.

symmetric distribution Description of the distribution of data for a variable in which the data are distributed equally either side of the highest frequency.

symmetry of potential outcomes Situation in which the results of the research will be of similar value whatever they are.

synchronous Undertaken in real time, occurring at the same time.

synthesis Process of arranging and assembling various elements so as to make a new statement, or conclusion.

systematic review A process for reviewing the literature using a comprehensive pre-planned search strategy. There are clear assessment criteria for selection of articles to review, articles are assessed on the quality of research and findings, individual studies are synthesised using a clear framework and findings presented in a balanced, impartial and comprehensive manner.

systematic sampling Probability sampling procedure in which the initial sampling point is selected at random, and then the cases are selected at regular intervals.

table Technique for summarising data from one or more variables so that specific values can be read. See also contingency table, frequency distribution.

tailored design method Approach to designing questionnaires specifying precisely how to construct and use them; previously referred to as the ‘total design method’.

target questionnaire The translated questionnaire when translating from a source questionnaire.

teleological view View that the ends served by research justify the means. Consequently, the benefits of research findings are weighed against the costs of acting unethically.

telephone questionnaire Data collection technique in which an interviewer contacts the respondent and administers the questionnaire using a telephone. The interviewer reads the same set of questions to the respondent in a predetermined order and records his or her responses.

template analysis Analysis of qualitative data that involves creating and developing a hierarchical template of data codes or categories representing themes revealed in the data collected and the relationships between these.

tense The form taken by the verb to indicate the time of the action (i.e. past, present or future).

tertiary literature source Source designed to help locate primary and secondary literature, such as an index, abstract, encyclopaedia or bibliography.

theory Formulation regarding the cause and effect relationships between two or more variables, which may or may not have been tested.

theory dependent If we accept that every purposive decision we take is based on the
assumption that certain consequences will flow from the decision, then these decisions are theory dependent.

thesis The usual name for research projects undertaken for Master of Philosophy (MPhil) and Doctor of Philosophy (PhD) degrees, written for an academic audience.

time error Error, usually associated with structured observations, where the time at which the observation is being conducted provides data that are untypical of the time period in which the event(s) being studied would normally occur.

time series Set of quantifiable data values recorded for a single variable over time usually at regular intervals. See also moving average.

transcription The written record of what a participant (or respondent) said in response to a question, or what participants (or respondents) said to one another in conversation, in their own words.

triangulation The use of two or more independent sources of data or data collection methods within one study in order to help ensure that the data are telling you what you think they are telling you.

t-test See independent groups t-test, paired t-test.

Type I error Error made by wrongly coming to the decision that something is true when in reality it is not.

Type II error Error made by wrongly coming to the decision that something is not true when in reality it is.

unreachable respondent Respondent selected for a sample who cannot be located or who cannot be contacted.

unstructured interview Loosely structured and informally conducted interview that may commence with one or more themes to explore with participants but without a predetermined list of questions to work through. See also informant interview.

upper quartile The value above which a quarter of the data values lie when the data values for a variable have been ranked.

validity (1) The extent to which data collection method or methods accurately measure what they were intended to measure. (2) The extent to which research findings are really about what they profess to be about. See also construct validity, criterion related validity, ecological validity, face validity, internal validity, measurement validity, predictive validity.

variable Individual element or attribute upon which data have been collected.

variance Statistic that measures the spread of data values; a measure of dispersion. The smaller the variance, the closer individual data values are to the mean. The value of the variance is the square root of the standard deviation. See also dispersion measures, standard deviation.

visual aid Item such as an overhead projector slide, whiteboard, video recording or handout that is designed to enhance professional presentation and the learning of the audience.

web log See blog.

weighting The process by which data values are adjusted to reflect differences in the proportion of the population that each case represents.
INDEX

custering method 522
codebook 416, 418–19, 593
codes of ethics 179, 593
coding
 after data collection 415–16
 at data collection 415
quantitative data 413–16, 418–19
questions 377–9
coding schedules 297–300
coefficient of determination (regression coefficient) 442, 451–3, 454, 609
coefficient of multiple determination 442, 453, 454, 603
coefficient of variation 436, 439, 440, 593
cognitive access 164, 165, 593
cohort studies 252, 593
column charts 423
comparative data 259
comparative proportional pie charts 422, 432, 593
compiled data 248, 593
complete observer 286, 287, 288, 594
complete participant 286, 287, 594
compound (multiple) bar chart 422, 430, 431, 603
comprehension 541
computer-aided personal interviewing (CAPI) 359, 360, 594
computer-aided telephone interviewing (CATI) 216–18, 359, 360, 594
computer game research 19
conclusions 152, 528–31, 594
conference proceedings 66, 69
confidentiality 172–3, 187–8, 192, 323
congenital sampling 228, 234, 594
correlation 450, 451, 594
correlation coefficients 442, 450–1, 452, 594–5
coverage 264–5, 595
covering letter 382–3, 384, 595
cover research 153, 189, 595
Cramer's V 442, 445, 447, 595
creative accounting 240–2
creative thinking technique 22–3, 595
creativity 520
credibility
 of research findings 149–52
 researcher's and gaining access 172, 174–6
criterion-related (predictive) validity 366–7, 595
critical case sampling 232
critical friend 522–3
critical incident technique 324–5, 595
critical incidents 325, 595
critical literature review 10, 12, 54–98, 526–7, 595
controlling literature search 74–86, 89
coversal 58, 59
evaluating the literature 87–8
literature sources 64–70
obtaining the literature 86–7
planning search strategy 70–4
purpose of 57–8
recording 79, 80, 82, 88–91
structure 60–3
critical realism 105–6, 595
cross-check verification 269
cross-cultural approach 96–7, 285
cross-posting 390, 595
cross-sectional research 148, 595
cross-tabulation (contingency tables) 422, 427–30, 594
culture 327
 national 96–7
 organisational 109, 502
dangling participles 538, 539
data 34, 595
 qualitative 145, 470, 472–4, 505, 608
 quantitative see quantitative data
 secondary see secondary data
data analysis 10, 13, 102, 152
 ethics and 180, 192–4
 observation 291–2, 300–1
 qualitative see qualitative data analysis
 quantitative see quantitative data analysis
 questionnaires 359–60
data archive catalogues 253–4
data checking 417–19
data cleaning 476
data coding see coding
data collection 40, 102, 147, 152
 ethics and 180, 187–90
 measurement bias 269
 observation 290–1, 297–300
 questionnaires 361–4, 365
data display and analysis 493–6, 595
data distribution 422, 427, 428
data matrices 411, 412, 413, 595
data processing and storage 180, 190–2
data protection 190–2
 Data Protection Act (1998) 191
data quality 262, 317–20, 327–8
 see also bias; generalisability; reliability; validity
data reduction 493
data requirements table 362–4, 365, 596
data sampling 475, 596
databases 76–7, 77–9
debriefing 189, 596
deception 184, 187, 596
deciles 436, 439
deductive approach 37, 57, 117–18, 119–21, 597
qualitative analysis 478–9, 487–8, 489–92
degrees of freedom 444
deliberate distortion 268–9, 596
delivery and collection questionnaires 356–7, 358, 392–3, 596
Delphi technique 27–8, 596
deontological view 178, 596
dependent variables 361–2, 433, 489–90, 596
deviant sampling 232
diagrams 34, 420–33, 535
designing 420, 421
see also under individual types of diagram
dichotomous data 409
dictionaries 73
differences, testing for 442, 447–50
difficult interviewees 332–3
digital music distribution 126–7
direct realism 105, 596
direct translation 378
disability 590–1
discourse analysis 502–4, 596
discrete data 409–10, 422, 436, 442, 596
discrimination, workplace 114
discursive practice 503
discussion 25, 72
in project report 529–31, 597
dispersion measures 434, 436, 437–40, 597
theses 23, 597
distribution of values 422, 427
comparing 422, 433
distributive justice 63
divisions, in report 534–5
documentary secondary data 248–9, 250, 597
drafting the report 540, 541, 550–1
Durbin-Watson statistic 458, 597
eavesdropping 259
ecological validity 291, 597
electronic interviews 313, 342–4, 597
electronic questionnaires 356, 357, 358, 389–91, 597
electronic textual data 478
elements see cases
e-mail 170, 171
e-mail-administered questionnaires 389–90
e-mail interviews 343–4, 597
embedded case studies 73
epistemology 102–7, 597
equal opportunities 349–50
access 180, 182–6
data analysis and reporting 180, 192–4
data collection 180, 187–90
data processing and storage 180, 190–2
defining 178–81
general issues 180, 181–2
research design 153, 180, 182–6
ethnicity 589–90
ethnography 142–3, 597
European Union (EU) 69
Directive 95/46/EC 190–1
HICPs 270–1
evaluation 541, 597
literature 87–8
secondary data sources 263–9, 270–1
existing coding schemes 415
experiential data 290, 597
experiential meaning 377, 597
experiment 135, 136–8, 597
experimental group 136, 597
expert systems 45, 597
explanation building 490–1, 598
exploratory studies 133, 134, 314, 356, 598
exploratory data analysis (EDA) 420–33, 598
exploratory studies 133, 134, 313, 314, 340, 598
extended text 493
external researcher 165–6, 598
external validity see generalisability
extraneous variables 361–2
extreme case sampling 232
F ratio (F statistic) 448, 450, 455–6
face (content) validity 366, 386, 598
false assumptions 151–2
family ownership 465–6
feasibility of research 165
filter questions 379–80, 598
financial performance 465–6
focus groups 313, 337–41, 598
follow-up 390, 391, 598
football fans 283
footnotes 90, 531, 584–5
forced-choice questions see closed questions
forecasting 458
forums, Internet 343, 600
free text searching 78–9, 598
Freedom of Information Act (2005) 259
frequency distribution 422, 423, 598
frequency polygons 422, 425
FTSE 100 index 457
functionalist paradigm 112, 113, 598
fundamental (basic) research 7, 8, 594
Gantt charts 41–2, 598
garbology 296
gatekeepers 164, 180–1, 256, 598
gender 539, 589, 590
general focus research questions 31, 32, 598
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>general search engines</td>
<td>83, 84, 85</td>
</tr>
<tr>
<td>generalisability</td>
<td>137, 151, 208–9, 259, 598</td>
</tr>
<tr>
<td>generalisation</td>
<td>118, 599</td>
</tr>
<tr>
<td>Gervais, Ricky</td>
<td>331</td>
</tr>
<tr>
<td>goal setting</td>
<td>521</td>
</tr>
<tr>
<td>Goldilocks test</td>
<td>31, 599</td>
</tr>
<tr>
<td>Google</td>
<td>73, 85, 89</td>
</tr>
<tr>
<td>government censuses</td>
<td>249–50, 250–1</td>
</tr>
<tr>
<td>government statistics</td>
<td>265, 266</td>
</tr>
<tr>
<td>governmental websites</td>
<td>69, 258</td>
</tr>
<tr>
<td>grammar</td>
<td>377, 538–9</td>
</tr>
<tr>
<td>grammatical errors</td>
<td>538–9, 599</td>
</tr>
<tr>
<td>grand theories</td>
<td>36–7, 38</td>
</tr>
<tr>
<td>graphs</td>
<td>268</td>
</tr>
<tr>
<td>Goldilocks test</td>
<td>31, 599</td>
</tr>
<tr>
<td>Grid questions</td>
<td>375, 599</td>
</tr>
<tr>
<td>grounded approach</td>
<td>488–9</td>
</tr>
<tr>
<td>grounded theory</td>
<td>142, 496, 499–502, 599</td>
</tr>
<tr>
<td>group interviews</td>
<td>313, 337–41, 599</td>
</tr>
<tr>
<td>habituation</td>
<td>189, 301, 599</td>
</tr>
<tr>
<td>hand-washing habits</td>
<td>297</td>
</tr>
<tr>
<td>handbooks</td>
<td>73</td>
</tr>
<tr>
<td>haphazard (convenience) sampling</td>
<td>228, 234, 595</td>
</tr>
<tr>
<td>Harmonized Indices of Consumer Prices (HICPs)</td>
<td>270–1</td>
</tr>
<tr>
<td>Harvard system</td>
<td>90, 531, 579–83, 584</td>
</tr>
<tr>
<td>health care supply chains</td>
<td>400–2</td>
</tr>
<tr>
<td>health research</td>
<td>193</td>
</tr>
<tr>
<td>heterocedasticity</td>
<td>454, 599</td>
</tr>
<tr>
<td>highest and lowest values</td>
<td>423–5, 430</td>
</tr>
<tr>
<td>histograms</td>
<td>422, 423–4, 425, 599</td>
</tr>
<tr>
<td>history</td>
<td>150</td>
</tr>
<tr>
<td>holistic case studies</td>
<td>140</td>
</tr>
<tr>
<td>home pages</td>
<td>82</td>
</tr>
<tr>
<td>homogeneous sampling</td>
<td>232</td>
</tr>
<tr>
<td>homoscedasticity</td>
<td>454, 599</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>37</td>
</tr>
<tr>
<td>hypertext links</td>
<td>82</td>
</tr>
<tr>
<td>hypotheses</td>
<td>34, 103, 104, 117, 599</td>
</tr>
<tr>
<td>internal validity</td>
<td>367</td>
</tr>
<tr>
<td>interpretive paradigm</td>
<td>112, 113, 600</td>
</tr>
<tr>
<td>interpretivism</td>
<td>103, 106–7, 479, 600</td>
</tr>
<tr>
<td>inter-quartile range</td>
<td>436, 437, 439, 600</td>
</tr>
<tr>
<td>interval data</td>
<td>409</td>
</tr>
<tr>
<td>intermediating variables</td>
<td>483</td>
</tr>
<tr>
<td>interview guide</td>
<td>321, 322</td>
</tr>
<tr>
<td>interviewer (response) bias</td>
<td>318, 600</td>
</tr>
<tr>
<td>interviewer-administered questionnaires</td>
<td>357, 600</td>
</tr>
<tr>
<td>Internet</td>
<td>69, 76</td>
</tr>
<tr>
<td>Internet forums</td>
<td>343, 600</td>
</tr>
<tr>
<td>Internet-mediated interviews</td>
<td>313, 342–4</td>
</tr>
<tr>
<td>Internet-mediated questionnaires</td>
<td>356, 357, 358, 389–91, 600</td>
</tr>
<tr>
<td>interpretive paradigm</td>
<td>112, 113, 600</td>
</tr>
<tr>
<td>interpretivism</td>
<td>103, 106–7, 479, 600</td>
</tr>
<tr>
<td>inter-quartile range</td>
<td>436, 437, 439, 600</td>
</tr>
<tr>
<td>interval data</td>
<td>409</td>
</tr>
<tr>
<td>intermediating variables</td>
<td>483</td>
</tr>
<tr>
<td>interview guide</td>
<td>321, 322</td>
</tr>
<tr>
<td>interview schedules</td>
<td>356, 357, 358, 389–91, 601</td>
</tr>
<tr>
<td>interviewee (response) bias</td>
<td>318, 600</td>
</tr>
<tr>
<td>interviewer-administered questionnaires</td>
<td>357, 600</td>
</tr>
<tr>
<td>interviewer bias</td>
<td>318, 600</td>
</tr>
<tr>
<td>interviews</td>
<td>10, 12, 188, 310–52</td>
</tr>
<tr>
<td>data quality issues</td>
<td>317–20, 327–8</td>
</tr>
<tr>
<td>electronic</td>
<td>313, 342–4, 597</td>
</tr>
<tr>
<td>group interviews and focus groups</td>
<td>337–41</td>
</tr>
<tr>
<td>interviewing competence</td>
<td>329–34</td>
</tr>
<tr>
<td>links to research purpose and research strategy</td>
<td>313–14</td>
</tr>
<tr>
<td>logistical and resource issues</td>
<td>334–6</td>
</tr>
<tr>
<td>preparation</td>
<td>320–7, 328</td>
</tr>
<tr>
<td>situations favouring non-standardised</td>
<td>314–17</td>
</tr>
<tr>
<td>telephone interviews</td>
<td>313, 341–2</td>
</tr>
<tr>
<td>transcribing</td>
<td>475–7</td>
</tr>
<tr>
<td>types of</td>
<td>311–13</td>
</tr>
<tr>
<td>intranet-mediated interviews</td>
<td>313, 342–4</td>
</tr>
<tr>
<td>intranet-mediated questionnaires</td>
<td>356, 357, 358, 389–91, 601</td>
</tr>
</tbody>
</table>
INDEX

introduction 526, 601
introductory letter 172, 601
intrusive research methods 165, 601
investigative questions 364, 601
jargon 536–7
journals 65–8, 79, 607, 609
judgemental (purposive) sampling 228, 230–2, 233, 608
junk mail 247
Kendall's rank correlation coefficient (Kendall's tau) 442, 451
key words 71–4, 78, 602
knobs 36, 601
knowledge 541
level and interview preparation 320
knowledge creation 6, 602
knowledge workers 107
Kolmogorov-Smirnov test 442, 447, 601
language 173–4
non-discriminatory 539, 589–91
translating questions into other languages 375–7, 378
law of large numbers 211, 601
layout, questionnaire 380–2, 383
levels of numerical measurement 408–11, 412
lexical meaning 377, 601
libraries 255
Likert-type rating scale 372–3, 601
line graphs 422, 425–6, 601
multiple 422, 432, 434–5, 603
linearity 454, 601
link terms 77–8
list questions 369–70, 602
listening skills 326
lists for sampling frames 209
literature review see critical literature review
literature search 25, 56, 70–86
conducting 74–86, 89
planning 70–4
location for interviews 321, 322
logic leaps 151–2
logistical issues 334–6
long-term trends 458, 601
longitudinal studies 148, 252, 259, 602
lower quartile 439, 602
management report 532, 535, 603
margin of error 211–12
market research reports 261, 265
matrix questions 375, 599
maturation 150
maximum variation sampling 232
McDonald's 341
mean (average) 436, 437, 602
measurement bias 267–9
measurement validity 263–4, 602
median 436, 437, 602
mergers 315
meta search engines 83, 84, 85
method 3, 40, 45, 527, 602
methodology 3, 602
middle-range theories 36–7, 38
mind mapping 26, 531
minimal interaction 301, 602
minimum sample size 211–12, 586–7
missing data code 416
mixed-method research 145–6, 147, 602
mixed-methods approach 145–6, 602
mixed model research 146, 602
mobile phones, drivers and 111
modal group 437
mode 436, 437, 602
Mode 1 knowledge creation 6, 602
Mode 2 knowledge creation 6, 602
Mode 3 knowledge creation 6, 602
moderator (facilitator) 340, 602
mono method 145, 603
mortality (dropout) 150
moving average 442, 458, 603
multicollinearity 454, 603
multi-method 145, 146, 603
multi-method qualitative study 145, 146, 603
multi-method quantitative study 145, 146, 603
multiple bar charts 422, 430, 431, 603
multiple box plots 422, 433
multiple cases study 140
multiple-dichotomy method 414, 603
multiple line graphs 422, 432, 434–5, 603
multiple methods 145–7, 603
multiple regression analysis 442, 453, 455–6, 603
multiple regression coefficient 442, 453, 454, 603
multiple-response method 414, 418–19, 603
multiple-source secondary data 249, 251–3, 603
multi-stage sampling 217, 223–4, 225, 603–4
music industry 126–7
mutually exclusive categories 370
mystery customer research 199–200
narrative account 290, 504, 604
narrative analysis 504–5, 604
national cultures 96–7
naturalism 143
negative correlation 451, 604
negative skew 427, 604
netiquette 181–2, 389–90, 604
networks 494
newspapers 66, 68, 69, 253, 254
nominal data see descriptive data
non-discriminatory language 539, 589–91
nonmaleficence 181, 182, 604
non-parametric statistics 441, 604
non-probability sampling 207, 226–34, 604
non-response 212–13
non-standardised interviews 310–36, 346
non-written documents 248, 249
normal distribution 427, 604
note-taking 326–7, 333–4, 338
notebook of ideas 25, 604
numeric rating scale 373, 604
INDEX

objectivism 108, 109, 112, 113, 604
objectivity 187, 604
critique of 59
observation 10, 12, 139, 188–9, 282–309, 605
data collection and analysis 289–92, 297–301
participant observation 153, 282, 283–93, 605
structured observation 282, 293–301
observer as participant 287, 288, 289, 604
observer bias 150, 291–2, 605
observer effect 301, 605
observer error 149–50, 605
occupational community 286
off-the-shelf coding schedules 297–300
Office for National Statistics (ONS) 266
one-to-many interviews 313
one-to-one interviews 313
one-way ANOVA 442, 448–50
online clothes purchasing 530
online questionnaires 356, 357, 358, 378–9, 389–91, 605
ontology 108–10, 605
open coding 499–501
open questions 324, 329, 368, 369, 605
opening comments 322–4
operating and financial reviews (OFRs) 473–4
operationalisation (of concepts) 118, 605
opinion polls 231
opinion variables 362, 363, 605
oral presentations 10, 13, 542–6
oral data see ranked data
organisational culture 109, 502
organisational documentation 320, 486
organisational justice theory 62–3
outliers 427, 428, 454
overhead transparencies 545
paired t-test 442, 447–8, 449, 605
paradigms 100, 112–16, 605
parallel translation 378
parameters, search 70–1
parametric statistics 441, 605
participant 605
participant as observer 287, 288, 605
participant (subject) bias 149, 612
participant (subject) error 149, 301, 612
participant information sheet 184, 323, 605
participant observation 153, 282, 283–93, 605
data collection and analysis 286–92
researcher roles 286–9
situations for using 284–6
passive voice 539, 606
past projects 23, 25–6, 567–78
pattern matching 489–90, 606
Paxman, Jeremy 311
Pearson’s product moment correlation coefficient (PMCC) 442, 451, 452, 606
percentage component bar charts 422, 430–2, 606
percentiles 436, 439
performance monitoring 295
periodic patterns 220–1
permanence of data 260
personal contact 168–71, 316
personal data 190–2, 193, 606
personal entry 167, 606
personal pronouns 539, 606
personal safety 190
phenomenology 107, 606
Phi 442, 445, 606
physical access 163–4
pie charts 422, 426–7, 429, 606
comparative proportional 422, 432, 593
pilot testing 386–7, 606
plagiarism 531–2
population 205–6, 606
positive correlation 451, 606
positive skew 427, 438, 606
positivism 103–4, 606
Post-it notes 3
postal questionnaires 356, 357, 358, 387, 388, 391–2, 606–7
power 180–1, 285
PowerPoint 543–4, 545, 607
practitioner-researcher 143–5, 166–7, 189, 607
pragmatism 110, 607
pre-coding 377–8, 607
prediction of values 442, 453–6
predictive (criterion-related) validity 366–7, 595
preliminary search 25, 70–86, 607
preliminary study 28, 607
presentations, oral 10, 13, 542–6
pre-set codes 415, 607
pre-survey contact 168, 390, 391, 607
previews, chapter 535
primary data 10, 12–13, 215, 246, 607
primary literature 64–5, 66, 68–70, 607
primary observations 290, 607
printed sources 77
privacy 187, 607
pro forma for access request replies 174, 175
probability sampling 207, 208–26, 607
representativeness of sample 212–13, 224–6
sampling frame 208–10, 610
sample size 210–15, 443, 586–7
techniques 215–24, 225
probing questions 324, 330, 607
Procter & Gamble (P&G) 163
project report 10, 13, 518–52, 607
content 533–5
project titles 567–78

620
INDEX

prompt card 369, 370, 371
proportions 422, 426–7
comparing 422, 430–2, 432
propositions, testing 482–4
published guides to secondary data sources 255
publishers’ Internet addresses 76, 79, 81
publishing industry 349–50
pure (basic) research 7, 8, 592
purpose
research purpose 132–5, 288, 313–14, 315–16
secondary data and 260, 262–3
purposive sampling 228, 230–2, 233, 608
qualitative data 145, 470, 472–4, 505, 608
qualitative data analysis 10, 13, 470–516
analytical aids 484–7
approaches to 487–9
CAQDAS 471–2, 505–7, 609
categorisation 479–80, 481, 482
deductive approach 478–9, 487–8, 489–92
developing and testing hypotheses 482–4
inductive approach 478–9, 487–8, 488–9, 492–505
interactive nature of 484
preparing data for analysis 474–8
recognising relationships and developing categories 482
transcription 475–7
unitising data 480, 481
qualitative interviews 310–36, 346, 609
qualitisation of data 146, 608
quantifiable data 409, 415, 422, 436, 441, 447–8, 608
quantification of qualitative data 505
quantitative data 117, 145, 406, 472–4, 608
types 408–11
quantitative data analysis 10, 13, 406–68
checking for errors 417–19
coding 413–16, 418–19
data layout 411–14
descriptive statistics 433–40, 596
entering data 416–17
exploratory data analysis 420–33, 598
statistical significance testing 440–58
weighting cases 419–20, 614
quantitisation of data 146, 608
quantitative research interviews see structured interviews
quantity questions 375, 608
questions
question banks 368
questioning, interview 324–5, 329–32
questionnaire fatigue 387, 389
questionnaires 10, 13, 138–9, 188, 354–405, 608
administering 387–94
choice of 357–60
closing 386
data collection 361–4, 365
designing 364–87
explaining purpose of 382–6
introducing 383–5
layout 380–2, 383
secondary data from 193–4
translating into other languages 375–7, 378
types of 356–7, 358
when to use 356
questions
closed 330, 360, 368, 369–75, 593
coding 377–9
designing for questionnaires 368–77
interviews 316, 317
open 324, 329, 368, 369, 605
order and flow of 379–80, 381
wording 375, 376–7
quota sampling 226, 227–30, 231, 608
quotations from the literature 537–8
radical change 112, 113, 608
radical humanist paradigm 112, 113, 114, 608
radical structuralist paradigm 112, 113, 114, 608
random digital dialling 218
random number tables 215–16, 218, 588
random numbers 215–18
random sampling
simple 215–18, 219, 611
stratified 217, 221–2, 612
range 436, 439, 609
ranked data 409, 422, 442, 447, 608
ranking questions 372, 608
rating questions 372–4, 381, 608
ratio data 409
rational thinking technique 22–3, 609
raw data 248, 609
reactivity 188, 609
realism 104–6, 609
‘reasoning backwards’ 533–4
re-coding 415, 609
recommendations 532
recording data
interviews 326–7, 333–4, 335, 338
literature search 79, 80, 82, 88–91
reductionism 118, 609
referred academic journals 65, 66, 609
references 34, 42–3, 45, 90, 531–2
referencing systems 90, 531, 579–85
regression analysis 442, 451–6, 458, 465–6, 609
regression coefficient 442, 451–3, 454, 609
regression equation 442, 453–4, 609
regulatory perspective 112, 609
relationships 422, 433
causal 150, 450, 451–3, 593
networks to represent 494
recognising in qualitative analysis 482
strength of 442, 450–3
testing for significant 441–7
relevance 7, 115–16
literature 87, 88
relevance trees 26, 74, 75, 609
reliability 149, 265–7, 609
interviews 318, 319–20
observation 291–2, 301
questionnaires 364–6, 367–8
INDEX

threats to 149–50
religion 370
reports 25, 66, 69
 project report see project report
representative sample 165, 212–13, 448, 610
 checking representativeness 224–6
research 2–9, 610
 nature of 4–5
 nature of business and management research 5–8
 process 8–9, 10
research approaches 102, 117–21, 132, 610
research choices 102, 132, 145–7
research design 10, 12, 40, 130–60
research ethics see ethics
research ethics committees 179, 610
research ideas 21–9, 47, 610
 generating 22–7
 refining 27–9
research objectives 32–3, 40, 44, 610
 importance of theory in writing 33–7
research paradigms 100, 112–16, 605
research philosophy 10, 12, 101–16, 132
 axiology 110–11, 592
 diagnosing 123
 epistemology 102–7, 597
 ontology 108–10, 605
research approaches 117–21
research population 151, 153, 610
research project titles 567–78
research proposal 38–45
 content 39–43
 criteria for evaluating 43–5
 purposes 39
research questions 29–32, 40, 610
 importance of theory in writing 33–8
research strategies 102, 132, 135–45, 610
 interviews and 313–14
research topic 10, 11–12, 18–52
 attributes of a good research topic 19–21, 22
 generating and refining research ideas 21–9
 and research approach 119–21
research proposal 38–45
 turning research ideas into research projects 29–37
researcher 21
 appearance (for interviews) 322, 323
 behaviour during interviews 325–6
 organisational status 166
 personal objectives 33
 personal preferences 25–6
 personal safety 190
 preferred style 121
 roles in participant observation 286–9
 strengths and interests 23
values 110–11
researcher’s diary 487
resistance to IT implementation 495
resources 21, 42, 45, 172, 257–9
 issues and interviews 334–6
 and questionnaires 358, 359
respondent 355, 610
respondent interviews 312, 610
response (interviewee) bias see response rate 318, 600
response rate 212–15, 387, 388, 591
restaurant chains 199–200, 294
results chapter(s) 528, 529
review articles 25, 71, 72, 610
rhetoric, critique of 58–9
rigour 7
Russian doll principle 31
sample 205–6, 610
sample size 210–15, 443, 586–7
sampling 10, 12, 204–45
 need for 206–7
 non-probability sampling 207, 226–34, 604
 probability sampling 207, 208–26, 607
 representativeness of a sample 165, 212–13, 224–6, 448, 610
sampling fraction 219–20, 610
sampling frame 208–10, 610
sampling without replacement 216
scale items 374
scales 372, 374, 610
scanning 79
scatter graphs (plots) 422, 433, 434, 435–6, 611
scientific research 117, 611
search engines 82–6, 256, 611
search strings 77–8, 80, 611
search terms (key words) 71–4, 78, 601
search tools 82–6, 256
secondary data 10, 12, 143, 246–80, 611
 advantages 257–60
 availability 253–5
 disadvantages 260–3
 finding 255–7, 258
 from questionnaires 193–4
 suitability 263–9, 270–1
 types of 248–53
secondary literature 64–5, 65–8, 611
secondary observations 290, 611
selective coding 499, 501
self-administered questionnaires 356–7, 611
self-coded questions 375
self-memos 486–7
self-selection sampling 228, 233–4, 611
semantic differential rating scale 373–4, 611
semi-structured interviews 310–36, 346, 611
service quality 306–8, 400–2
self-selection sampling 228, 233–4, 611
simple random sampling 215–18, 219, 611

622
INDEX

simplicity 536
single case studies 140, 327
skew 427, 438, 604, 606
ski tour operators 158–9
smart objectives 33
snowball sampling 228, 232–3, 611
social constructionism 108–9, 611
social norms 178, 611
social practice 503
socially desirable responses 359, 611
software developers 286
source questionnaire 377, 378, 612
Spearman’s rank correlation coefficient (Spearman’s Rho) 442, 451, 612
specialised search engines 83, 84, 85
specific questions 330
specific values 423, 427–30
spelling 538
split infinitives 538–9, 612
stacked bar charts 422, 432, 433, 612
standard deviation 436, 437, 439, 612
standardised interviews see structured interviews
standards schedule 294
statistical inference 211
statistical significance 440–58, 612
statistics 433–56
descriptive 433–40, 596
government 265, 266
significance testing 440–58
storyline 523, 533–4, 612
stratified random sampling 217, 221–2, 612
structured interviews 139, 312, 314, 357, 358, 612
conducting 393–4
prompt cards 370, 371
structured methodology 118, 612
structured observation 282, 293–301
data analysis 300–1
data collection 297–300
when to use 293–6
student rents 407
subject (participant) bias 149, 612
subject directories 83–5, 86, 612
subject (participant) error 149, 301, 612
subject trees 82
subjectivism 108–9, 112, 113, 612
substantive theories 36–7, 38
summaries 485–6
chapter summaries 535
literature review and brief summaries 88, 90
summary report 173
supermarkets 252, 292, 296, 502
supplementary information 88, 91
survey-based secondary data 249–51, 612
surveys 138–9, 189–90, 612
Swatch 485
symbolic interactionism 107, 284, 613
symmetric distribution 427, 613
symmetry of potential outcomes 20, 613
synchronous interviews 342–3, 613
syntax 377
synthesis 541, 613
systematic review 72, 77, 613
systematic sampling 217, 218–21, 613
t-test 442, 447–8, 449, 455–6, 614
tables 535, 613
contingency tables 422, 427–30, 594
data requirement tables 362–4, 365, 596
designing 420, 421
frequency distribution 422, 423, 598
tactics 131–2
tailored design method 355, 613
target questionnaire 377, 378, 613
teleological view 178–9, 613
telephone interviews 313, 341–2
telephone questionnaires 357, 358, 393, 613
template analysis 496–8, 613
templates 496, 497
tense 539, 613
tertiary literature 64–5, 67, 75–86, 253–4, 613
test re-test 367
testing 150
text 503
TGI Friday’s 355
theoretical sampling 499
theoretical saturation 499
type 33–8, 38, 328–9, 488, 613
theory dependence 35–7, 613–14
thesauruses 73, 77
theses 23, 66, 69–70, 614
time 289
and access 167–8, 172
and interviews 316–17, 334–5, 335–6
questionnaires and 358, 359
timescale of research 21, 41–2, 45, 121
and writing 520
time error 301, 614
time horizons 102, 132, 148
time series 442, 458, 614
time series multiple-source data 249, 251–2
title 39, 44, 533
past project titles 567–78
total response rate 213, 214
totals, comparison of 422, 432
trade journals 66, 68
tradition, critique of 58–9
transcription 475–7, 614
transdisciplinary research 6
trends 422, 425–6, 601, 614
comparing 422, 432, 434–5
examining 442, 456–8
triangulation 139, 147, 292, 614
trust 62–3, 325
public trust in statistics 266
type I errors 443–4, 614
type II errors 443–4, 614
typical case sampling 232
understanding, testing 326
unforeseen discoveries 259
uninformed response 359
INDEX

unitising data 480, 481
university Internet abuse 512–14
unmeasured variables 265
unobtrusivity 259
unreachable respondents 213, 614
unstructured interviews 310–36, 346, 614
upper quartile 439, 614
URL (unique resource location) 90
validity 137, 150, 614
 external see generalisability
 internal 137, 366–7, 600
 interviews 319
 measurement 263–4, 602
 observation 291–2, 301
 questionnaires 364–6, 366–7, 386–7
 secondary data 265–7
 threats to 150–1
values 101, 110–11
Vancouver system 90, 531, 584–5
variables 361–2, 411, 614
 comparing 427–33, 434–6
 dependent see dependent variables
 independent 361–2, 433, 489–90, 600
 interdependence between 422, 427–30
 individual 423–7, 428–30
 lists of 34
 types of 362, 363
 variance 436, 448, 614
 visual aids 545, 614

web-based questionnaires 390–1
web logs (blogs) 519, 592
weighting 419–20, 614
whiteboard 545
willingness to be interviewed 318–19
women 37
 equal opportunities in publishing 349–50
 in management 50–1
word processing 521–2
workplace discrimination 114
writing 518–19, 520–3
 style 536–40
 see also project report
written documents 248, 249